Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1
Abstract
1. Introduction
2. Results and Discussion
2.1. Fitness and Growth Performance
2.2. Plasma Biochemical Profile
2.3. Toxicological Responses
2.3.1. Oxidative Stress Biomarkers
2.3.2. Cellular Damage
Lipid Peroxidation
Protein Chaperoning and Degradation
Neurotoxicity
2.3.3. Metabolic Responses
3. Material and Methods
3.1. Experimental Design
3.2. Feed
3.3. Sample Collection
3.4. Fitness Parameters and Growth Performance
3.5. Mycotoxin Determination
3.6. Plasma Biochemical Analysis
3.7. Biomarker Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- OECD/FAO. Agricultural Outlook 2021–2030; Organisation for Economic Co-Operation and Development: Paris, France, 2021. [Google Scholar] [CrossRef]
- Nogueira, W.V.; De Oliveira, F.K.; Marimón Sibaja, K.V.; Garcia, S.D.O.; Kupski, L.; De Souza, M.M.; Tesser, M.B.; Garda-Buffon, J. Occurrence and Bioacessibility of Mycotoxins in Fish Feed. Food Addit. Contam. Part B 2020, 13, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, R.J.; Mahoney, N.; Kim, J.H.; Campbell, B.C. Mycotoxins in Edible Tree Nuts. Int. J. Food Microbiol. 2007, 119, 72–78. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Nácher-Mestre, J.; Serrano, R.; Beltrán, E.; Pérez-Sánchez, J.; Silva, J.; Karalazos, V.; Hernández, F.; Berntssen, M.H.G. Occurrence and Potential Transfer of Mycotoxins in Gilthead Sea Bream and Atlantic Salmon by Use of Novel Alternative Feed Ingredients. Chemosphere 2015, 128, 314–320. [Google Scholar] [CrossRef]
- Pietsch, C. Risk Assessment for Mycotoxin Contamination in Fish Feeds in Europe. Mycotoxin Res. 2020, 36, 41–62. [Google Scholar] [CrossRef]
- Tolosa, J.; Rodríguez-Carrasco, Y.; Ruiz, M.J.; Vila-Donat, P. Multi-Mycotoxin Occurrence in Feed, Metabolism and Carry-over to Animal-Derived Food Products: A Review. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 158, 112661. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Natural Occurrence of Emerging Fusarium Mycotoxins in Feed and Fish from Aquaculture. J. Agric. Food Chem. 2014, 62, 12462–12470. [Google Scholar] [CrossRef]
- Tolosa, J.; Barba, F.J.; Pallarés, N.; Ferrer, E. Mycotoxin Identification and In Silico Toxicity Assessment Prediction in Atlantic Salmon. Mar. Drugs 2020, 18, 629. [Google Scholar] [CrossRef]
- Nácher-Mestre, J.; Beltrán, E.; Strachan, F.; Dick, J.R.; Pérez-Sánchez, J.; Berntssen, M.H.G.; Tocher, D.R. No Transfer of the Non-Regulated Mycotoxins, Beauvericin and Enniatins, from Feeds to Farmed Fish Reared on Plant-Based Diets. Food Chem. 2020, 323, 126773. [Google Scholar] [CrossRef]
- Albero, B.; Fernández-Cruz, M.L.; Pérez, R.A. Simultaneous Determination of 15 Mycotoxins in Aquaculture Feed by Liquid Chromatography–Tandem Mass Spectrometry. Toxins 2022, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- Berntssen, M.H.G.; Fjeldal, P.G.; Gavaia, P.J.; Laizé, V.; Hamre, K.; Donald, C.E.; Jakobsen, J.V.; Omdal, Å.; Søderstrøm, S.; Lie, K.K. Dietary Beauvericin and Enniatin B Exposure Cause Different Adverse Health Effects in Farmed Atlantic Salmon. Food Chem. Toxicol. 2023, 174, 113648. [Google Scholar] [CrossRef]
