Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins
Abstract
:1. Introduction
2. Biological Methods of Protection Against Mycotoxin Contamination
2.1. Protection by Biodegradation, Biotransformation, or Binding of Mycotoxins
Mechanisms of Protection and Industrial Applicability
2.2. Antagonistic Microorganisms, Fungi, or Yeast with Fungicidal Properties Against Mycotoxin Contamination
Mechanisms of Protection, Factors Influencing Antifungal Activity and Industrial Applicability
3. Natural Herbal Supplements Having Powerful Protection Against Toxicity of Mycotoxins
3.1. Plants and Herbal Supplements with Powerful Protective Properties Against Target Mycotoxins
Industrial Applicability and Limitations
3.2. Herbs and Plants Suppressing the Growth of Fungi and Production of Mycotoxins
4. Some Natural Compounds or Vitamins Possessing Protective Effects Against Mycotoxicoses
Mechanisms of Protection by Knowing Target Mechanisms of Mycotoxin Toxicity
5. Novelties and Limitations of Biocontrol Approach Against Mycotoxins
5.1. Novelties and Advantages of Biocontrol Approach Against Mycotoxins
5.2. Limitations of Findings
6. Concluding Remarks and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stoev, S.D. Foodborne Diseases due to Underestimated Hazard of Joint Mycotoxin Exposure at Low Levels and Possible Risk Assessment. Toxins 2023, 15, 464. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Foodborne mycotoxicoses, risk assessment and underestimated hazard of masked mycotoxins and joint mycotoxin effects or interaction. Environ. Toxicol. Pharmacol. 2015, 9, 794–809. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Cunha, S.C.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [Google Scholar] [CrossRef]
- Vlachou, M.; Pexara, A.; Solomakos, N.; Govaris, A. Ochratoxin A in Slaughtered Pigs and Pork Products. Toxins 2022, 14, 67. [Google Scholar] [CrossRef]
- Stoev, S.D. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit. Rev. Food Sci. 2013, 53, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. Studies on some feed additives and materials giving partial protection against the suppressive effect of ochratoxin A on egg production of laying hens. Res. Vet. Sci. 2010, 88, 486–491. [Google Scholar] [CrossRef]
- Gashaw, M. Review on Mycotoxins in Feeds: Implications to Livestock and human health. E3 J. Agric. Res. Dev. 2015, 5, 137–144. [Google Scholar]
- Hussain, F.; Usman, F.; Alajmi, R.A.; Bashir, M.A. Application of Biocontrol Agents and Plants Extract Against Fungal Phytopathogens of Vegetable Crops. Pol. J. Environ. Study 2024, 33, 3209–3216. [Google Scholar] [CrossRef]
- Chaudhary, R.; Nawaz, A.; Khattak, Z.; Butt, M.A.; Fouillaud, M.; Dufossé, L.; Munir, M.; Haq, I.; Mukhtar, H. Microbial bio-control agents: A comprehensive analysis on sustainable pest management in agriculture. J. Agric. Food Res. 2024, 18, 101421. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on carcinogenic and toxic effects of ochratoxin A in chicks Special issue “Ochratoxins”. Toxins 2010, 2, 649–664. [Google Scholar] [CrossRef]
- Stoev, S.D. Studies on teratogenic effect of ochratoxin A given via mouldy diet in mice in various sensitive periods of the pregnancy and the putative protection of phenylalanine. Toxicon 2022, 210, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.A.; Meijer, G.A.L. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol. 2007, 133, 84–108. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. An Update on Direct Genotoxicity as a Molecular Mechanism of Ochratoxin A Carcinogenicity. Chem. Res. Toxicol. 2012, 25, 252–262. [Google Scholar] [CrossRef]
- Stoev, S.D. Follow up long term preliminary studies on carcinogenic and toxic effects of ochratoxin A in rats and the putative protection of phenylalanine. Toxicon 2021, 190, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Stoev, S.D. New Evidences about the Carcinogenic Effects of Ochratoxin A and Possible Prevention by Target Feed Additives. Toxins 2022, 14, 380. [Google Scholar] [CrossRef] [PubMed]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef]
- Stoev, S.D.; Anguelov, G.; Ivanov, I.; Pavlov, D. Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. Exp. Toxicol. Pathol. 2000, 52, 43–55. [Google Scholar] [CrossRef]
- Stoev, S.D.; Goundasheva, D.; Mirtcheva, T.; Mantle, P.G. Susceptibility to secondary bacterial infections in growing pigs as an early response in ochratoxicosis. Exp. Toxicol. Pathol. 2000, 52, 287–296. [Google Scholar] [CrossRef]
- Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, N.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 2020, 6, e05291. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Codina Moreno, R.; Della Badia, A.; Castro, O.; Riahi, I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins 2024, 16, 434. [Google Scholar] [CrossRef]
- Randa Zeidan, R.; Ul-Hassan, Z.; Al-Thani, R.; Migheli, M.; Jaoua, S. In-Vitro Application of a Qatari Burkholderia cepacia strain (QBC03) in the Biocontrol of Mycotoxigenic Fungi and in the Reduction of Ochratoxin A biosynthesis by Aspergillus carbonarius. Toxins 2019, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Alvina Hanif, A.; Zhang, F.; Li, P.; Li, C.; Xu, Y.; Zubair, M.; Zhang, M.; Jia, D.; Zhao, X.; Liang, J.; et al. Fengycin Produced by Bacillus amyloliquefaciens FZB42 Inhibits Fusarium graminearum Growth and Mycotoxins Biosynthesis. Toxins 2019, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Kawtharani, H.; Snini, S.P.; Heang, S.; Bouajila, J.; Taillandier, P.; Mathieu, F.; Beaufort, S. Phenyllactic Acid Produced by Geotrichum candidum Reduces Fusarium sporotrichioides and F. langsethiae Growth and T-2 Toxin Concentration. Toxins 2020, 12, 209. [Google Scholar] [CrossRef]
- Gomomo, Z.; Fanadzo, M.; Mewa-Ngongang, M.; Hoff, J.; Van der Rijst, M.; Okudoh, V.; Kriel, J.; du Plessis, H.W. Control of Mould Spoilage on Apples Using Yeasts as Biological Control Agents. Pol. J. Food Nutr. Sci. 2022, 72, 119–128. [Google Scholar] [CrossRef]
- Smith, M.-C.; Madec, S.; Coton, E.; Hymery, N. Natural Co-Occurrence of Mycotoxins in Foods and Feeds and Their in vitro Combined Toxicological Effects. Toxins 2016, 8, 94. [Google Scholar] [CrossRef]
- Marc, R.A. Implications of Mycotoxins in Food Safety. In Mycotoxins and Food Safety—Recent Advances; IntechOpen: London, UK, 2022; Chapter 1; pp. 1–146. Available online: https://www.intechopen.com/books/11023 (accessed on 5 February 2024).
