Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish
Abstract
1. Introduction
2. Toxicity
2.1. Beauvericin
2.2. Enniatins
2.3. Alternaria Toxins
3. Occurrence of BEA, ENNs, AOH, and AME in Aquafeed
4. Occurrence of BEA and ENNs in Fish
5. Prevention and Detoxification Strategies of Emerging Mycotoxins in Aquafeeds with Special Focus on the Biocontrol Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.E.; Solomons, G.; Lewis, C.; Anderson, J.G. Role of Mycotoxins in Human and Animal Nutrition and Health. Nat. Toxins 1995, 3, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S. Impact of Mycotoxins on Human Health in Developing Countries. Food Addit. Contam. Part A 2008, 25, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bonerba, E.; Manfredi, A.; Dimuccio, M.M.; Lorusso, P.; Pandiscia, A.; Terio, V.; Di Pinto, A.; Panseri, S.; Ceci, E.; Bozzo, G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins 2024, 16, 487. [Google Scholar] [CrossRef] [PubMed]
- Kępińska-Pacelik, J.; Biel, W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins 2021, 13, 822. [Google Scholar] [CrossRef] [PubMed]
- Kolawole, O.; Siri-Anusornsak, W.; Petchkongkaew, A.; Elliott, C. A Systematic Review of Global Occurrence of Emerging Mycotoxins in Crops and Animal Feeds, and Their Toxicity in Livestock. Emerg. Contam. 2024, 10, 100305. [Google Scholar] [CrossRef]
- Nogueira, W.V.; de Oliveira, F.K.; de Oliveira Garcia, S.; Sibaja, K.V.M.; Tesser, M.B.; Garda Buffon, J. Sources, Quantification Techniques, Associated Hazards, and Control Measures of Mycotoxin Contamination of Aquafeed. Crit. Rev. Microbiol. 2020, 46, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Vasconcelos, V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins 2020, 12, 160. [Google Scholar] [CrossRef] [PubMed]
- Meenakshisundaram, M.; Shanmugam, S.; Mboya, J.B.; Sugantham, F.; Obiero, K.; Munguti, J.; Ekesi, S.; Subramanian, S.; Chia, S.Y.; Beesigamukama, D.; et al. Mapping Global Research on Mycotoxins in Aquafeed from Scientometric and Critical Perspectives. Front. Sustain. Food Syst. 2025, 9, 1609489. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef] [PubMed]
- Maulu, S.; Langi, S.; Hasimuna, O.J.; Missinhoun, D.; Munganga, B.P.; Hampuwo, B.M.; Gabriel, N.N.; Elsabagh, M.; Van Doan, H.; Abdul Kari, Z.; et al. Recent Advances in the Utilization of Insects as an Ingredient in Aquafeeds: A Review. Anim. Nutr. 2022, 11, 334–349. [Google Scholar] [CrossRef]
- Ramos, L.C.; Rodríguez-García, A.; Castagnini, J.M.; Salgado-Ramos, M.; Martínez-Culebras, P.V.; Barba, F.J.; Pallarés, N. HPLC-MS/MS and ICP-MS for Evaluation of Mycotoxins and Heavy Metals in Edible Insects and Their Defatted Cakes Resulting from Supercritical Fluid Extraction. Foods 2024, 13, 3233. [Google Scholar] [CrossRef] [PubMed]
- Schrögel, P.; Wätjen, W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, C. Risk Assessment for Mycotoxin Contamination in Fish Feeds in Europe. Mycotoxin Res. 2020, 36, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, C. Food Safety: The Risk of Mycotoxin Contamination in Fish. In Mycotoxins and Food Safety; IntechOpen: London, UK, 2020. [Google Scholar]
- Scientific Opinion on the Risks to Human and Animal Health Related to the Presence of Beauvericin and Enniatins in Food and Feed. EFSA J. 2014, 12, 3802. [CrossRef]
- Fraeyman, S.; Croubels, S.; Devreese, M.; Antonissen, G. Emerging Fusarium and Alternaria Mycotoxins: Occurrence, Toxicity and Toxicokinetics. Toxins 2017, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Embaby, E.M.; Ayaat, N.M.; Abd El-Galil, M.M.; Allah Abdel-Hameid, N.; Gouda, M.M. Mycoflora and Mycotoxin Contaminated Chicken and Fish Feeds. Middle East. J. Appl. Sci. 2015, 5, 1044–1054. [Google Scholar]