- Søderstrøm, S.; Søfteland, L.; Sele, V.; Lundebye, A.-K.; Berntssen, M.H.G.; Lie, K.K. Enniatin B and Beauvericin Affect Intestinal Cell Function and Hematological Processes in Atlantic Salmon (Salmo salar) after Acute Exposure. Food Chem. Toxicol. 2023, 172, 113557. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks to Human and Animal Health Related to the Presence of Beauvericin and Enniatins in Food and Feed. EFSA J. 2014, 12, 3802. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Appropriateness to Set a Group Health-Based Guidance Value for Fumonisins and Their Modified Forms. EFSA J. 2018, 16, 5172. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Z.; Wang, Y.; Long, M.; Wu, W.; Kuca, K. Fumonisin B1: Mechanisms of Toxicity and Biological Detoxification Progress in Animals. Food Chem. Toxicol. 2021, 149, 111977. [Google Scholar] [CrossRef] [PubMed]
- Bódi, V.; Csikós, V.; Rátkai, E.A.; Szűcs, A.; Tóth, A.; Szádeczky-Kardoss, K.; Dobolyi, Á.; Schlett, K.; Világi, I.; Varró, P. Short-Term Neuronal Effects of Fumonisin B1 on Neuronal Activity in Rodents. NeuroToxicology 2020, 80, 41–51. [Google Scholar] [CrossRef]
- Anater, A.; Manyes, L.; Meca, G.; Ferrer, E.; Luciano, F.B.; Pimpão, C.T.; Font, G. Mycotoxins and Their Consequences in Aquaculture: A Review. Aquaculture 2016, 451, 1–10. [Google Scholar] [CrossRef]
- Escrivá, L.; Font, G.; Manyes, L. In Vivo Toxicity Studies of Fusarium Mycotoxins in the Last Decade: A Review. Food Chem. Toxicol. 2015, 78, 185–206. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EC) No 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, L 119, 103–157. [Google Scholar]
- The Commission of the European Communities. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs. Off. J. Eur. Union 2006, L 70, 12–34. [Google Scholar]
- The European Commission. Commission Recommendation (EU) 2016/1319 of 29 July 2016 Amending Recommendation 2006/576/EC as Regards Deoxynivalenol, Zearalenone and Ochratoxin A in Pet Food. Off. J. Eur. Union 2016, L 208, 58–60. [Google Scholar]
- Křížová, L.; Dadáková, K.; Dvořáčková, M.; Kašparovský, T. Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals. Toxins 2021, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Elisa Giuliani, M.; Mezzelani, M.; Nardi, A.; Pittura, L.; Gorbi, S.; Regoli, F. Emerging Environmental Stressors and Oxidative Pathways in Marine Organisms: Current Knowledge on Regulation Mechanisms and Functional Effects. Biocell 2022, 46, 37–49. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: New York, NY, USA, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Tenji, D.; Micic, B.; Sipos, S.; Miljanovic, B.; Teodorovic, I.; Kaisarevic, S. Fish Biomarkers from a Different Perspective: Evidence of Adaptive Strategy of Abramis brama (L.) to Chemical Stress. Environ. Sci. Eur. 2020, 32, 47. [Google Scholar] [CrossRef]
- Hayes, J.D.; McLellan, L.I. Glutathione and Glutathione-Dependent Enzymes Represent a Co-Ordinately Regulated Defence against Oxidative Stress. Free Radic. Res. 1999, 31, 273–300. [Google Scholar] [CrossRef] [PubMed]
- Abele, D.; Puntarulo, S. Formation of Reactive Species and Induction of Antioxidant Defence Systems in Polar and Temperate Marine Invertebrates and Fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 138, 405–415. [Google Scholar] [CrossRef]
