Mitigation and Detoxification Strategies of Mycotoxins

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Mycotoxins".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 25413

Special Issue Editors


E-Mail Website
Guest Editor
Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, 60-637 Poznan, Poland
Interests: mycotoxins; veterynary drugs; interaction; food safety; phytotoxicology; veterinary toxicology and pharmacology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Interests: mycotoxins; veterinary phytotherapy; veterinary toxicology; alternative models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The occurrence of fungal species that can produce toxic metabolites (mycotoxins) in agro-food products has received increasing attention in recent years. So far, more than 400 different mycotoxins have been identified with different toxicity levels, and others are still being identified. The contamination of foods and feeds by mycotoxins causes significant problems worldwide, posing serious health effects for both humans and animals. The risk arises because that fungal species grow naturally in food and are difficult to eliminate. Regulatory guidelines and limits for some mycotoxins in foods and feed have been set by various countries. Moreover, researchers have been working to establish several other ways to control mycotoxins in food and feed. Mycotoxin production can occur either in the pre-harvest or post-harvest stages and during storage under favorable environmental conditions. The first approach to control mycotoxin contamination in feed is to prevent the formation of mycotoxins ahead of feed production. Once the feed becomes contaminated with mycotoxins, the elimination of mycotoxins is almost impossible. Fortunately, at least to some extent, it is possible to reduce the harmful effects of mycotoxins on animals or humans. Recently, physical, chemical, and biological detoxification processes have been developed. They are intended to mitigate mycotoxins in food and feed by destroying, modifying, or adsorbing them. The most common strategy for reducing animal exposure to mycotoxins is to decrease mycotoxin bioavailability by incorporating various mycotoxin-detoxifying agents in the feed, which are targeted at reducing mycotoxin uptake and distribution to the blood and target organs. Depending on their mode of action, these feed additives may act by reducing the bioavailability of the mycotoxins (e.g., adsorbing agents, enzymatic preparations, microorganisms) or by degrading them into less toxic metabolites (biotransforming agents). Of interest is the development of molecular methods, including cloning and expression of detoxification enzyme genes in organisms, which are necessary for the detoxification of mycotoxins by biotransformation.

This Special Issue, “Mitigation and Detoxification Strategies of Mycotoxins”, aims to bring together the latest research on how to reduce mycotoxin contamination in feed and food and is not limited to technologies such as chemical, physical and biological degradation. It is also important to study the occurrence of interactions between mycotoxins and herbs, drugs or other components of the human and animal diet, which could potentially reduce the absorption, accelerate metabolism and excretion of mycotoxins from human and animal organisms. Additionally, literature review articles for this issue would also be welcome. We invite you to submit manuscripts to this issue.

Dr. Lidia Radko
Dr. Marta Mendel
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mycotoxins and their metabolites
  • exposure
  • food/feed safety
  • risk assessment
  • detoxification
  • metabolism
  • interaction
  • toxic effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 2975 KiB  
Article
Biocontrol Activity of New Lactic Acid Bacteria Isolates Against Fusaria and Fusarium Mycotoxins
by S. Vipin Krishnan, P. A. Anaswara, K. Madhavan Nampoothiri, Szilvia Kovács, Cintia Adácsi, Pál Szarvas, Szabina Király, István Pócsi and Tünde Pusztahelyi
Toxins 2025, 17(2), 68; https://doi.org/10.3390/toxins17020068 - 4 Feb 2025
Cited by 2 | Viewed by 1053
Abstract
As significant fungal pathogens of crops, Fusaria species contaminate various food and feed commodities. Some of the Fusarium spp. secondary metabolites (e.g., trichothecenes, zearalenone, and fumonisins) are widely known toxic molecules (mycotoxins) with chronic and acute effects on humans and animals. The growing [...] Read more.
As significant fungal pathogens of crops, Fusaria species contaminate various food and feed commodities. Some of the Fusarium spp. secondary metabolites (e.g., trichothecenes, zearalenone, and fumonisins) are widely known toxic molecules (mycotoxins) with chronic and acute effects on humans and animals. The growing demand for safer, pesticide-free food drives us to increase biological control during crop growing. Recent research suggests that lactic acid bacteria (LABs) as biocontrol are the best choice for extenuating Fusarium mycotoxins. Newly isolated LABs were tested as antifungal agents against Fusarium verticillioides, F. graminearum, and F. oxysporum. The characterized and genetically identified LABs belonged to Limosilactobacillus fermentum (SD4) and Lactiplantibacillus plantarum (FCW4 and CB2) species. All tested LABs and their cell-free culture supernatants showed antagonism on the MRS solid medium. The antifungal activity was also demonstrated on surface-sterilized wheat and peanuts. The germination test of corn kernels proved that the LAB strains SD4 and FCW4 significantly (p < 0.05) enhanced root and shoot development in plantlets while simultaneously suppressing the outgrowth of F. verticillioides. Small-scale corn silage fermentation revealed the significant effects of SD4 supplementation (decreased zearalenone, lower mold count, and total reduction of deoxynivalenol) within the mixed populations. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