- Pietsch, C.; Müller, G.; Mourabit, S.; Carnal, S.; Bandara, K. Occurrence of Fungi and Fungal Toxins in Fish Feed during Storage. Toxins 2020, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Nácher-Mestre, J.; Serrano, R.; Beltrán, E.; Pérez-Sánchez, J.; Silva, J.; Karalazos, V.; Hernández, F.; Berntssen, M.H.G. Occurrence and Potential Transfer of Mycotoxins in Gilthead Sea Bream and Atlantic Salmon by Use of Novel Alternative Feed Ingredients. Chemosphere 2015, 128, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Mitigation of Enniatins in Edible Fish Tissues by Thermal Processes and Identification of Degradation Products. Food Chem. Toxicol. 2017, 101, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Carballo, D.; Moltó, J.C.; Berrada, H.; Ferrer, E. Presence of Mycotoxins in Ready-to-Eat Food and Subsequent Risk Assessment. Food Chem. Toxicol. 2018, 121, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Nácher-Mestre, J.; Beltrán, E.; Strachan, F.; Dick, J.R.; Pérez-Sánchez, J.; Berntssen, M.H.G.; Tocher, D.R. No Transfer of the Non-Regulated Mycotoxins, Beauvericin and Enniatins, from Feeds to Farmed Fish Reared on Plant-Based Diets. Food Chem. 2020, 323, 126773. [Google Scholar] [CrossRef] [PubMed]
- Mwihia, E.W.; Lyche, J.L.; Mbuthia, P.G.; Ivanova, L.; Uhlig, S.; Gathumbi, J.K.; Maina, J.G.; Eshitera, E.E.; Eriksen, G.S. Co-Occurrence and Levels of Mycotoxins in Fish Feeds in Kenya. Toxins 2020, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Albero, B.; Fernández-Cruz, M.L.; Pérez, R.A. Simultaneous Determination of 15 Mycotoxins in Aquaculture Feed by Liquid Chromatography–Tandem Mass Spectrometry. Toxins 2022, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- Castell, A.; Arroyo-Manzanares, N.; Palma-Manrique, R.; Campillo, N.; Torres, C.; Fenoll, J.; Viñas, P. Evaluation of Distribution of Emerging Mycotoxins in Human Tissues: Applications of Dispersive Liquid–Liquid Microextraction and Liquid Chromatography-Mass Spectrometry. Anal. Bioanal. Chem. 2024, 416, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Maranghi, F.; Tassinari, R.; Narciso, L.; Tait, S.; La Rocca, C.; Felice, G.D.; Butteroni, C.; Corinti, S.; Barletta, B.; Cordelli, E.; et al. In Vivo Toxicity and Genotoxicity of Beauvericin and Enniatins. Combined Approach to Study in Vivo Toxicity and Genotoxicity of Mycotoxins Beauvericin (BEA) and Enniatin B (ENNB). EFSA Support. Publ. 2018, 15, 1406E. [Google Scholar] [CrossRef]
- Prosperini, A.; Juan-García, A.; Font, G.; Ruiz, M.J. Beauvericin-Induced Cytotoxicity via ROS Production and Mitochondrial Damage in Caco-2 Cells. Toxicol. Lett. 2013, 222, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Mallebrera, B.; Font, G.; Ruiz, M.J. Disturbance of Antioxidant Capacity Produced by Beauvericin in CHO-K1 Cells. Toxicol. Lett. 2014, 226, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, E.; Juan-García, A.; Font, G.; Ruiz, M.J. Reactive Oxygen Species Induced by Beauvericin, Patulin and Zearalenone in CHO-K1 Cells. Toxicol. In Vitro 2009, 23, 1504–1509. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Lee, Y.; Chen, B.; Tsai, M.; Lu, J.; Chou, C.; Jow, G. Involvement of Bcl-2 Family, Cytochrome and Caspase 3 in Induction of Apoptosis by Beauvericin in Human Non-Small Cell Lung Cancer Cells. Cancer Lett. 2005, 230, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Wätjen, W.; Debbab, A.; Hohlfeld, A.; Chovolou, Y.; Proksch, P. The Mycotoxin Beauvericin Induces Apoptotic Cell Death in H4IIE Hepatoma Cells Accompanied by an Inhibition of NF-ΚB-Activity and Modulation of MAP-Kinases. Toxicol. Lett. 2014, 231, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Juan-García, A.; Tolosa, J.; Juan, C.; Ruiz, M.-J. Cytotoxicity, Genotoxicity and Disturbance of Cell Cycle in HepG2 Cells Exposed to OTA and BEA: Single and Combined Actions. Toxins 2019, 11, 341. [Google Scholar] [CrossRef] [PubMed]
- Hasuda, A.L.; Person, E.; Khoshal, A.; Bruel, S.; Puel, S.; Oswald, I.P.; Bracarense, A.P.F.R.L.; Pinton, P. Emerging Mycotoxins Induce Hepatotoxicity in Pigs’ Precision-Cut Liver Slices and HepG2 Cells. Toxicon 2023, 231, 107195. [Google Scholar] [CrossRef] [PubMed]