- Peres, H.; Santos, S.; Oliva-Teles, A. Selected Plasma Biochemistry Parameters in Gilthead Seabream (Sparus aurata) Juveniles. J. Appl. Ichthyol. 2012, 29, 630–636. [Google Scholar] [CrossRef]
- Savonitto, G.; Barkan, R.; Harpaz, S.; Neori, A.; Chernova, H.; Terlizzi, A.; Guttman, L. Fishmeal Replacement by Periphyton Reduces the Fish in Fish out Ratio and Alimentation Cost in Gilthead Sea Bream Sparus aurata. Sci. Rep. 2021, 11, 20990. [Google Scholar] [CrossRef]
- Besson, M.; Rombout, N.; Salou, G.; Vergnet, A.; Cariou, S.; Bruant, J.-S.; Izquierdo, M.; Bestin, A.; Clota, F.; Haffray, P.; et al. Potential for Genomic Selection on Feed Efficiency in Gilthead Sea Bream (Sparus aurata), Based on Individual Feed Conversion Ratio, Carcass and Lipid Traits. Aquac. Rep. 2022, 24, 101132. [Google Scholar] [CrossRef]
- Søderstrøm, S.; Lie, K.K.; Lundebye, A.-K.; Søfteland, L. Beauvericin (BEA) and Enniatin B (ENNB)-Induced Impairment of Mitochondria and Lysosomes—Potential Sources of Intracellular Reactive Iron Triggering Ferroptosis in Atlantic Salmon Primary Hepatocytes. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2022, 161, 112819. [Google Scholar] [CrossRef] [PubMed]
- Bertero, A.; Fossati, P.; Tedesco, D.E.A.; Caloni, F. Beauvericin and Enniatins: In Vitro Intestinal Effects. Toxins 2020, 12, 686. [Google Scholar] [CrossRef]
- Koletsi, P.; Wiegertjes, G.F.; Graat, E.A.M.; De Kool, M.; Lyons, P.; Schrama, J.W. Individual and Combined Effects of Deoxynivalenol (DON) with Other Fusarium Mycotoxins on Rainbow Trout (Oncorhynchus mykiss) Growth Performance and Health. Mycotoxin Res. 2023, 39, 405–420. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Camacho, C.; Barbosa, V.; Alves, R.; Anacleto, P.; Pousão-Ferreira, P.; Rosa, R.; Marques, A.; Diniz, M.S. Living in a Multi-Stressors Environment: An Integrated Biomarker Approach to Assess the Ecotoxicological Response of Meagre (Argyrosomus regius) to Venlafaxine, Warming and Acidification. Environ. Res. 2019, 169, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Famoofo, O.O.; Abdul, W.O. Biometry, Condition Factors and Length-Weight Relationships of Sixteen Fish Species in Iwopin Fresh-Water Ecotype of Lekki Lagoon, Ogun State, Southwest Nigeria. Heliyon 2020, 6, e02957. [Google Scholar] [CrossRef]
- Mozsár, A.; Boros, G.; Sály, P.; Antal, L.; Nagy, S.A. Relationship between Fulton’s Condition Factor and Proximate Body Composition in Three Freshwater Fish Species. J. Appl. Ichthyol. 2015, 31, 315–320. [Google Scholar] [CrossRef]
- Love, R.M.; Love, R.M. The Chemical Biology of Fishes: With a Key to the Chemical Literature; Academic Press: London, UK; New York, NY, USA, 1970; ISBN 978-0-12-455850-2. [Google Scholar]
- Navarro, I.; Gutiérrez, J. Chapter 17 Fasting and Starvation. In Biochemistry and Molecular Biology of Fishes; Elsevier: Amsterdam, The Netherlands, 1995; Volume 4, pp. 393–434. ISBN 978-0-444-82082-2. [Google Scholar]
- Evans, G.O.; Watterson, C.L. Animal Clinical Chemistry: A Practical Handbook for Toxicologists and Biomedical Researchers, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-0-429-14169-0. [Google Scholar]
- Beyraghdar Kashkooli, O.; Ebrahimi Dorcheh, E.; Mahboobi-Soofiani, N.; Samie, A. Long-Term Effects of Propolis on Serum Biochemical Parameters of Rainbow Trout (Oncorhynchus mykiss). Ecotoxicol. Environ. Saf. 2011, 74, 315–318. [Google Scholar] [CrossRef]