15 pages, 2215 KiB  
Article
Detoxification of Ustiloxin A Through Oxidative Deamination and Decarboxylation by Endophytic Fungus Petriella setifera
by Peng Li, Gan Gu, Xuwen Hou, Dan Xu, Jungui Dai, Yu Kuang, Mingan Wang, Daowan Lai and Ligang Zhou
Toxins 2025, 17(2), 48; https://doi.org/10.3390/toxins17020048 - 22 Jan 2025
Viewed by 836
Abstract
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, [...] Read more.
Ustiloxins are a group of cyclopeptide mycotoxins produced by rice false smut pathogen Villosiclava virens (anamorph: Ustilaginoidea virens) which seriously threaten the safety production of rice and the health of humans and livestock. Ustiloxin A, accounting for 60% of the total ustiloxins, is the main toxic component. Biotransformation, a process of modifying the functional groups of compounds by means of regio- or stereo-specific reactions catalyzed by the enzymes produced by organisms, has been considered as an efficient way to detoxify mycotoxins. In this study, the endophytic fungus Petriella setifera Nitaf10 was found to be able to detoxify ustiloxin A through biotransformation. Two transformed products were obtained by using the cell-free extract (CFE) containing intracellular enzymes of P. setifera Nitaf10. They were structurally characterized as novel ustiloxin analogs named ustiloxins A1 (1) and A2 (2) by analysis of the 1D and 2D NMR and HRESIMS spectra as well as by comparison with known ustiloxins. The cytotoxic activity of ustiloxins A1 (1) and A2 (2) was much weaker than that of ustiloxin A. The biotransformation of ustiloxin A was found to proceed via oxidative deamination and decarboxylation and was possibly catalyzed by the intracellular amine oxidase and oxidative decarboxylase in the CFE. An appropriate bioconversion was achieved by incubating ustiloxin A with the CFE prepared in 0.5 mol/L phosphate buffer (pH 7.0) for 24 to 48 h. The optimum initial pH values for the bioconversion of ustiloxin A were 7–9. Among eight metal ions (Co2+, Cu2+, Fe3+, Zn2+, Ba2+, Ca2+, Mg2+ and Mn2+) tested at 5 mmol/L, Cu2+, Fe3+ and Zn2+ totally inhibited the conversion of ustiloxin A. In conclusion, detoxification of ustiloxin A through oxidative deamination and decarboxylation is an efficient strategy. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

19 pages, 3481 KiB  
Article
Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box–Behnken Design)
by Verónica Carrasco-Sánchez, V. Felipe Laurie, Marcelo Muñoz-Vera and Ricardo Ignacio Castro
Toxins 2025, 17(1), 26; https://doi.org/10.3390/toxins17010026 - 6 Jan 2025
Viewed by 1003
Abstract
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract [...] Read more.
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex. A physicochemical analysis of the system revealed strong bacterial immobilization and stability. The efficiency of the complex in adsorbing ochratoxin A (OTA) from wine model solutions was assessed using a Box–Behnken design under various pH, time, and concentration conditions. The results showed that at pH 3.0, 75.39 min, and a complex concentration of 43.82 mg mL−1, the best OTA removal (53.68%) took place. Because of its physicochemical interactions, the complex showed improved OTA adsorption in acidic environments. This study demonstrates the potential of biopolymeric systems based on holocellulose for reducing mycotoxin contamination in beverages and stabilizing bacterial cells. These results offer a viable way to increase food safety and value winemaking by-products. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