- Fraeyman, S.; Meyer, E.; Devreese, M.; Antonissen, G.; Demeyere, K.; Haesebrouck, F.; Croubels, S. Comparative in Vitro Cytotoxicity of the Emerging Fusarium Mycotoxins Beauvericin and Enniatins to Porcine Intestinal Epithelial Cells. Food Chem. Toxicol. 2018, 121, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Manyes, L.; Escrivá, L.; Ruiz, M.J.; Juan-García, A. Beauvericin and Enniatin B Effects on a Human Lymphoblastoid Jurkat T-Cell Model. Food Chem. Toxicol. 2018, 115, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Ficheux, A.S.; Sibiril, Y.; Parent-Massin, D. Effects of Beauvericin, Enniatin b and Moniliformin on Human Dendritic Cells and Macrophages: An in Vitro Study. Toxicon 2013, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schoevers, E.J.; Santos, R.R.; Fink-Gremmels, J.; Roelen, B.A.J. Toxicity of Beauvericin on Porcine Oocyte Maturation and Preimplantation Embryo Development. Reprod. Toxicol. 2016, 65, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Jow, G.-M.; Chou, C.-J.; Chen, B.-F.; Tsai, J.-H. Beauvericin Induces Cytotoxic Effects in Human Acute Lymphoblastic Leukemia Cells through Cytochrome c Release, Caspase 3 Activation: The Causative Role of Calcium. Cancer Lett. 2004, 216, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Klarić, M.Š.; Pepeljnjak, S.; Domijan, A.; Petrik, J. Lipid Peroxidation and Glutathione Levels in Porcine Kidney PK15 Cells after Individual and Combined Treatment with Fumonisin B1, Beauvericin and Ochratoxin A. Basic Clin. Pharmacol. Toxicol. 2007, 100, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Mallebrera, B.; Juan-Garcia, A.; Font, G.; Ruiz, M.-J. Mechanisms of Beauvericin Toxicity and Antioxidant Cellular Defense. Toxicol. Lett. 2016, 246, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Escrivá, L.; Jennen, D.; Caiment, F.; Manyes, L. Transcriptomic Study of the Toxic Mechanism Triggered by Beauvericin in Jurkat Cells. Toxicol. Lett. 2018, 284, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.-Z.; Chia, Y.-Y.; Sun, H.-J.; Sun, G. Exploration of Beauvericin’s Toxic Effects and Mechanisms in Human Astrocytes and N-Acetylcysteine’s Protective Role. Toxicon 2024, 243, 107734. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Åkesson, A.; Bampidis, V.; Bodin, L.; Chipman, J.K.; Degen, G.; Hernández-Jerez, A.; Hofer, T.; Hogstrand, C.; Landi, S.; et al. Genotoxicity of Beauvericin. EFSA J. 2024, 22, e9031. [Google Scholar] [CrossRef]
- Prosperini, A.; Juan-García, A.; Font, G.; Ruiz, M.J. Reactive Oxygen Species Involvement in Apoptosis and Mitochondrial Damage in Caco-2 Cells Induced by Enniatins A, A1, B and B1. Toxicol. Lett. 2013, 222, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.-J. Interaction Effects of Enniatin B, Deoxinivalenol and Alternariol in Caco-2 Cells. Toxicol. Lett. 2016, 241, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Font, G.; Ruiz, M.J. Comparative Cytotoxicity Study of Enniatins A, A1, A2, B, B1, B4 and J3 on Caco-2 Cells, Hep-G2 and HT-29. Food Chem. Toxicol. 2011, 49, 2464–2469. [Google Scholar] [CrossRef] [PubMed]
- Krug, I.; Behrens, M.; Esselen, M.; Humpf, H.-U. Transport of Enniatin B and Enniatin B1 across the Blood-Brain Barrier and Hints for Neurotoxic Effects in Cerebral Cells. PLoS ONE 2018, 13, e0197406. [Google Scholar] [CrossRef]
- Kalayou, S.; Ndossi, D.; Frizzell, C.; Groseth, P.K.; Connolly, L.; Sørlie, M.; Verhaegen, S.; Ropstad, E. An Investigation of the Endocrine Disrupting Potential of Enniatin B Using in Vitro Bioassays. Toxicol. Lett. 2015, 233, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.; Jestoi, M.; Anthoni, M.; Welling, A.; Loivamaa, I.; Hallikainen, V.; Kankainen, M.; Lysøe, E.; Koivisto, P.; Peltonen, K. Fusarium Mycotoxin Enniatin B: Cytotoxic Effects and Changes in Gene Expression Profile. Toxicol. In Vitro 2016, 34, 309–320. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks for Animal and Public Health Related to the Presence of Alternaria Toxins in Feed and Food. EFSA J. 2011, 9, 2407. [Google Scholar] [CrossRef]
- Aichinger, G.; Grgic, D.; Beisl, J.; Crudo, F.; Warth, B.; Varga, E.; Marko, D. N-Acetyl Cysteine Alters the Genotoxic and Estrogenic Properties of Alternaria Toxins in Naturally Occurring Mixtures. Emerg. Contam. 2022, 8, 30–38. [Google Scholar] [CrossRef]