- Johnston, C.E.; Horney, B.S.; Deluca, S.; MacKenzie, A.; Eales, J.G.; Angus, R. Changes in Alkaline Phosphatase Isoenzyme Activity in Tissues and Plasma of Atlantic Salmon (Salmo salar) before and during Smoltification and Gonadal Maturation. Fish Physiol. Biochem. 1994, 12, 485–497. [Google Scholar] [CrossRef]
- Gholami, R.; Davoodi, R.; Oujifard, A.; Nooryazdan, H. Chronic Effects of NeemAzal on Biochemical Parameters of Grass Carp, Ctenopharyngodon idella. Aquac. Res. 2016, 47, 3867–3872. [Google Scholar] [CrossRef]
- Velisek, J.; Stara, A.; Machova, J.; Svobodova, Z. Effects of Long-Term Exposure to Simazine in Real Concentrations on Common Carp (Cyprinus carpio L.). Ecotoxicol. Environ. Saf. 2012, 76, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Hatami, M.; Banaee, M.; Nematdoost Haghi, B. Sub-Lethal Toxicity of Chlorpyrifos Alone and in Combination with Polyethylene Glycol to Common Carp (Cyprinus carpio). Chemosphere 2019, 219, 981–988. [Google Scholar] [CrossRef]
- Bowser, P.R.; Wooster, G.A.; Aluisio, A.L.; Blue, J.T. Plasma Chemistries of Nitrite Stressed Atlantic Salmon Salmo salar. J. World Aquac. Soc. 1989, 20, 173–180. [Google Scholar] [CrossRef]
- Farah, H.S.; Atoom, A.A.A.; Shehab, G.M. Explanation of the Decrease in Alkaline Phosphatase (ALP) Activity in Hemolysed Blood Samples from the Clinical Point of View: In Vitro Study. Zagazig J. Pharm. Sci. 2012, 5, 125–128. [Google Scholar] [CrossRef]
- Fridovich, I. Biological Effects of the Superoxide Radical. Arch. Biochem. Biophys. 1986, 247, 1–11. [Google Scholar] [CrossRef]
- Bagnyukova, T.V.; Chahrak, O.I.; Lushchak, V.I. Coordinated Response of Goldfish Antioxidant Defenses to Environmental Stress. Aquat. Toxicol. 2006, 78, 325–331. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef]
- Maulvault, A.L.; Barbosa, V.; Alves, R.; Anacleto, P.; Camacho, C.; Cunha, S.; Fernandes, J.O.; Ferreira, P.P.; Rosa, R.; Marques, A.; et al. Integrated Multi-Biomarker Responses of Juvenile Seabass to Diclofenac, Warming and Acidification Co-Exposure. Aquat. Toxicol. 2018, 202, 65–79. [Google Scholar] [CrossRef]
- Ramos, A.S.; Correia, A.T.; Antunes, S.C.; Gonçalves, F.; Nunes, B. Effect of Acetaminophen Exposure in Oncorhynchus mykiss Gills and Liver: Detoxification Mechanisms, Oxidative Defence System and Peroxidative Damage. Environ. Toxicol. Pharmacol. 2014, 37, 1221–1228. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Grădinariu, L.; Crețu, M.; Vizireanu, C.; Dediu, L. Oxidative Stress Biomarkers in Fish Exposed to Environmental Concentrations of Pharmaceutical Pollutants: A Review. Biology 2025, 14, 472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.F.; Liu, H.; Sun, Y.Y.; Wang, X.R.; Wu, J.C.; Xue, Y.Q. Responses of the Antioxidant Defenses of the Goldfish Carassius auratus, Exposed to 2,4-Dichlorophenol. Environ. Toxicol. Pharmacol. 2005, 19, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Xu, L.; Porter, N.A. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef]
- Catalá, A.; Díaz, M. Editorial: Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. Front. Physiol. 2016, 7, 423. [Google Scholar] [CrossRef]