- CAST (Council for Agricultural Science and Technology). Mycotoxins: Economic and Health Risk; Task Force Report 116; CAST: Ames, IA, USA, 1989; pp. 1–91. [Google Scholar]
- Scott, P.M. Industrial and farm detoxification processes for mycotoxins. Rev. Med. Vet. 1998, 149, 543–548. [Google Scholar]
- Peraica, M.; Domijan, A.-M.; Jurjevic, Z.; Cvjetkovic, B. Prevention of Exposure to Mycotoxins from Food and Feed. Arch. Ind. Hyg. Toxicol. 2002, 53, 229–237. [Google Scholar]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2007, 46, 593–619. [Google Scholar] [CrossRef]
- Kubena, L.F.; Harvey, R.B.; Bailey, R.H.; Buckley, S.A.; Rottinghaus, G.E. Effects of a hydrated sodium calcium aluminosilicate (T-BindTM) on mycotoxicosis in young broiler chickens. Poult. Sci. 1998, 77, 1502–1509. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Neeff, D.V.; Jager, A.V.; Corassin, C.H.; Carao, A.P.; Albuquerque, R.D.; de Azevedo, A.C.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Phillips, M.; Zhang, K. Mycotoxins and food safety-prevention and control: Expectation and reality. J. AOAC Int. 2019, 102, 1641. [Google Scholar] [CrossRef]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Stoev, S.D. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicosis. Front. Nutr. 2024, 11, 1335779. [Google Scholar] [CrossRef]
- Stoev, S.D. Food security, underestimated hazard of joint mycotoxin exposure and management of the risk of mycotoxin contamination. Food Control 2024, 159, 110235. [Google Scholar] [CrossRef]
- Ofori-Attah, E.; Hashimoto, M.; Oki, M.; Kadowaki, D. Therapeutic Effect of Natural Products and Dietary Supplements on Aflatoxin-Induced Nephropathy. Int. J. Mol. Sci. 2024, 25, 2849. [Google Scholar] [CrossRef]
- Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of mycotoxins. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Zhang, B.; Zhou, Z.; Shen, Y.; Liao, X.; Yang, J.; Wang, Y.; Li, X.; Li, Y.; et al. Advances in Biodetoxification of Ochratoxin A—A Review of the Past Five Decades. Front. Microbiol. 2018, 9, 1386. [Google Scholar] [CrossRef]
- Guerre, P. Mycotoxin and gut microbiota interactions. Toxins 2020, 12, 769. [Google Scholar] [CrossRef]
- Yao, Y.; Long, M. The biological detoxification of deoxynivalenol: A review. Food Chem. Toxicol. 2020, 145, 111649. [Google Scholar] [CrossRef]
- Li, P.; Su, R.; Yin, R.; Lai, D.; Wang, M.; Liu, Y.; Zhou, L. Detoxification of Mycotoxins through Biotransformation. Toxins 2020, 12, 121. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar]
- Scudamore, K.A.; Banks, J.N. The fate of mycotoxins during cereal processing. In Meeting the Mycotoxin Menace, Proceedings of the 2nd World Mycotoxin Forum, Nordwijk, The Netherlands, 17–18 February 2003; Barug, D., van Egmond, H., López-García, R., van Osenbruggen, T., Visconti, A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004; pp. 165–181. [Google Scholar]
- Nobre, C.; González, A.; Losoya, C.; Teixeira, J.; Belmares, R.; Abrunhosa, L. Detoxification of ochratoxin A and zearalenone by Pleurotus ostreatus during in vitro gastrointestinal digestion. Food Chem. 2022, 384, 132525. [Google Scholar]
- Bovo, F.; Franco, L.T.; Rosim, R.E.; Oliveira, C.A. Ability of a Lactobacillus rhamnosus strain cultured in milk whey based medium to bind aflatoxin B1. Food Sci. Technol. 2014, 34, 566–570. [Google Scholar] [CrossRef]
- Afshar, P.; Shokrzadeh, M.; Raeisi, S.N.; Ghorbani-HasanSaraei, A.; Nasiraii, L.R. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020, 178, 50–58. [Google Scholar] [CrossRef]
- Hawar, S.; Vevers, W.; Karieb, S.; Ali, B.K.; Billington, R.; Beal, J. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Control 2013, 34, 502–508. [Google Scholar]
- Fuchs, S.; Sontag, G.; Stidl, R.; Ehrlich, V.; Kundi, M.; Knasmüeller, S. Detoxification of patulin and Ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem. Toxicol. 2008, 46, 1398–1407. [Google Scholar]
- Piotrowska, M. The Adsorption of Ochratoxin A by Lactobacillus Species. Toxins 2014, 6, 2826. [Google Scholar] [CrossRef]
- Piotrowska, M.; Zakowska, Z. The biodegradation of Ochratoxin A in food products by lactic acid bacteria and baker’s yeast. Food Biotechnol. 2000, 17, 307–310. [Google Scholar]
- Del Prete, V.; Rodriguez, H.; Carrascosa, A.V.; de las Rivas, B.; Garcia-Moruno, E.; Muñoz, R. In vitro removal of Ochratoxin A by wine lactic acid bacteria. J. Food Prot. 2007, 70, 2155–2160. [Google Scholar]
- Luz, C.; Ferrer, J.; Mañes, J.; Meca, G. Toxicity reduction of Ochratoxin A by lactic acid bacteria. Food Chem. Toxicol. 2018, 112, 60–66. [Google Scholar] [CrossRef]
- Hatab, S.; Yue, T.; Mohamad, O. Reduction of patulin in aqueous solution by lactic acid bacteria. J. Food Sci. 2012, 77, M238–M241. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Hatab, S.; Wang, Z.; Wang, Y.; Luo, Y.; Yue, T. Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Lett. Appl. Microbiol. 2014, 59, 604–609. [Google Scholar]