- Den Hollander, D.; Holvoet, C.; Demeyere, K.; De Zutter, N.; Audenaert, K.; Meyer, E.; Croubels, S. Cytotoxic Effects of Alternariol, Alternariol Monomethyl-Ether, and Tenuazonic Acid and Their Relevant Combined Mixtures on Human Enterocytes and Hepatocytes. Front. Microbiol. 2022, 13, 849243. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.M.; Abdel-Razek, A.S.; Soliman, H.S.M.; Ponomareva, L.V.; Thorson, J.S.; Shaaban, K.A.; Shaaban, M. Diverse Polyketides from the Marine Endophytic Alternaria Sp. LV52: Structure Determination and Cytotoxic Activities. Biotechnol. Rep. 2022, 33, e00628. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, K.A.; Kowalska, K.; Habrowska-Górczyńska, D.E.; Kozieł, M.J.; Domińska, K.; Piastowska-Ciesielska, A.W. Revealing the Role of Alternariol in the Local Steroidogenesis in Human Prostate Normal and Cancer Cells. Int. J. Mol. Sci. 2023, 24, 9513. [Google Scholar] [CrossRef] [PubMed]
- Kozieł, M.J.; Habrowska-Górczyńska, D.E.; Urbanek, K.A.; Domińska, K.; Piastowska-Ciesielska, A.W.; Kowalska, K. Estrogen Receptor α Mediates Alternariol-Induced Apoptosis and Modulation of the Invasiveness of Ovarian Cancer Cells. Toxicol. Lett. 2023, 386, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Jia, B.; Wu, A. Cytotoxicities of Co-Occurring Alternariol, Alternariol Monomethyl Ether and Tenuazonic Acid on Human Gastric Epithelial Cells. Food Chem. Toxicol. 2023, 171, 113524. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yu, D.; Zhou, H.; Lin, H.; Yan, Z.; Wu, A. CotA Laccase from Bacillus Licheniformis ZOM-1 Effectively Degrades Zearalenone, Aflatoxin B1 and Alternariol. Food Control 2023, 145, 109472. [Google Scholar] [CrossRef]
- Saleh, I.; Zeidan, R.; Abu-Dieyeh, M. The Characteristics, Occurrence, and Toxicological Effects of Alternariol: A Mycotoxin. Arch. Toxicol. 2024, 98, 1659–1683. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2024. [Google Scholar]
- Søderstrøm, S.; Søfteland, L.; Sele, V.; Lundebye, A.-K.; Berntssen, M.H.; Lie, K.K. Enniatin B and Beauvericin Affect Intestinal Cell Function and Hematological Processes in Atlantic Salmon (Salmo salar) after Acute Exposure. Food Chem. Toxicol. 2023, 172, 113557. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Font, G.; Mañes, J.; Ferrer, E. Natural Occurrence of Emerging Fusarium Mycotoxins in Feed and Fish from Aquaculture. J. Agric. Food Chem. 2014, 62, 12462–12470. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Müller, A.; Rosen, R. Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey. Toxins 2025, 17, 116. [Google Scholar] [CrossRef] [PubMed]
- Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed—Council Statement. Off. Eur. Union J. 2002, L140, 10–22.
- Commission Regulation (EU) No 893/2017 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein. Off. Eur. Union J. 2017, L138, 92.
- Bisconsin-Junior, A.; Feitosa, B.F.; Silva, F.L.; Mariutti, L.R.B. Mycotoxins on Edible Insects: Should We Be Worried? Food Chem. Toxicol. 2023, 177, 113845. [Google Scholar] [CrossRef] [PubMed]
- Jakic-Dimic, D.; Jeremic, S.; Nesic, K.; Radosavljevic, V. The Influence of Mycotoxins in Food on Fish Health Status. Zb. Matice Srp. Prir. Nauk. 2005, 109, 73–79. [Google Scholar] [CrossRef]
- Pietsch, C.; Kersten, S.; Burkhardt-Holm, P.; Valenta, H.; Dänicke, S. Occurrence of Deoxynivalenol and Zearalenone in Commercial Fish Feed: An Initial Study. Toxins 2013, 5, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Bakos, K.; Kovács, R.; Staszny, Á.; Sipos, D.K.; Urbányi, B.; Müller, F.; Csenki, Z.; Kovács, B. Developmental Toxicity and Estrogenic Potency of Zearalenone in Zebrafish (Danio rerio). Aquat. Toxicol. 2013, 136–137, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Berntssen, M.H.G.; Fjeldal, P.G.; Gavaia, P.J.; Laizé, V.; Hamre, K.; Donald, C.E.; Jakobsen, J.V.; Omdal, Å.; Søderstrøm, S.; Lie, K.K. Dietary Beauvericin and Enniatin B Exposure Cause Different Adverse Health Effects in Farmed Atlantic Salmon. Food Chem. Toxicol. 2023, 174, 113648. [Google Scholar] [CrossRef] [PubMed]
- Johny, A.; Fæste, C.K.; Bogevik, A.S.; Berge, G.M.; Fernandes, J.M.O.; Ivanova, L. Development and Validation of a Liquid Chromatography High-Resolution Mass Spectrometry Method for the Simultaneous Determination of Mycotoxins and Phytoestrogens in Plant-Based Fish Feed and Exposed Fish. Toxins 2019, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, J.; Barba, F.J.; Font, G.; Ferrer, E. Mycotoxin Incidence in Some Fish Products: QuEChERS Methodology and Liquid Chromatography Linear Ion Trap Tandem Mass Spectrometry Approach. Molecules 2019, 24, 527. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, M.P.; Conversano, M.C.; Casalino, E.; Lai, O.; Zizzadoro, C.; Centoducati, G.; Crescenzo, G. Aflatoxins in Aquatic Species: Metabolism, Toxicity and Perspectives. Rev. Fish. Biol. Fish. 2008, 18, 99–130. [Google Scholar] [CrossRef]