22 pages, 1624 KiB  
Article
Mycotoxin Challenge in Dairy Cows: Assessment of the Efficacy of an Anti-Mycotoxin Agent by Adopting an In Vitro Rumen Simulation Method
by Erica Fiorbelli, Marco Lapris, Michela Errico, Antonella Della Badia, Insaf Riahi, Gabriele Rocchetti and Antonio Gallo
Toxins 2024, 16(11), 490; https://doi.org/10.3390/toxins16110490 - 13 Nov 2024
Cited by 1 | Viewed by 1971
Abstract
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent [...] Read more.
To protect ruminants from the harmful effects of mycotoxins, anti-mycotoxin agents can be added to the dietary ration, thus guaranteeing animal health and production. Therefore, the objective of this study was to evaluate the in vitro ruminal initial sequestration (weak binding) and subsequent desorption (strong binding) of an anti-mycotoxin agent based on a mixture of adsorbing material, turmeric and milk thistle extracts and yeast-based components to adsorb or bio-convert aflatoxins (AF), fumonisins B1 and B2 (FB), trichothecene deoxynivalenol (DON), T-2 and HT-2 toxins, and zearalenone (ZEN). Two doses were tested: Dose 1 simulated 30 mg/cow/d, while Dose 2 simulated 90 mg/cow/d of the anti-mycotoxin agent. Each treatment involved three analytical replicates at each of three incubation times (1, 4, and 24 h post-incubation), with two independent experimental runs providing experimental replicates. Analytical methods, including UHPLC-HRMS and multivariate analyses, were used to both quantify mycotoxin concentrations and reveal dose-dependent reductions, with statistical validations indicating significant changes in mycotoxin levels across both dose and time. The results indicated that the anti-mycotoxin agent was able to highly bind AFB1, T2, and HT-2 toxins since its concentration was always under the limit of detection (<1 ppb). Regarding ZEN (weak binding mean: 94.6%; strong binding mean: 62.4%) and FBs (weak binding mean: 58.7%; strong binding mean: 32.3%), orthogonal contrasts indicated that the anti-mycotoxin agent was able to effectively bind these toxins using Dose 1 (p < 0.05). This finding suggests that Dose 1 may be sufficient to achieve the targeted effect and that a further increase does not significantly improve the outcome. Regarding DON, a strong linear relationship was observed between dose and adsorption. However, the complex interactions between the mycotoxin, the ruminal environment, and the anti-mycotoxin agent made it difficult to establish a clear dose–effect relationship (p > 0.10). UHPLC-HRMS analysis identified over 1500 mass features in rumen samples, which were further analyzed to assess the effects of the anti-mycotoxin agent. Hierarchical clustering analysis (HCA) revealed significant changes in the untargeted metabolomic profiles of samples treated with mycotoxins compared to control samples, particularly after 24 h with the anti-mycotoxin treatments. Clear differences were noted between strong binding and weak binding samples. Further analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted distinct metabolomic profiles, with stronger predictive ability in the strong binding group (Q2 cumulative value of 0.57) compared to the weak binding group (0.30). The analysis identified 44 discriminant compounds in the strong binding model and 16 in the weak binding model. Seven compounds were common to both groups, while silibinin, known for its antioxidant and anti-inflammatory properties, was found among the unique compounds in the weak binding group. Overall, the findings suggest that both doses of the anti-mycotoxin agent significantly influenced the chemical profiles in the rumen, particularly enhancing the binding of mycotoxins, thereby supporting the role of phytogenic extracts in mitigating mycotoxin effects. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