- Khoury, R.E.; Mathieu, F.; Atoui, A.; Kawtharani, H.; Khoury, A.E.; Afif, C.; Maroun, R.G.; El Khoury, A. Ability of soil isolated actinobacterial strains to prevent, bind and biodegrade Ochratoxin A. Toxins 2017, 9, 222. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Lillehoj, E.B.; Bennet, J.W. Biological detoxification of mycotoxins. In Mycotoxin and Animal Feeds; Smith, J.E., Henderson, R.S., Eds.; CRC Press: Boston, MA, USA, 1991; pp. 816–826. [Google Scholar]
- Taheur, F.B.; Fedhila, K.; Chaieb, K.; Kouidhi, B.; Bakhrouf, A.; Abrunhosa, L. Adsorption of aflatoxin B1, zearalenone and Ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 2017, 251, 1–7. [Google Scholar] [CrossRef]
- Mateo, E.M.; Medina, Á.; Valle-Algarra, F.M.; Mateo, F.; Pardo, I.; Jiménez, M. Ochratoxin A removal in synthetic media by living and heat-inactivated cells of Oenococcus oeni isolated from wines. Food Control 2010, 21, 23–28. [Google Scholar] [CrossRef]
- Ricelli, A.; Baruzzi, F.; Solfrizzo, M.; Morea, M.; Fanizzi, F. Biotransformation of patulin by Gluconobacter oxydans. Appl. Environ. Microbiol. 2007, 73, 785–792. [Google Scholar] [CrossRef]
- Binder, J.; Schatzmayr, G.; Heidler, D.; Ellend, N.; Braun, R.; Binder, E.M. Microbial inactivation of trichothecenes—Development of a feed additive. In Proceedings of the 5th International Feed Production Conference, Piacenza, Italy, 15–16 June 1998; pp. 71–87. [Google Scholar]
- Shi, L.; Liang, Z.; Xu, S.; Zheng, H.; Huang, K. Adsorption and degradation of Ochratoxin A by Bacillus licheniformis Sl-1. J. Agric. Biotechnol. 2013, 21, 1420–1425. [Google Scholar]
- Petchkongkaew, A.; Taillandier, P.; Gasaluck, P.; Lebrihi, A. Isolation of Bacillus spp. from Thai fermented soybean (Thua-nao): Screening for aflatoxin B1 and Ochratoxin A detoxification. J. Appl. Microbiol. 2008, 104, 1495–1502. [Google Scholar]
- Abrunhosa, L.; Inês, A.; Rodrigues, A.I.; Guimarães, A.; Pereira, V.L.; Parpot, P.; Mendes-Faia, A.; Venâncio, A. Biodegradation of Ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int. J. Food Microbiol. 2014, 188, 45–52. [Google Scholar] [CrossRef]
- De Bellis, P.; Tristezza, M.; Haidukowski, M.; Fanelli, F.; Sisto, A.; Mulè, G.; Grieco, F. Biodegradation of Ochratoxin A by bacterial strains isolated from vineyard soils. Toxins 2015, 7, 5079–5093. [Google Scholar] [CrossRef]
- Hwang, C.-A.; Draughon, F.A. Degradation of Ochratoxin A by Acinetobacter calcoaceticus. J. Food Prot. 1994, 57, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wu, Z.; Wu, S.; Dai, Y.; Sun, C. Degradation of Ochratoxin A by Bacillus amyloliquefaciens ASAG1. Food Addit. Contam. A 2015, 32, 564–571. [Google Scholar] [CrossRef]
- Rodriguez, H.; Reveron, I.; Doria, F.; Costantini, A.; De Las Rivas, B.; Munoz, R.; Garcia-Moruno, E. Degradation of Ochratoxin A by Brevibacterium species. J. Agric. Food Chem. 2011, 59, 10755–10760. [Google Scholar] [CrossRef]
- Shi, L.; Liang, Z.; Li, J.; Hao, J.; Xu, Y.; Huang, K.; Tian, J.; He, X.; Xu, W. Ochratoxin A biocontrol and biodegradation by Bacillus subtilis CW 14. J. Sci. Food Agric. 2014, 94, 1879–1885. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Zehner, F.; Täubel, M.; Schatzmayr, D.; Klimitsch, A.; Loibner, A.P.; Binder, E.M. Microbiologicals for deactivating mycotoxins. Mol. Nutr. Food Res. 2006, 50, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Upadhaya, S.D.; Song, J.Y.; Park, M.A.; Seo, J.K.; Yang, L.; Lee, C.H.; Cho, K.J.; Ha, J.K. Isolation, screening and identification of swine gut microbiota with Ochratoxin A biodegradation ability. Asian Austral. J. Anim. 2012, 25, 114–121. [Google Scholar] [CrossRef]
- Ferenczi, S.; Cserháti, M.; Krifaton, C.; Szoboszlay, S.; Kukolya, J.; Szoke, Z.; Kőszegi, B.; Albert, M.; Barna, T.; Mézes, M.; et al. A new Ochratoxin A biodegradation strategy using Cupriavidus basilensis Or16 Strain. PLoS ONE 2014, 9, e109817. [Google Scholar] [CrossRef] [PubMed]
- Molnar, O.; Schatzmayr, G.; Fuchs, E.; Prillinger, H. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Syst. Appl. Microbiol. 2004, 27, 661–671. [Google Scholar] [CrossRef]
- Vekiru, E.; Hametner, C.; Mitterbauer, R.; Rechthaler, J.; Adam, G.; Schatzmayr, G.; Krska, R.; Schuhmacher, R. Cleavage of zearalenone by Trichosporon mycotoxinivorans to a novel nonestrogenic metabolite. Appl. Environ. Microbiol. 2010, 76, 2353–2359. [Google Scholar] [CrossRef]
- Varga, J.; Kocinfe, S.; Peteri, Z.; Vagvolgyi, C.; Toth, B. Chemical, physical and biological approaches to prevent ochratoxin induced toxicoses in humans and animals. Toxins 2010, 2, 1718–1750. [Google Scholar] [CrossRef]
- Politis, I.; Fegeros, K.; Nitsch, S.; Schatzmayr, G.; Kantas, D. Use of Trichosporon mycotoxinivoransto to suppress the effects of ochratoxicosis on the immune system of broiler chicks. Br. Poult. Sci. 2005, 46, 58–65. [Google Scholar] [CrossRef]
- Hartinger, D.; Moll, W.D. Fumonisin elimination and prospects for detoxification by enzymatic transformation. World Mycotoxin J. 2011, 4, 271–283. [Google Scholar] [CrossRef]