- Marijani, E.; Kigadye, E.; Okoth, S. Occurrence of Fungi and Mycotoxins in Fish Feeds and Their Impact on Fish Health. Int. J. Microbiol. 2019, 2019, 6743065. [Google Scholar] [CrossRef] [PubMed]
- Olorunfemi, M.F.; Odebode, A.C.; Joseph, O.O.; Ezekiel, C.; Sulyok, M.; Oyedele, A.; Resources, W.; Programme, M. Multi-Mycotoxin Contaminations in Fish Feeds from Di Erent Agro-Ecological Zones in Nigeria. In Proceedings of the International Research on Food Security, Natural Resource Management and Rural Development, Stuttgart-Hohenheim, Germany, 17 September 2013. [Google Scholar]
- Barbosa, T.S.; Pereyra, C.M.; Soleiro, C.A.; Dias, E.O.; Oliveira, A.A.; Keller, K.M.; Silva, P.P.; Cavaglieri, L.R.; Rosa, C.A. Mycobiota and Mycotoxins Present in Finished Fish Feeds from Farms in the Rio de Janeiro State, Brazil. Int. Aquat. Res. 2013, 5, 3. [Google Scholar] [CrossRef]
- Carvalho Gonçalves-Nunes, E.M.; Gomes-Pereira, M.M.; Raposo-Costa, A.P.; Da Rocha-Rosa, C.A.; Pereyra, C.M.; Calvet, R.M.; Alves-Marques, A.L.; Cardoso-Filho, F.; Sanches-Murator, M.C. Screening of Aflatoxin B1 and Mycobiota Related to Raw Materials and Finished Feed Destined for Fish. Lat. Am. J. Aquat. Res. 2016, 43, 595–600. [Google Scholar] [CrossRef]
- Marijani, E.; Wainaina, J.M.; Charo-Karisa, H.; Nzayisenga, L.; Munguti, J.; Joselin Benoit Gnonlonfin, G.; Kigadye, E.; Okoth, S. Mycoflora and Mycotoxins in Finished Fish Feed and Feed Ingredients from Smallholder Farms in East Africa. Egypt. J. Aquat. Res. 2017, 43, 169–176. [Google Scholar] [CrossRef]
- Bashorun, A.; Hassan, Z.U.; Al-Yafei, M.A.-A.; Jaoua, S. Fungal Contamination and Mycotoxins in Aquafeed and Tissues of Aquaculture Fishes and Their Biological Control. Aquaculture 2023, 576, 739892. [Google Scholar] [CrossRef]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate Change and Food Safety: An Emerging Issue with Special Focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M.; Lima, N. How Will Climate Change Affect Mycotoxins in Food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of Climate Change on Aspergillus Flavus and Aflatoxin B1 Production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, O.; Juan, C.; Miere, D.; Dumitrescu, A.; Bodoki, E.; Loghin, F.; Mañes, J. Climatic Conditions Influence Emerging Mycotoxin Presence in Wheat Grown in Romania—A 2-Year Survey. Crop Prot. 2017, 100, 124–133. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Zhang, Y.; Jin, Q.; Zhao, J.; Li, J. Factors Controlling Mycotoxin Contamination in Maize and Food in the Hebei Province, China. Agron. Sustain. Dev. 2016, 36, 39. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Schatzmayr, D.; Albalat, A.; Mackenzie, S. Mycotoxins in Aquaculture: Feed and Food. Rev. Aquac. 2020, 12, 145–175. [Google Scholar] [CrossRef]
- Fumagalli, F.; Ottoboni, M.; Pinotti, L.; Cheli, F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 2021, 13, 572. [Google Scholar] [CrossRef] [PubMed]
- Casu, A.; Camardo Leggieri, M.; Toscano, P.; Battilani, P. Changing Climate, Shifting Mycotoxins: A Comprehensive Review of Climate Change Impact on Mycotoxin Contamination. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13323. [Google Scholar] [CrossRef] [PubMed]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Laitila, A.; Vahala, P.; Sarlin, T. The 1st MycoKey Technological Workshop: Integrated Preventive Actions to Avoid Mycotoxins in Malting and Brewing. In Proceedings of the VTT Technical Research Centre of Finland, Helsinki, Finland, 23–24 May 2018. [Google Scholar]