- Kulcsár, S.; Turbók, J.; Kövér, G.; Balogh, K.; Zándoki, E.; Gömbös, P.; Ali, O.; Szabó, A.; Mézes, M. The Effect of Combined Exposure of Fusarium Mycotoxins on Lipid Peroxidation, Antioxidant Defense, Fatty Acid Profile, and Histopathology in Laying Hens’ Liver. Toxins 2024, 16, 179. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.M.; Hyndman, K.A.; Kriska, T.; Girotti, A.W.; Crockett, E.L. Relationship between Oxidizable Fatty Acid Content and Level of Antioxidant Glutathione Peroxidases in Marine Fish. J. Exp. Biol. 2011, 214, 3751–3759. [Google Scholar] [CrossRef]
- Kravats, A.N.; Wickner, S.; Camberg, J.L. Molecular Chaperones. Ref. Mod. Life Sci. 2022. [Google Scholar] [CrossRef]
- Jackson, S.P.; Durocher, D. Regulation of DNA Damage Responses by Ubiquitin and SUMO. Mol. Cell 2013, 49, 795–807. [Google Scholar] [CrossRef]
- Hanna, J.; Meides, A.; Zhang, D.P.; Finley, D. A Ubiquitin Stress Response Induces Altered Proteasome Composition. Cell 2007, 129, 747–759. [Google Scholar] [CrossRef]
- Fukuto, T.R. Mechanism of Action of Organophosphorus and Carbamate Insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef]
- Ezemonye, L.I.N.; Ikpesu, T.O. Evaluation of Sub-Lethal Effects of Endosulfan on Cortisol Secretion, Glutathione S-Transferase and Acetylcholinesterase Activities in Clarias gariepinus. Food Chem. Toxicol. 2011, 49, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, R.; Tang, S.; Zhu, F.; Zhang, S.; Yan, Z.; Chen, J. Single and Mixture Toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the Feeding Activity of Daphnia magna: From Behavior Assessment to Neurotoxicity. Chemosphere 2018, 195, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Munari, M.; Marin, M.G.; Matozzo, V. Effects of the Antidepressant Fluoxetine on the Immune Parameters and Acetylcholinesterase Activity of the Clam Venerupis philippinarum. Mar. Environ. Res. 2014, 94, 32–37. [Google Scholar] [CrossRef]
- Brimijoin, S. Molecular Forms of Acetylcholinesterase in Brain, Nerve and Muscle: Nature, Localization and Dynamics. Prog. Neurobiol. 1983, 21, 291–322. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, K.; Zhu, Q.; Peng, J.; Liu, C.; Wang, X.; Li, S.; Zhang, H. The Natural Occurrence, Toxicity Mechanisms and Management Strategies of Fumonisin B1: A Review. Environ. Pollut. 2023, 320, 121065. [Google Scholar] [CrossRef]
- Morrison, H. Citrate Synthase. In Enzyme Active Sites and their Reaction Mechanisms; Elsevier: Amsterdam, The Netherlands, 2021; pp. 45–49. [Google Scholar] [CrossRef]
- Strobel, A.; Leo, E.; Pörtner, H.O.; Mark, F.C. Elevated Temperature and PCO2 Shift Metabolic Pathways in Differentially Oxidative Tissues of Notothenia rossii. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2013, 166, 48–57. [Google Scholar] [CrossRef]
- Silva-Brito, F.; Timóteo, F.; Esteves, Â.; Peixoto, M.J.; Ozorio, R.; Magnoni, L. Impact of the Replacement of Dietary Fish Oil by Animal Fats and Environmental Salinity on the Metabolic Response of European Seabass (Dicentrarchus labrax). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2019, 233, 46–59. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.B. Alcohol and Gastrointestinal Tract Function. In Bioactive Food as Dietary Interventions for Liver and Gastrointestinal Disease; Watson, R.R., Preedy, V.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 81–118. [Google Scholar]