- Patharajan, S.; Reddy, K.R.N.; Karthikeyan, V.; Spadaro, D.; Lore, A.; Gullino, M.L.; Garibaldi, A. Potential of yeast antagonists on in vitro biodegradation of Ochratoxin A. Food Control 2011, 22, 290–296. [Google Scholar] [CrossRef]
- Péteri, Z.; Téren, J.; Vágvölgyi, C.; Varga, J. Ochratoxin degradation and adsorption caused by astaxanthin-producing yeasts. Food Microbiol. 2007, 24, 205–210. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, H.; Li, C.; Zhang, X. Ochratoxin A is degraded by Yarrowia lipolytica and generates non-toxic degradation products. World Mycotoxin J. 2016, 9, 269–278. [Google Scholar] [CrossRef]
- Schatzmayr, G.; Heidler, D.; Fuchs, E.; Nitsch, S.; Mohnl, M.; Taubel, M.; Loibner, A.P.; Braun, R.; Binder, E.M. Investigation of different yeast strains for the detoxification of Ochratoxin A. Mycotoxin Res. 2003, 19, 124–128. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicrob. 2020, 12, 289–301. [Google Scholar] [CrossRef]
- Moss, M.O.; Long, M.T. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Addit. Contam. 2002, 19, 387–399. [Google Scholar] [CrossRef]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marceddu, S.; Jaoua, S.; Migheli, Q. Adsorption of Ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. Int. J. Food Microbiol. 2016, 217, 29–34. [Google Scholar] [CrossRef]
- Fiori, S.; Urgeghe, P.P.; Hammami, W.; Razzu, S.; Jaoua, S.; Migheli, Q. Biocontrol activity of four non- and low-fermenting yeast strains against Aspergillus carbonarius and their ability to remove Ochratoxin A from grape juice. Int. J. Food Microbiol. 2014, 189, 45–50. [Google Scholar] [CrossRef]
- Angioni, A.; Caboni, P.; Garau, A.; Farris, A.; Orro, D.; Budroni, M.; Cabras, P. In vitro interaction between Ochratoxin A and different strains of Saccharomyces cerevisiae and Kloeckera apiculata. J. Agric. Food Chem. 2007, 55, 2043–2048. [Google Scholar] [CrossRef] [PubMed]
- Cecchini, F.; Morassut, M.; Garcia Moruno, E.; Di Stefano, R. Influence of yeast strain on Ochratoxin A content during fermentation of white and red must. Food Microbiol. 2006, 23, 411–417. [Google Scholar] [CrossRef]
- Zhu, R.; Feussner, K.; Wu, T.; Yan, F.; Karlovsky, P.; Zheng, X. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum. Food Chem. 2015, 179 (Suppl. C), 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ianiri, G.; Idnurm, A.; Castoria, R. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. BMC Genom. 2016, 17, 210. [Google Scholar] [CrossRef] [PubMed]
- Castoria, R.; Morena, V.; Caputo, L.; Panfili, G.; De Curtis, F.; De Cicco, V. Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 2005, 95, 1271–1278. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Yang, Q. Screening and identification of microorganisms for Ochratoxin A degradation. Food Sci. 2014, 35, 154–158. [Google Scholar]
- Xia, X.; Zhang, Y.; Li, M.; Garba, B.; Zhang, Q.; Wang, Y.; Zhang, H.; Li, P. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B1 biodegradation capability. Food Control 2017, 75, 92–98. [Google Scholar] [CrossRef]
- Gerbaldo, G.A.; Barberis, C.; Pascual, L.; Dalcero, A.; Barberis, L. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiol. Lett. 2012, 332, 27–33. [Google Scholar] [CrossRef]
- Kabak, B.; Var, I. Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. J. Environ. Sci. Health Part B 2008, 43, 617–624. [Google Scholar] [CrossRef]
- Shantha, T. Fungal degradation of aflatoxin B1. Nat. Toxins 1999, 7, 175–178. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Y.; Ma, Y.; Chai, Y.; Li, Y. Biodegradation of patulin by a Byssochlamys nivea strain. Food Control 2016, 64 (Suppl. C), 142–150. [Google Scholar] [CrossRef]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Biodegradation of Ochratoxin A by Aspergillus section Nigri species isolated from French grapes: A potential means of Ochratoxin A decontamination in grape juices and musts. FEMS Microbiol. Lett. 2006, 255, 203–208. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, X.-L.; Zhi, H.-W.; Sun, B.-G.; Li, X.-T. Identification and safety evaluation of a product from the biodegradation of Ochratoxin A by an Aspergillus strain. J. Sci. Food Agric. 2017, 97, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.M.; Jeong, S.E.; Lee, K.R.; Sudhani, H.P.; Kim, M.; Hong, S.Y.; Chung, S.H. Biodegradation of Ochratoxin A by Aspergillus tubingensis Isolated from Meju. J. Microbiol. Biotechnol. 2016, 26, 1687–1695. [Google Scholar] [CrossRef]
- Valero, A.; Sanchis, V.; Ramos, A.J.; Marín, S. Brief in vitro study on Botrytis cinerea and Aspergillus carbonarius regarding growth and Ochratoxin A. Lett. Appl. Microbiol. 2008, 47, 327–332. [Google Scholar] [CrossRef]
- Bejaoui, H.; Mathieu, F.; Taillandier, P.; Lebrihi, A. Conidia of black Aspergilli as new biological adsorbents for Ochratoxin A in grape juices and musts. J. Agric. Food Chem. 2005, 53, 8224–8229. [Google Scholar] [CrossRef] [PubMed]