- Peng, W.-X.; Marchal, J.L.M.; van der Poel, A.F.B. Strategies to Prevent and Reduce Mycotoxins for Compound Feed Manufacturing. Anim. Feed. Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Gong, G.; Zhang, L.; Shi, L.; Dai, J.; Han, Y.; Wu, Y.; Khalil, M.M.; Sun, L. Invited Review: Remediation Strategies for Mycotoxin Control in Feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Use of Hazard Analysis Critical Control Point (HACCP) Principles in Food Control; FAO Food and Nutrition Paper No. 58; FAO: Rome, Italy, 1995. [Google Scholar]
- Zhu, Y.; Hassan, Y.I.; Watts, C.; Zhou, T. Innovative Technologies for the Mitigation of Mycotoxins in Animal Feed and Ingredients—A Review of Recent Patents. Anim. Feed. Sci. Technol. 2016, 216, 19–29. [Google Scholar] [CrossRef]
- Čolović, R.; Puvača, N.; Cheli, F.; Avantaggiato, G.; Greco, D.; Đuragić, O.; Kos, J.; Pinotti, L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins 2019, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Awuchi, C.G.; Ondari, E.N.; Ogbonna, C.U.; Upadhyay, A.K.; Baran, K.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R.P.F. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit. Foods 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.B. Mycotoxins in Aquaculture Feeds; Southern Regional Aquaculture Center (SRAC): Stoneville, MS, USA, 2010. [Google Scholar]
- Puvača, N.; Kostić, B.; Pelić, M.; Ljubojević Pelić, D. Mycotoxins in Fish Production and Impact on Fish Health. J. Agron. Technol. Eng. Manag. (JATEM) 2024, 7, 1158–1172. [Google Scholar] [CrossRef]
- Felix D’Mello, J.P.; Macdonald, A.M.C.; Postel, D.; Dijksma, W.T.P.; Dujardin, A.; Placinta, C.M. Pesticide Use and Mycotoxin Production in Fusarium and Aspergillus Phytopathogens. Eur. J. Plant Pathol. 1998, 104, 741–751. [Google Scholar] [CrossRef]
- Nesic, K.; Milicevic, D.; Nesic, V.; Ivanovic, S. Mycotoxins as One of the Foodborne Risks Most Susceptible to Climatic Change. Procedia Food Sci. 2015, 5, 207–210. [Google Scholar] [CrossRef]
- Sarrocco, S.; Vannacci, G. Preharvest Application of Beneficial Fungi as a Strategy to Prevent Postharvest Mycotoxin Contamination: A Review. Crop Prot. 2018, 110, 160–170. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef] [PubMed]
- Tayel, A.A. Innovative System Using Smoke from Smoldered Plant Materials to Control Aspergillus Flavus on Stored Grain. Int. Biodeterior. Biodegrad. 2010, 64, 114–118. [Google Scholar] [CrossRef]
- Alasmari, A.; Sakran, M.I. Molecular Screening and Biocontrol of Aflatoxigenic Fungi in Fish Feed. J. Aquat. Food Product. Technol. 2020, 29, 801–809. [Google Scholar] [CrossRef]
- Nazareth, T.M.; Bordin, K.; Manyes, L.; Meca, G.; Mañes, J.; Luciano, F.B. Gaseous Allyl Isothiocyanate to Inhibit the Production of Aflatoxins, Beauvericin and Enniatins by Aspergillus parasiticus and Fusarium poae in Wheat Flour. Food Control 2016, 62, 317–321. [Google Scholar] [CrossRef]
- Meca, G.; Luciano, F.B.; Zhou, T.; Tsao, R.; Mañes, J. Chemical Reduction of the Mycotoxin Beauvericin Using Allyl Isothiocyanate. Food Chem. Toxicol. 2012, 50, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Luciano, F.B.; Meca, G.; Manyes, L.; Mañes, J. A Chemical Approach for the Reduction of Beauvericin in a Solution Model and in Food Systems. Food Chem. Toxicol. 2014, 64, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Luz, C.; Saladino, F.; Luciano, F.B.; Mañes, J.; Meca, G. Occurrence, Toxicity, Bioaccessibility and Mitigation Strategies of Beauvericin, a Minor Fusarium Mycotoxin. Food Chem. Toxicol. 2017, 107, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Ritieni, A.; Mañes, J. Reduction in Vitro of the Minor Fusarium Mycotoxin Beauvericin Employing Different Strains of Probiotic Bacteria. Food Control 2012, 28, 435–440. [Google Scholar] [CrossRef]
- Meca, G.; Zhou, T.; Li, X.Z.; Ritieni, A.; Mañes, J. Ciclohexadespipeptide Beauvericin Degradation by Different Strains of Saccharomyces Cerevisiae. Food Chem. Toxicol. 2013, 59, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Ritieni, A.; Zhou, T.; Li, X.Z.; Mañes, J. Degradation of the Minor Fusarium Mycotoxin Beauvericin by Intracellular Enzymes of Saccharomyces Cerevisiae. Food Control 2013, 33, 352–358. [Google Scholar] [CrossRef]
- Food and Feed Information Portal Database. Available online: https://ec.europa.eu/food/food-feed-portal/screen/feed-additives/search (accessed on 19 May 2025).