16 pages, 10396 KiB  
Article
Deoxynivalenol-Induced Spleen Toxicity in Mice: Inflammation, Endoplasmic Reticulum Stress, Macrophage Polarization, and the Dysregulation of LncRNA Expression
by Qingbo Zhao, Weili Feng, Peiyu Gao, Yu Han, Siyi Zhang, Ao Zhou, Liangyu Shi and Jing Zhang
Toxins 2024, 16(10), 432; https://doi.org/10.3390/toxins16100432 - 9 Oct 2024
Cited by 1 | Viewed by 1447
Abstract
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We [...] Read more.
The spleen is a primary target of deoxynivalenol (DON) toxicity, but its underlying molecular mechanisms remain unclear. This study investigates the effects of DON on inflammation, splenic macrophage polarization, endoplasmic reticulum (ER) stress, and transcriptome changes (mRNA and lncRNAs) in mouse spleen. We found that DON exposure at doses of 2.5 or 5 mg/kg BW significantly induced inflammation and polarized splenic macrophages towards the M1 phenotype. Additionally, DON activated PERK-eIF2α-ATF4-mediated ER stress and upregulated apoptosis-related proteins (caspase-12, caspase-3). The ER stress inhibitor, 4-Phenylbutyric acid, significantly alleviated DON-induced ER stress, apoptosis, and the M1 polarization of splenic macrophages. Transcriptome analysis identified 1968 differentially expressed (DE) lncRNAs and 2664 DE mRNAs in mouse spleen following DON exposure. Functional enrichment analysis indicated that the upregulated genes were involved in pathways associated with immunity, including Th17 cell differentiation, TNF signaling, and IL-17 signaling, while downregulated mRNAs were linked to cell survival and growth pathways. Furthermore, 370 DE lncRNAs were predicted to target 255 DE target genes associated with immune processes, including the innate immune response, interferon-beta response, cytokine production regulation, leukocyte apoptosis, and NF-κB signaling genes. This study provides new insights into the mechanisms underlying DON toxicity and its effects on the immune system. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

13 pages, 1146 KiB  
Article
Efficacy of Aflatoxin B1 and Fumonisin B1 Adsorption by Maize, Wheat, and Oat Bran
by Youngsun Lee, Jenna M. Lemmetty, Hanna Nihtilä, Hanna Koivula, Serge Samandoulougou, Hagretou Sawadogo-Lingani, Kati Katina and Ndegwa H. Maina
Toxins 2024, 16(7), 288; https://doi.org/10.3390/toxins16070288 - 25 Jun 2024
Cited by 5 | Viewed by 1794
Abstract
Mycotoxins, especially aflatoxin B1 (AFB1) and fumonisin B1 (FMB1), are common contaminants in cereal-based foods. Instances of contamination are predicted to increase due to the current challenges induced by climate change. Despite the health benefits of whole grains, the presence of mycotoxins in [...] Read more.
Mycotoxins, especially aflatoxin B1 (AFB1) and fumonisin B1 (FMB1), are common contaminants in cereal-based foods. Instances of contamination are predicted to increase due to the current challenges induced by climate change. Despite the health benefits of whole grains, the presence of mycotoxins in bran remains a concern. Nonetheless, previous research indicates that wheat bran can adsorb mutagens. Therefore, this study investigated the capacity of maize, wheat, and oat brans to adsorb AFB1 and FMB1 under varying in vitro conditions, including pH, binding time, temperature, particle size, and the amount of bran utilized. Maize bran demonstrated a high AFB1 adsorption capacity (>78%) compared to wheat and oat brans. However, FMB1 was not adsorbed by the brans, possibly due to its hydrophilic nature. Lower temperature (≤25 °C) enhanced AFB1 adsorption efficacy in wheat and oat bran, while for maize bran, the highest adsorption occurred at 37 °C. A linear model following Henry’s law best explained AFB1 adsorption by the brans. Further studies identified the pericarp layer of bran as the primary site of AFB1 adsorption, with the initial liquid volume being a critical factor. The study concludes that bran could potentially act as an effective bioadsorbent. Further research is essential to confirm the adsorption efficacy and the bioavailability of AFB1 through in vivo experiments. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