- Abrunhosa, L.; Serra, R.; Venâncio, A. Biodegradation of Ochratoxin A by fungi isolated from grapes. J. Agric. Food Chem. 2002, 50, 7493–7496. [Google Scholar] [CrossRef]
- Varga, J.; Péteri, Z.; Tábori, K.; Téren, J.; Vágvölgyi, C. Degradation of Ochratoxin A and other mycotoxins by Rhizopus isolates. Int. J. Food Microbiol. 2005, 99, 321–328. [Google Scholar] [CrossRef]
- De Felice, D.V.; Solfrizzo, M.; De Curtis, F.; Lima, G.; Visconti, A.; Castoria, R. Strains of Aureobasidium pullulans can lower Ochratoxin A contamination in wine grapes. Phytopathology 2008, 98, 1261–1270. [Google Scholar] [CrossRef]
- Engelhardt, G. Degradation of Ochratoxin A and B by the white rot fungus Pleurotus ostreatus. Mycotoxin Res. 2002, 18, 37–43. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, H.-M.; Wang, X.; Li, B.-Q.; Long, M.-Y.; Tian, S.-P. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis. Toxins 2017, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Var, I.; Erginkaya, Z.; Kabak, B. Reduction of Ochratoxin A Levels in White Wine by Yeast Treatments. J. Ins. Brewing. 2009, 115, 30–34. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Paterson, R.R.; Venâncio, A. Biodegradation of Ochratoxin A for food and feed decontamination. Toxins 2010, 2, 1078–1099. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Santos, L.; Venâncio, A. Degradation of Ochratoxin A by proteases and by a crude enzyme of Aspergillus niger. Food Biotechnol. 2006, 20, 231–242. [Google Scholar] [CrossRef]
- Deberghes, P.; Betbeder, A.M.; Boisard, F.; Blanc, R.; Delaby, J.F.; Krivobok, S.; Steiman, R.; Seigle-Murandi, F.; Creppy, E.E. Detoxification of Ochratoxin A, a food contaminant: Prevention of growth of Aspergillus ochraceus and its production of Ochratoxin A. Mycotoxin Res. 1995, 11, 37–47. [Google Scholar] [CrossRef]
- Pitout, M.J. The hydrolysis of ochratoxin A by some proteolytic enzymes. Biochem. Pharmacol. 1969, 18, 485–491. [Google Scholar] [CrossRef]
- Liuzzi, V.C.; Fanelli, F.; Tristezza, M.; Haidukowski, M.; Picardi, E.; Manzari, C.; Lionetti, C.; Grieco, F.; Logrieco, A.F.; Thon, M.R.; et al. Transcriptional analysis of Acinetobacter sp. neg1 capable of degrading Ochratoxin A. Front. Microbiol. 2016, 7, 2162. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Venâncio, A.; Teixeira, J.A. Optimization of process parameters for the production of an OTA-hydrolyzing enzyme from Aspergillus niger under solid-state fermentation. J. Biosci. Bioeng. 2011, 112, 351–355. [Google Scholar] [CrossRef]
- Stander, M.A.; Bornscheuer, U.T.; Henke, E.; Steyn, P.S. Screening of commercial hydrolases for the degradation of Ochratoxin A. J. Agric. Food Chem. 2000, 48, 5736–5739. [Google Scholar] [CrossRef]
- Abrunhosa, L.; Venancio, A. Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger. Biotechnol. Lett. 2007, 29, 1909–1914. [Google Scholar] [CrossRef]
- Sun, F.; Yu, D.; Zhou, H.; Lin, H.; Yan, Z.; Wu, A. CotA laccase from bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control 2023, 145, 109472. [Google Scholar] [CrossRef]
- Tittlemier, S.; Cramer, B.; Dall’Asta, C.; Iha, M.; Lattanzio, V.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.; Stroka, J. Developments in mycotoxin analysis: An update for 2018-19. World Mycotoxin J. 2020, 13, 3–24. [Google Scholar]
- Chen, Y.; Xing, M.; Chen, T.; Tian, S.; Li, B. Effects and mechanisms of plant bioactive compounds in preventing fungal spoilage and mycotoxin contamination in postharvest fruits: A review. Food Chem. 2023, 415, 135787. [Google Scholar] [CrossRef]
- Pereyra, C.M.; Cavaglieri, L.R.; Keller, K.M.; Chiacchera, S.M.; Rosa, C.A.D.R.; Dalcero, A.M. In vitro Ochratoxin A adsorption by commercial yeast cell walls. Rev. Bras. Med. Vet. 2015, 37, 25–28. [Google Scholar]
- Caridi, A.; Sidari, R.; Pulvirenti, A.; Meca, G.; Ritieni, A. Ochratoxin A adsorption phenotype: An inheritable yeast trait. J. Gen. Appl. Microbiol. 2012, 58, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Armando, M.R.; Pizzolitto, R.P.; Dogi, C.A.; Cristofolini, A.; Merkis, C.; Poloni, V.; Dalcero, A.M.; Cavaglieri, L.R. Adsorption of Ochratoxin A and zearalenone by potential probiotic Saccharomyces cerevisiae strains and its relation with cell wall thickness. J. Appl. Microbiol. 2012, 113, 256–264. [Google Scholar]
- Piotrowska, M. Adsorption of Ochratoxin A by Saccharomyces cerevisiae living and non-living cells. Acta Aliment. 2012, 41, 1–7. [Google Scholar] [CrossRef]
- Karlovsky, P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat. Toxins 1999, 7, 1–23. [Google Scholar] [CrossRef]
- Xiao, H.; Madhyastha, S.; Marquardt, R.R.; Li, S.; Vodela, J.K.; Frohlich, A.A.; Kemppainen, B.W. Toxicity of ochratoxin A, its opened lactone form and several of its analogs: Structure–activity relationships. Toxicol. Appl. Pharmacol. 1996, 137, 182–192. [Google Scholar]
- Li, S.; Marquardt, R.R.; Frohlich, A.A.; Vitti, T.G.; Crow, G. Pharmacokinetics of ochratoxin A and its metabolites in rats. Toxicol. Appl. Pharmacol. 1997, 145, 82–90. [Google Scholar] [CrossRef]