- Commission Implementing Regulation (EU) 2017/930 of 31 May 2017 concerning the authorisation of a preparation of a microorganism strain DSM 11798 of the Coriobacteriaceae family as a feed additive for all avian species and amending Implementing Regulation (EU) No 1016/2013. Off. Eur. Union J. 2017, L141, 6.
- Commission Implementing Regulation (EU) No 1060/2013 of 29 October 2013 concerning the authorisation of bentonite as a feed additive for all animal species. Off. Eur. Union J. 2013, L289, 33.
- José Mendes dos Reis, F.; Silva de Pádua Melo, E.; Marcos Jacques Barbosa, A.; de Cássia Avellaneda Guimarães, R.; Arunachalam, K.; Juliano Oliveira, R.; Carla Pinheiro Lima, A.; Fernanda Balestieri Mariano de Souza, M.; Carla Gomes Rosa, A.; Aratuza Pereira Ancel, M.; et al. Bentonite Clays as Adsorbent Material for Mycotoxins and the Hematological Parameters Involved in Tilapia Species: A Systematic Review. Aquac. Res. 2024, 2024, 4899256. [Google Scholar] [CrossRef]
Mycotoxin | Sample Type | Prevalence (%) | Mean Level (μg kg−1) | Range (μg kg−1) | Method | Reference |
---|---|---|---|---|---|---|
BEA | plant-based meals | 12 | 416 ± 814 | 11–2400 | 2 LC-MS/MS 1 LOQ: 10 μg kg−1 | [61] |
plant-based oils | 10 | 16 ± 5 | 10–24 | |||
fish feed | 4 | 16 ± 5 | 10–25 | |||
ENNA | plant-based meals | 1 | <1 LOQ | 90 | ||
plant-based oils | 10 | 20 ± 12 | 10–38 | |||
fish feed | 0.5 | <1 LOQ | 11 | |||
ENNA1 | plant-based meals | 7 | 56 ± 49 | 15–140 | ||
plant-based oils | 29 | 22 ± 7 | 11–37 | |||
fish feed | 2 | 12 ± 27 | 10–16 | |||
ENNB | plant-based meals | 15 | 135 ± 186 | 11–530 | ||
plant-based oils | 88 | 114 ± 119 | 12–450 | |||
fish feed | 80 | 37 ± 35 | 10–250 | |||
ENNB1 | plant-based meals | 10 | 78 ± 63 | 16–190 | ||
plant-based oils | 65 | 38 ± 27 | 10–110 | |||
fish feed | 27 | 18 ± 9 | 10–54 | |||
BEA | fish feed | 37 | 34.4 | 15.9–841.8 | 3 UHPLC-HRMS 4 LOD: 13–219 μg kg−1 1 LOQ: 43–730 μg kg−1 | [24] |
ENNA | fish feed | 3 | <26.1 | <26.1 | ||
ENNA1 | fish feed | 5 | <13.5 | <13.5–23.8 | ||
ENNB | fish feed | 71 | <38.8 | <38.8–150.0 | ||
ENNB1 | fish feed | 36 | 23.2 | <12.9–43.5 | ||
AOH | fish feed | 30 | <36.2 | <36.2–43.3 | ||
AME | fish feed | 1 | 94.5 | 94.5 | ||
BEA | fish feed | 95 | 1.4 | 0.1–6.6 | 2 LC-MS/MS 4 LOD: 0.02–0.15 μg kg−1 1 LOQ: 0.1–0.5 μg kg−1 | [62] |
ENNA | fish feed | 100 | 0.9 | 0.6–3.4 | ||
ENNA1 | fish feed | 100 | 1.1 | 0.3–6.5 | ||
ENNB | fish feed | 100 | 0.89 | 0.1–3.2 | ||
ENNB1 | fish feed | 100 | 1.77 | 0.15–10 | ||
BEA | fish feed | 100 | 5 NM | 0.5 ± 0.1–30 ± 2 | 6 HPLC-MS/MS 4 LOD: 0.05–0.2 μg kg−1 1 LOQ: 0.16–0.7 μg kg−1 | [25] |
ENNA1 | fish feed | 44 | 5 NM | <1 LOQ–1.9 ± 0.5 | ||
ENNB | fish feed | 100 | 5 NM | 0.6 ± 0.1–21 ± 1 | ||
ENNB1 | fish feed | 100 | 5 NM | 0.6 ± 0.2–7.9 ± 1.2 | ||
BEA | fish feed | 35.0 | 6.5 | 5 NM | 2 LC-MS/MS 4 LOD: 0.03–0.3 μg kg−1 1 LOQ: 0.1–0.01 μg kg−1 | [63] |
ENNA | fish feed | 7.5 | 10.0 | 5 NM | ||
ENNA1 | fish feed | 19.0 | 2.7 | 5 NM | ||
ENNB | fish feed | 46.9 | 6.6 | 5 NM | ||
ENNB1 | fish feed | 54.0 | 6.0 | 5 NM | ||
AOH | fish feed | 40.7 | 5.0 | 5 NM |
Mycotoxins | Range (μg kg−1) | Prevalence (%) | References |
---|---|---|---|
Dicentrarchus labrax (Sea Bass) | |||
ENNA | 1 ND 1 ND | [62] [21] | |
ENNA1 | 1.7–6.9 1.7–6.9 | 50 50 | [62] [21] |
ENNB | 1.3–44.6 1.3–12.8 | 90 90 | [62] [21] |
ENNB1 | 1.4–31.5 1.4–31.5 | 70 70 | [62] [21] |
BEA | 1 ND 1 ND | [62] [21] | |
Sparus aurata (Sea Bream) | |||
ENNA | 1 ND 1 ND 1 ND | [62] [21] [23] | |