20 pages, 1362 KiB  
Article
Actinobacteria as Promising Biocontrol Agents for In Vitro and In Planta Degradation and Detoxification of Zearalenone
by Larissa De Troyer, Noémie De Zutter, Sarah De Saeger, Frédéric Dumoulin, Siska Croubels, Siegrid De Baere, Leen De Gelder and Kris Audenaert
Toxins 2024, 16(6), 253; https://doi.org/10.3390/toxins16060253 - 28 May 2024
Cited by 4 | Viewed by 1677
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. [...] Read more.
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

15 pages, 2599 KiB  
Article
Meta-Analysis of the Effects of Yeast Cell Wall Extract Supple-Mentation during Mycotoxin Challenges on the Performance of Laying Hens
by Alexandra C. Weaver, Daniel M. Weaver, Nicholas Adams and Alexandros Yiannikouris
Toxins 2024, 16(4), 171; https://doi.org/10.3390/toxins16040171 - 30 Mar 2024
Cited by 2 | Viewed by 3265
Abstract
A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from [...] Read more.
A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by −50 g, egg production by −6.3 percentage points, and egg weight by −1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

15 pages, 2901 KiB  
Article
Induced Expression of the Acinetobacter sp. Oxa Gene in Lactobacillus acidophilus and Its Increased ZEN Degradation Stability by Immobilization
by Yuqun Zhou, An Wang, Qingzi Yu, Yuqian Tang and Yuanshan Yu
Toxins 2023, 15(6), 387; https://doi.org/10.3390/toxins15060387 - 8 Jun 2023
Cited by 4 | Viewed by 1987
Abstract
Zearalenone (ZEN, ZEA) contamination in various foods and feeds is a significant global problem. Similar to deoxynivalenol (DON) and other mycotoxins, ZEN in feed mainly enters the body of animals through absorption in the small intestine, resulting in estrogen-like toxicity. In this study, [...] Read more.
Zearalenone (ZEN, ZEA) contamination in various foods and feeds is a significant global problem. Similar to deoxynivalenol (DON) and other mycotoxins, ZEN in feed mainly enters the body of animals through absorption in the small intestine, resulting in estrogen-like toxicity. In this study, the gene encoding Oxa, a ZEN-degrading enzyme isolated from Acinetobacter SM04, was cloned into Lactobacillus acidophilus ATCC4356, a parthenogenic anaerobic gut probiotic, and the 38 kDa sized Oxa protein was expressed to detoxify ZEN intestinally. The transformed strain L. acidophilus pMG-Oxa acquired the capacity to degrade ZEN, with a degradation rate of 42.95% at 12 h (initial amount: 20 μg/mL). The probiotic properties of L. acidophilus pMG-Oxa (e.g., acid tolerance, bile salt tolerance, and adhesion properties) were not affected by the insertion and intracellular expression of Oxa. Considering the low amount of Oxa expressed by L. acidophilus pMG-Oxa and the damage to enzyme activity by digestive juices, Oxa was immobilized with 3.5% sodium alginate, 3.0% chitosan, and 0.2 M CaCl2 to improve the ZEN degradation efficiency (from 42.95% to 48.65%) and protect it from digestive juices. The activity of immobilized Oxa was 32–41% higher than that of the free crude enzyme at different temperatures (20–80 °C), pH values (2.0–12.0), storage conditions (4 °C and 25 °C), and gastrointestinal simulated digestion conditions. Accordingly, immobilized Oxa could be resistant to adverse environmental conditions. Owing to the colonization, efficient degradation performance, and probiotic functionality of L. acidophilus, it is an ideal host for detoxifying residual ZEN in vivo, demonstrating great potential for application in the feed industry. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2044 KiB  
Review
Neurotoxicological Effects of Some Mycotoxins on Humans Health and Methods of Neuroprotection
by Aleksandra Kuć-Szymanek, Daria Kubik-Machura, Klaudia Kościelecka, Tomasz Męcik-Kronenberg and Lidia Radko
Toxins 2025, 17(1), 24; https://doi.org/10.3390/toxins17010024 - 6 Jan 2025
Viewed by 1861
Abstract
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to [...] Read more.
Food contamination with mycotoxin-producing fungi increases the risk of many diseases, including neurological diseases closely related to the neurotoxicity of these toxins. Based on the latest literature data, we presented the association of common Fusarium mycotoxins with neurological diseases. Articles from 2001 to 2024 were analyzed. The mechanisms underlying the neurotoxicity of the described mycotoxins were presented. They are mainly related to the increase in oxidative stress in neuronal cells, which leads to higher levels of pro-inflammatory cytokines as IL-1β, IL-6 and TNF-α, enzymatic activity as GST, GPx, CAT and SOD and neurotransmitter dysfunction (5-HT, serotonin, dopamine and GABA). At the end of the article, based on the literature data, we attempted to present ways to mitigate mycotoxin neurotoxicity using mainly natural substances of plant origin. The data in this review focus on the Fusarium mycotoxins most frequently found in food and will be useful as comparative information for future studies. It is important to conduct further studies to mitigate the neurotoxic effects of Fusarium mycotoxins in order to reduce the development of diseases of the nervous system. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Graphical abstract