- MacPherson, S.; Horkoff, M.; Gravel, C.; Hoffmann, T.; Zuber, J.; Lum, J.J. STAT3 Regulation of Citrate Synthase Is Essential during the Initiation of Lymphocyte Cell Growth. Cell Rep. 2017, 19, 910–918. [Google Scholar] [CrossRef]
- Herskin, J.; Steffensen, J.F. Energy Savings in Sea Bass Swimming in a School: Measurements of Tail Beat Frequency and Oxygen Consumption at Different Swimming Speeds. J. Fish Biol. 1998, 53, 366–376. [Google Scholar] [CrossRef]
- Fang, J.; Tian, X.; Dong, S. The Influence of Water Temperature and Ration on the Growth, Body Composition and Energy Budget of Tongue Sole (Cynoglossus semilaevis). Aquaculture 2010, 299, 106–114. [Google Scholar] [CrossRef]
- Williams, G.C. Computation and Interpretation of Biological Statistics of Fish Populations. W. E. Ricker. Q. Rev. Biol. 1976, 51, 332. [Google Scholar] [CrossRef]
- Rodde, C.; Chatain, B.; Vandeputte, M.; Trinh, T.Q.; Benzie, J.A.H.; De Verdal, H. Can Individual Feed Conversion Ratio at Commercial Size Be Predicted from Juvenile Performance in Individually Reared Nile Tilapia Oreochromis niloticus? Aquac. Rep. 2020, 17, 100349. [Google Scholar] [CrossRef]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Validation of an Enzyme-Linked Immunosorbent Assay (ELISA) Test Kit for Determination of Aflatoxin B1 in Corn Feed and Comparison with Liquid-Chromatography Tandem Mass Spectrometry (LC-MS/MS) Method. Food Anal. Methods 2020, 13, 1806–1816. [Google Scholar] [CrossRef]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Multimycotoxin Analysis in Water and Fish Plasma by Liquid Chromatography-Tandem Mass Spectrometry. Chemosphere 2016, 145, 402–408. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Comparative Assessment of Three Cleanup Procedures after QuEChERS Extraction for Determination of Trichothecenes (Type A and Type B) in Processed Cereal-Based Baby Foods by GC–MS. Food Chem. 2015, 182, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.H.; Håkan Borg, L.A. A Spectrophotometric Method for Determination of Catalase Activity in Small Tissue Samples. Anal. Biochem. 1988, 174, 331–336. [Google Scholar] [CrossRef]
- Sun, Y.; Oberley, L.W.; Li, Y. A Simple Method for Clinical Assay of Superoxide Dismutase. Clin. Chem. 1988, 34, 497–500. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Kambayashi, Y.; Binh, N.T.; Asakura, H.W.; Hibino, Y.; Hitomi, Y.; Nakamura, H.; Ogino, K. Efficient Assay for Total Antioxidant Capacity in Human Plasma Using a 96-Well Microplte. J. Clin. Biochem. Nutr. 2009, 44, 46–51. [Google Scholar] [CrossRef]
- Rosa, R.; Ricardo Paula, J.; Sampaio, E.; Pimentel, M.; Lopes, A.R.; Baptista, M.; Guerreiro, M.; Santos, C.; Campos, D.; Almeida-Val, V.M.F.; et al. Neuro-Oxidative Damage and Aerobic Potential Loss of Sharks under Elevated CO2 and Warming. Mar. Biol. 2016, 163, 119. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of Malonaldehyde Precursor in Tissues by Thiobarbituric Acid Test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Njemini, R.; Demanet, C.; Mets, T. Comparison of Two ELISAs for the Determination of Hsp70 in Serum. J. Immunol. Methods 2005, 306, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Madeira, D.; Vinagre, C.; Costa, P.M.; Diniz, M.S. Histopathological Alterations, Physiological Limits, and Molecular Changes of Juvenile Sparus aurata in Response to Thermal Stress. Mar. Ecol.-Prog. Ser. 2014, 505, 253–266. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Weight (g) | Total Length (cm) | K | VSI | HSI | RGR (%) | FI (g/fish/day) | FCR (g feed/g) | |