- Binder, E.M.; Heidler, D.; Schatzmayr, G.; Thimm, N.; Fuchs, E.; Schuh, M. Microbial detoxification of mycotoxins in animal feed. In Proceedings of the 10th International IUPAC Symposium on Mycotoxins and Phycotoxins, Guarujá, Brazil, 21–25 May 2000; De Koe, W.J., Samson, R.A., Van Egmond, H.J., Gilbert, J., Sabino, M., Eds.; Ponsen and Looyen: Wageningen, The Netherlands, 2000. [Google Scholar]
- Hanif, N.Q.; Muhammad, G.; Siddique, M.; Khanum, A.; Ahmed, T.; Gadahai, J.A.; Kaukab, G. Clinico-pathomorphological, serum biochemical and histological studies in broilers fed Ochratoxin A and a toxin deactivator (Mycofix® Plus). Br. Poult. Sci. 2008, 49, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Csutorás, C.; Rácz, L.; Rácz, K.; Futo, P.; Forgó, P.; Kiss, A. Monitoring of Ochratoxin A during the fermentation of different wines by applying high toxin concentrations. Microchem. J. 2013, 107, 182–184. [Google Scholar] [CrossRef]
- Moruno, E.G.; Sanlorenzo, C.; Boccaccino, B.; Di Stefano, R. Treatment with yeast to reduce the concentration of Ochratoxin A in red wine. Am. J. Enol. Viticult. 2005, 56, 73–76. [Google Scholar] [CrossRef]
- Slizewska, K.; Piotrowska, M. Reduction of Ochratoxin A in chicken feed using probiotic. Ann. Agric. Environ. Med. 2014, 21, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Chu, C.-L.; Liu, W.T.; Schaneider, K.E. Postharvest control of blue mold and gray mold on apples using isolates of Pseudomonas syringae. Can. J. Plant Pathol. 2001, 23, 246–252. [Google Scholar] [CrossRef]
- Guo, C.; Yuan, Y.; Yue, T.; Hatab, S.; Wang, Z. Binding mechanism of patulin to heat-treated yeast cell. Lett. Appl. Microbiol. 2012, 55, 453–459. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Yuan, Y.; Cai, R.; Niu, C.; Yue, T. Identification of Key Factors Involved in the Biosorption of Patulin by Inactivated Lactic Acid Bacteria (LAB) Cells. PLoS ONE 2015, 10, e0143431. [Google Scholar] [CrossRef] [PubMed]
- Folger, B.C. Patulin Degradation by Yeast Protein Extract. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2014; p. 83. [Google Scholar]
- Luz, C.; Saladino, F.; Luciano, F.B.; Mañes, J.; Meca, G. In vitro antifungal activity of bioactive peptides produced by Lactobacillus plantarum against Aspergillus parasiticus and Penicillium expansum. LWT—Food Sci. Technol. 2017, 81 (Suppl. C), 128–135. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, Q.; Zhang, H.; Cao, J.; Zhang, X.; Apaliya, M.T. The Possible Mechanisms Involved in Degradation of Patulin by Pichia caribbica. Toxins 2016, 8, 289. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, Q.; Zhang, X.; Apaliya, M.T.; Ianiri, G.; Zhang, H.; Castoria, R. Biocontrol Agents Increase the Specific Rate of Patulin Production by Penicillium expansum but Decrease the Disease and Total Patulin Contamination of Apples. Front. Microbiol. 2017, 8, 1240. [Google Scholar] [CrossRef]
- Castoria, R.; Mannina, L.; Durán-Patrón, R.; Maffei, F.; Sobolev, A.P.; De Felice, D.V.; Pinedo-Rivilla, C.; Ritieni, A.; Ferracane, R.; Wright, S.A. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. J. Agric. Food Chem. 2011, 59, 11571–11578. [Google Scholar] [CrossRef] [PubMed]
- Dobritzsch, D.; Wang, H.; Schneider, G.; Yu, S. Structural and functional characterization of ochratoxinase, a novel mycotoxin-degrading enzyme. Biochem. J. 2014, 462, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.J.; Cotty, P.J. Biocontrol of aflatoxin production by using biocompetitive agents. In A Perspective on Aflatoxin in Field Crops and Animal Food Products in the United States: A Symposium; Robins, J.F., Ed.; USDA-ARS: Washington, DC, USA, 1990; pp. 62–66. [Google Scholar]
- Moral, J.; Garcia-Lopez, M.T.; Camiletti, B.X.; Jaime, R.; Michailides, T.J.; Bandyopadhyay, R.; Ortega-Beltran, A. Present status and perspective on the future use of aflatoxin biocontrol products. Agronomy 2020, 10, 491. [Google Scholar] [CrossRef]
- Cotty, P.; Bayman, P. Competitive exclusion of a toxigenic strain of Aspergillus flavus by an atoxigenic strain. Phytopathology 1993, 83, 1283–1287. [Google Scholar] [CrossRef]
- Shabeer, S.; Asad, S.; Jamal, A.; Ali, A. Aflatoxin Contamination, Its Impact and Management Strategies: An Updated Review. Toxins 2022, 14, 307. [Google Scholar] [CrossRef]
- Okun, D.O.; Khamis, F.M.; Muluvi, G.M.; Ngeranwa, J.J.; Ombura, F.O.; Yongo, M.O.; Kenya, E.U. Distribution of indigenous strains of atoxigenic and toxigenic Aspergillus flavus and Aspergillus parasiticus in maize and peanuts agro-ecological zones of Kenya. Agric. Food Secur. 2015, 4, 1–10. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Bruns, H.A.; Abel, C.A. Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci. Technol. 2006, 16, 437–449. [Google Scholar] [CrossRef]
- Cotty, P.J. Development of Aspergillus flavus AF36. 2005. Available online: https://biopesticide.ucr.edu/abstracts/assets/Cotty_abstract.pdf (accessed on 5 February 2024).