30 pages, 2414 KiB  
Review
Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition
by Sergio Quesada-Vázquez, Raquel Codina Moreno, Antonella Della Badia, Oscar Castro and Insaf Riahi
Toxins 2024, 16(10), 434; https://doi.org/10.3390/toxins16100434 - 10 Oct 2024
Cited by 3 | Viewed by 3111
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, [...] Read more.
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins’ deleterious effects. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Figure 1

15 pages, 368 KiB  
Review
Endocrine Effect of Some Mycotoxins on Humans: A Clinical Review of the Ways to Mitigate the Action of Mycotoxins
by Klaudia Kościelecka, Aleksandra Kuć, Daria Kubik-Machura, Tomasz Męcik-Kronenberg, Jan Włodarek and Lidia Radko
Toxins 2023, 15(9), 515; https://doi.org/10.3390/toxins15090515 - 23 Aug 2023
Cited by 10 | Viewed by 3569
Abstract
Fungi such as Aspergillus spp. and Fusarium spp., which are commonly found in the environment, pose a serious global health problem. This study aims to present the results of epidemiological studies, including clinical cases, on the relationship between human exposure to some mycotoxins, [...] Read more.
Fungi such as Aspergillus spp. and Fusarium spp., which are commonly found in the environment, pose a serious global health problem. This study aims to present the results of epidemiological studies, including clinical cases, on the relationship between human exposure to some mycotoxins, especially zearalenone and aflatoxin, and the occurrence of reproductive disorders. In addition, examples of methods to reduce human exposure to mycotoxins are presented. In March 2023, various databases (PubMed, Google Scholar, EMBASE and Web of Science) were systematically searched using Google Chrome to identify studies evaluating the association between exposure to mycotoxins and the occurrence of complications related to impaired fertility or cancer incidence. The analysed data indicate that exposure to the evaluated mycotoxins is widespread and correlates strongly with precocious puberty, reduced fertility and increased cancer incidence in women and men worldwide. There is evidence to suggest that exposure to the Aspergillus mycotoxin aflatoxin (AF) during pregnancy can impair intrauterine foetal growth, promote neonatal jaundice and cause perinatal death and preterm birth. In contrast, exposure to the Fusarium mycotoxin zearalenone (ZEA) leads to precocious sexual development, infertility, the development of malformations and the development of breast cancer. Unfortunately, the development of methods (biological, chemical or physical) to completely eliminate exposure to mycotoxins has limited practical application. The threat to human health from mycotoxins is real and further research is needed to improve our knowledge and specific public health interventions. Full article
(This article belongs to the Special Issue Mitigation and Detoxification Strategies of Mycotoxins)
Show Figures

Graphical abstract

Back to TopTop