---|---|---|---|---|---|---|---|---|
T0 | 65.1 ± 5.0 | 16.4 ± 0.8 | 1.5 ± 0.1 | 5.2 ± 0.5 | 2.3 ± 0.2 | - | - | - |
CTRL (T28) | 75.3 ± 7.7 b * | 16.8 ± 0.4 b | 1.5 ± 0.1 b | 5.1 ± 0.3 | 2.6 ± 0.3 a * | 25.8 ± 6.9 a | 1.06 | 1.44 a |
ENNB (T28) | 79.4 ± 4.6 b | 17.1 ± 0.2 b | 1.6 ± 0.5 b | 5.2 ± 0.4 | 2.5 ± 0.2 a | 13.4 ± 3.2 b | 1.13 | 2.74 b |
FB1 (T28) | 90.3 ± 6.0 a | 17.8 ± 0.5 a | 1.6 ± 0.1 b | 4.8 ± 0.3 | 2.0 ± 0.2 b | 24.3 ± 1.2 a | 1.11 | 1.26 a |
FB1 + ENNB (T28) | 87.8 ± 5.1 a | 17.1 ± 0.6 b | 1.7 ± 0.1 a | 5.2 ± 0.4 | 2.5 ± 0.3 a | 29.0 ± 1.9 a | 1.14 | 1.46 a |
GLU (mg/dL) | BUN (mg/dL) | CREA (mg/dL) | B/C | PHOS (mg/dL) | Ca (mg/dL) | TP (g/dL) | ALB (g/dL) | GLOB (g/dL) | A/G | ALT (U/L) | ALP (U/L) | CHOL (mg/dL) | LIPA (U/L) | AMY (U/L) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTRL | 85.6 ± 23.8 | 10.6 ± 1.8 | 0.20 ± 0.1 | 58.5 ± 17.9 | 9.7 ± 1.1 | 12.4 ± 0.4 | 4.0 ± 0.3 | 1.3 ± 0.1 | 2.7 ± 0.3 | 0.48 ± 0.1 | 35.2 ± 9.5 | 339 ± 84 | 348.2 ± 44 | 24.4 ± 3.3 | 22.6 ± 4.3 |
FB1 | 90.6 ± 21.4 | 11.8 ± 3.4 | 0.20 ± 0.1 | 57.2 ± 38.7 | 9.0 ± 0.2 | 12.3 ± 0.6 | 3.9 ± 0.3 | 1.2 ± 0.0 | 2.7 ± 0.3 | 0.46 ± 0.1 | 27.6 ± 3.6 | 261.2 ± 35 | 316.8 ± 91 | 24 ± 5.3 | 20.8 ± 5.5 |
ENNB | 86.6 ± 8.0 | 7.9 ± 1.7 | 0.38 ± 0.2 | 40.3 ± 11.7 | 10.5 ± 1.3 | 12.7 ± 1.2 | 4.4 ± 0.2 | 1.3 ± 0.1 | 2.8 ± 0.7 | 0.42 ± 0.0 | 51.2 ± 29.2 | 229 ± 40 * | 302.4 ± 92 | 36.5 ± 9.7 * | 29.8 ± 18.8 |
FB1 + ENNB | 95.8 ± 9.41 | 7.8 ± 1.5 | 0.18 ± 0.1 | 57.6 ± 34.7 | 9.4 ± 1.1 | 12.2 ± 0.4 | 3.9 ± 0.3 | 1.3 ± 0.1 | 2.7 ± 0.2 | 0.46 ± 0.1 | 31.4 ± 2.6 | 312 + 56 | 334.2 ± 58 | 27.7 ± 4.7 | 21.4 ± 6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mello, F.V.; Pereira, C.; Özkan, B.; Maulvault, A.L.; Soares, F.; Pousão-Ferreira, P.; Fernandes, J.O.; Cunha, S.C.; Marques, A.; Anacleto, P. Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1. Int. J. Mol. Sci. 2025, 26, 5676. https://doi.org/10.3390/ijms26125676
Mello FV, Pereira C, Özkan B, Maulvault AL, Soares F, Pousão-Ferreira P, Fernandes JO, Cunha SC, Marques A, Anacleto P. Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1. International Journal of Molecular Sciences. 2025; 26(12):5676. https://doi.org/10.3390/ijms26125676
Chicago/Turabian StyleMello, Flávia V., Cheila Pereira, Busenur Özkan, Ana Luísa Maulvault, Florbela Soares, Pedro Pousão-Ferreira, José O. Fernandes, Sara C. Cunha, António Marques, and Patrícia Anacleto. 2025. "Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1" International Journal of Molecular Sciences 26, no. 12: 5676. https://doi.org/10.3390/ijms26125676
APA StyleMello, F. V., Pereira, C., Özkan, B., Maulvault, A. L., Soares, F., Pousão-Ferreira, P., Fernandes, J. O., Cunha, S. C., Marques, A., & Anacleto, P. (2025). Toxicological Responses of Juvenile Gilthead Seabream to Enniatin B and Fumonisin B1. International Journal of Molecular Sciences, 26(12), 5676. https://doi.org/10.3390/ijms26125676