- Ren, X.; Zhang, Q.; Zhang, W.; Mao, J.; Li, P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins 2020, 12, 24. [Google Scholar] [CrossRef]
- Kong, Q.; Chi, C.; Yu, J.; Shan, S.; Li, Q.; Li, Q.; Guan, B.; Nierman, W.C.; Bennett, J.W. The inhibitory effect of Bacillus megaterium on aflatoxin and cyclopiazonic acid biosynthetic pathway gene expression in Aspergillus flavus. Appl. Microbiol. Biotechnol. 2014, 98, 5161–5172. [Google Scholar] [CrossRef]
- Siahmoshteh, F.; Hamidi-Esfahani, Z.; Spadaro, D.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control 2018, 89, 300–307. [Google Scholar] [CrossRef]
- Ndiaye, S.; Zhang, M.; Fall, M.; Ayessou, N.M.; Zhang, Q.; Li, P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins 2022, 14, 729. [Google Scholar] [CrossRef] [PubMed]
- González Pereyra, M.L.; Martínez, M.P.; Petroselli, G.; Erra Balsells, R.; Cavaglieri, L.R. Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control 2018, 85, 392–399. [Google Scholar] [CrossRef]
- Palumbo, J.D.; O’Keeffe, T.L.; Abbas, H.K. Isolation of maize soil and rhizosphere bacteria with antagonistic activity against Aspergillus flavus and Fusarium verticillioides. J. Food Prot. 2007, 70, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Mander, P.; Cho, S.S.; Choi, Y.H.; Panthi, S.; Choi, Y.S.; Kim, H.M.; Yoo, J.C. Purification and characterization of chitinase showing antifungal and biodegradation properties obtained from Streptomyces anulatus CS242. Arch. Pharm. Res. 2016, 39, 878–886. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Qiao, X.; Li, Z.; Li, F.; Chen, M.; Wang, Y.; Huang, Y.; Cui, H. Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol. Lett. 2013, 341, 45–51. [Google Scholar] [CrossRef]
- Caceres, I.; Snini, S.P.; Puel, O.; Mathieu, F. Streptomyces roseolus, A Promising Biocontrol Agent Against Aspergillus flavus, the Main Aflatoxin B1 Producer. Toxins 2018, 10, 442. [Google Scholar] [CrossRef]
- Taylor, W.J.; Draughon, F.A. Nannocystis exedens: A potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus. J. Food Prot. 2001, 64, 1030–1034. [Google Scholar] [CrossRef]
- Anjaiah, V.; Thakur, R.P.; Koedam, N. Evaluation of bacteria and Trichoderma for biocontrol of pre-harvest seed infection by Aspergillus flavus in groundnut. Biocontrol Sci. Technol. 2007, 16, 431–436. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J.; Connick, W.J.; Daigle, D.J.; McGuire, M.R.; Shasha, B.S. Evaluation of biological control formulations to reduce aflatoxin contamination in peanuts. Biol. Control 2003, 26, 318–324. [Google Scholar] [CrossRef]
- Cotty, P.J. Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology 1994, 84, 1270–1277. [Google Scholar]
- Alaniz Zanon, M.S.; Paz Clemente, M.; Noemi Chulze, S. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Int. J. Food Microbiol. 2018, 277, 58–63. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J. Effect of application of nontoxigenic strains of Aspergillus flavus and A-parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Prod. Res. 2002, 38, 329–339. [Google Scholar] [CrossRef]
- Mondol, M.A.; Shin, H.J.; Islam, M.T. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Mar. Drugs 2013, 11, 2846–2872. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Shao, D.; Jiang, C.; Shi, J.; Li, Q.; Huang, Q.; Rajoka, M.S.R.; Yang, H.; Jin, M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101, 5951–5960. [Google Scholar] [CrossRef]
- Guimaraes, A.; Santiago, A.; Teixeira, J.A.; Venancio, A.; Abrunhosa, L. Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 2018, 264, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef]
- Armando, M.R.; Dogi, C.A.; Rosa, C.A.; Dalcero, A.M.; Cavaglieri, L.R. Saccharomyces cerevisiae strains and the reduction of Aspergillus parasiticus growth and aflatoxin B1 production at different interacting environmental conditions, in vitro. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1443–1449. [Google Scholar] [CrossRef]
- Peromingo, B.; Andrade, M.J.; Delgado, J.; Sanchez-Montero, L.; Nunez, F. Biocontrol of aflatoxigenic Aspergillus parasiticus by native Debaryomyces hansenii in dry-cured meat products. Food Microbiol. 2019 82, 269–276. [CrossRef]
- Deng, J.J.; Huang, W.Q.; Li, Z.W.; Lu, D.L.; Zhang, Y.; Luo, X.C. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzym. Microb. Technol. 2018, 112, 35–42. [Google Scholar] [CrossRef]
- Munimbazi, C.; Bullerman, L.B. Inhibition of aflatoxin production of Aspergillus parasiticus NRRL 2999 by Bacillus pumilus. Mycopathologia 1998, 140, 163–169. [Google Scholar] [CrossRef]
- Wallace, R.L.; Hirkala, D.L.; Nelson, L.M. Postharvest biological control of blue mold of apple by Pseudomonas fluorescens during commercial storage and potential modes of action. Postharvest Biol. Technol. 2017, 133 (Suppl. C), 1–11. [Google Scholar] [CrossRef]
- Narayanasamy, P.; Narayanasamy, P. Mechanisms of action of fungal biological control agents. In Biological Management of Diseases of Crops; Characteristics of Biological Control Agents; Hokkanen, H., Gao, Y., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 1, pp. 99–200. [Google Scholar]
- Illueca, F.; Vila-Donat, P.; Calpe, J.; Luz, C.; Meca, G.; Quiles, J.M. Antifungal Activity of Biocontrol Agents In Vitro and Potential Application to Reduce Mycotoxins (Aflatoxin B1 and Ochratoxin A). Toxins. 2021, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, R.; Molaee Aghaee, E.; Rezaie, S.; Jahed Khaniki, G.; Alimohammadi, M.; Soleimani, M.; Noorbakhsh, F. The inhibitory effect of lactic acid bacteria on aflatoxin production and expression of aflR gene in Aspergillus parasiticus. J. Food Saf. 2018, 38, e12413. [Google Scholar] [CrossRef]
- Ahlberg, S.; Joutsjoki, V.; Laurikkala, S.; Varmanen, P.; Korhonen, H. Aspergillus flavus growth inhibition by Lactobacillus strains isolated from traditional fermented Kenyan milk and maize products. Arch. Microbiol. 2017, 199, 457–464. [Google Scholar] [CrossRef]