ENNA1 | 2.1–7.5 2.1–7.5 1 ND | 30 30 | [62] [21] [23] |
ENNB | 1.3–21.6 1.3–21.6 1 ND | 40 40 | [62] [21] [23] |
ENNB1 | 7.1–19 7.1–19 1 ND | 30 30 | [62] [21] [23] |
BEA | 1 ND 1 ND 1 ND | [62] [21] [23] | |
Salmo Salar (Atlantic salmon) | |||
ENNA | 1 ND 1 ND | [21] [23] | |
ENNA1 | 22–29 1 ND | 20 | [21] [23] |
ENNB | 50–103 1 ND | 20 | [21] [23] |
ENNB1 | 56–94 1 ND | 20 | [21] [23] |
BEA | 1 ND 1 ND | [21] [23] | |
Oncorhynchus mykiss (Rainbow trout) | |||
ENNA | 1 ND | [21] | |
ENNA1 | 1 ND | [21] | |
ENNB | 3.6 | 10 | [21] |
ENNB1 | 2.9 | 10 | [21] |
BEA | 1 ND | [21] |
Fungal Species | Mycotoxins | Biocontrol Strategy | Test Medium | Mitigating Effect | References |
---|---|---|---|---|---|
P. verrucosum A. Flavus F. solani | OTA AFs | Volatile organic compounds (BC344–2 strain) | Agar media | Significant inhibitory effect on fungal growth and alteration of their sporulating capacity. | [79] |
A. flavus | AFs | Smoldering fumes (Cinnamon bark, Athl, Lilac leaves, plants) | Agar media Contaminated fish feed | All plants: strong antifungal activity observed; Cinnamon bark: complete inhibition of fungal spores in both media. | [104] |
A. parasiticus F. poae | AFs BEA ENNs | Isothiocyanate (AITC) | Wheat flour | AITC inhibited all mycotoxins in a dose-dependent manner, showing a complete inhibition at 10 µL/L for 30 days. | [105] |
- | BEA | Isothiocyanate (AITC) | PBS solution Wheat flour | PBS: time-dependent BEA reduction (20–100%); Wheat flour: dose-dependent BEA reduction (10–65%). | [106] |
- | BEA | Isothiocyanate (BITC and PITC) | PBS solution Different kernels and flours | PBS: time-dependent BEA reduction (9–94%); Kernels and flours: dose-dependent BEA reduction (9–97%); PITC more effective than BITC. | [107] |
- | BEA | Probiotic bacterial (13 different strains) | Growth medium | All bacterial strains showed a significant BEA reduction during fermentation (66–83%); Lb. rhamnosus showed the highest BEA reduction. | [109] |
- | BEA | Yeast (nine different strains of S. cerevisiae) | Growth medium Corn flour | Growth medium: all strains showed BEA degradation in 48 h during fermentation (average of 86%); Corn flour: all strains showed BEA reduction (average of 71%); highest reduction was observed with the A42 strain (90.0 ± 3.1%). | [110] |
- | BEA | Enzymes (four different strains of S. cerevisiae) | PBS solution Corn flour | PBS: time-dependent BEA reduction (83–99.3%); highest degradation with the A34 strain after 24 h; Corn flour: time-dependent BEA reduction (68–91%); highest degradation with the LO9 strain after 24 h. | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorusso, P.; Rusco, G.; Manfredi, A.; Iaffaldano, N.; Di Pinto, A.; Bonerba, E. Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish. Toxins 2025, 17, 356. https://doi.org/10.3390/toxins17070356
Lorusso P, Rusco G, Manfredi A, Iaffaldano N, Di Pinto A, Bonerba E. Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish. Toxins. 2025; 17(7):356. https://doi.org/10.3390/toxins17070356
Chicago/Turabian StyleLorusso, Patrizio, Giusy Rusco, Alessio Manfredi, Nicolaia Iaffaldano, Angela Di Pinto, and Elisabetta Bonerba. 2025. "Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish" Toxins 17, no. 7: 356. https://doi.org/10.3390/toxins17070356
APA StyleLorusso, P., Rusco, G., Manfredi, A., Iaffaldano, N., Di Pinto, A., & Bonerba, E. (2025). Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish. Toxins, 17(7), 356. https://doi.org/10.3390/toxins17070356