- Gerez, C.L.; Torres, M.J.; Font de Valdez, G.; Rollán, G. Control of spoilage fungi by lactic acid bacteria. Biol. Control 2013, 64, 231–237. [Google Scholar] [CrossRef]
- Ngang, J.-J.E.; Yadang, G.; Kamdem, S.L.S.; Kouebou, C.P.; Fanche, S.A.Y.; Kougan, D.L.T.; Tsoungui, A.; Etoa, F.X. Antifungal properties of selected lactic acid bacteria and application in the biological control of ochratoxin A producing fungi during cocoa fermentation. Biocontrol. Sci. Technol. 2015, 25, 245–259. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Chen, Z.-Y.; Liu, H.; Li, P. Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts. PLoS ONE 2017, 12, e0178810. [Google Scholar] [CrossRef]
- Akocak, P.B.; Churey, J.J.; Worobo, R.W. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Biosci. 2015, 10, 48–58. [Google Scholar] [CrossRef]
- Mannaa, M.; Oh, J.; Kim, K.D. Microbe-mediated control of Aspergillus flavus in stored rice grains with a focus on aflatoxin inhibition and biodegradation. Ann. Appl. Biol. 2017, 171, 376–392. [Google Scholar] [CrossRef]
- Wang, K.; Yan, P.S.; Cao, L.; Ding, Q.; Shao, C.; Zhao, T.F. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Res. Int. 2013, 397142. [Google Scholar] [CrossRef]
- Coelho, A.R.; Tachi, M.; Pagnocca, F.C.; Nobrega, G.M.; Hoffmann, F.L.; Harada, K.; Hirooka, E.Y. Purification of Candida guilliermondii and Pichia ohmeri killer toxin as an active agent against Penicillium expansum. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.; Hocking, A.D. Mycotoxins in Australia: Biocontrol of aflatoxin in peanuts. Mycopathologia 2006, 162, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Dorner, J.; Lamb, M.C. Development and commercial use of afla-Guard®, an aflatoxin biocontrol agent. Mycotoxin Res. 2006, 22, 33–38. [Google Scholar] [CrossRef]
- Cardwell, K.F.; Henry, S.H. Risk of exposure to and mitigation of effect of aflatoxin on human health: A West African example. J. Toxicol. Toxin. Rev. 2004, 23, 217–247. [Google Scholar] [CrossRef]
- Yin, Y.; Yan, L.; Jiang, J.; Ma, Z. Biological control of aflatoxin contamination of crops. J. Zhejiang Univ. Sci. 2008, 9, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Zanon, M.S.A.; Barros, G.G.; Chulze, S.N. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int. J. Food Microbiol. 2016, 231, 63–68. [Google Scholar] [CrossRef]
- Xing, F.; Wang, L.; Liu, X.; Selvaraj, J.N.; Wang, Y.; Zhao, Y.; Liu, Y. Aflatoxin B1 inhibition in Aspergillus flavus by Aspergillus niger through down-regulating expression of major biosynthetic genes and AFB1 degradation by atoxigenic A. flavus. Int. J. Food Microbiol. 2017, 256, 1–10. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Zhang, Y.; Yang, Z.; Sun, X. Inhibition of non-toxigenic Aspergillus niger FS10 isolated from Chinese fermented soybean on growth and aflatoxin B1 production by Aspergillus flavus. Food Control 2013, 32, 359–365. [Google Scholar] [CrossRef]
- Bernáldez, V.; Rodríguez, A.; Martín, A.; Lozano, D.; Córdoba, J.J. Development of a multiplex qPCR method for simultaneous quantification in dry-cured ham of an antifungal-peptide Penicillium chrysogenum strain used as protective culture and aflatoxinproducing moulds. Food Control 2014, 36, 257–265. [Google Scholar] [CrossRef]
- Mostafa, A.A.; Al-Rahmah, A.N.; Abdel-Megeed, A.; Sayed, S.R.; Hatamleh, A.A. Antagonistic activities of some fungal strains against the toxigenic Aspergillus flavus isolate and its aflatoxins productivity. J. Pure Appl. Microbiol. 2013, 7, 169–178. [Google Scholar]
- Coelho, A.R.; Celli, M.G.; Ono, E.Y.S.; Wosiacki, G.; Hoffmann, F.L.; Pagnocca, F.C.; Hirooka, E.Y. Penicillium expansum versus antagonist yeasts and patulin degradation in vitro. Braz. Arch. Biol. Technol. 2007, 50, 725–733. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, H.; Yang, Q.; Ren, R. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int. J. Food Microbiol. 2013, 162, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.; Sanchis, V.; Usall, J.; Ramos, A.J.; Marín, S. Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int. J. Food Microbiol. 2008, 122, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Farahani, L.; Etebarian, H.R.; Sahebani, N.; Aminian, H. Biocontrol of blue mold of apple by Candida membranifaciens in combination with silicon. Arch. Phytopathol. Plant Prot. 2012, 45, 310–317. [Google Scholar]
- Ebrahimi, L.; Aminian, H.; Etebarian, H.R.; Sahebani, N. Control of apple blue mould disease with Torulaspora delbrueckii in combination with Silicon. Arch. Phytopathol. Plant Prot. 2012, 45, 2057–2065. [Google Scholar]
- Pimenta, R.S.; Silva, F.; Silva, J.F.M.; Morais, P.B.; Braga, D.T.; Rosa, C.A.; Corrêa, A., Jr. Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Braz. J. Microbiol. 2008, 39, 85–90. [Google Scholar] [CrossRef]
- Palumbo, J.D.; O’Keeffe, T.L.; Mahoney, N.E. Inhibition of ochratoxin A production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia 2007, 164, 241–248. [Google Scholar]
- Valencia-Quintana, R.; Milić, M.; Jakšić, D.; Šegvić Klarić, M.; Tenorio- Arvide, M.G.; Pérez-Flores, G.A.; Bonassi, S.; Sánchez-Alarcón, J. Environment changes, aflatoxins, and health issues, a review. Int. J. Environ. Res. Public Health 2020, 17, 7850. [Google Scholar]
- Shen, Y.; Nie, J.; Li, Z.; Li, H.; Wu, Y.; Zhang, J. Research progress on contamination, toxicity, biosynthesis and influencing factors of mycotoxins in fruits. Shipin Kexue 2018, 9, 294–304. [Google Scholar]
- Zhou, W.; Hu, L.; Zhao, Y.; Wang, M.Y.; Zhang, H.; Mo, H. Inhibition of fungal aflatoxin B1 biosynthesis by diverse botanically-derived polyphenols. Trop. J. Pharm. Res. 2015, 14, 605–609. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista-Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Chtioui, W.; Heleno, S.; Migheli, Q.; Rodrigues, P. Plant extracts as biocontrol agents against Aspergillus carbonarius growth and ochratoxin A production in grapes. Int. J. Food Microbiol. 2023, 407, 110425. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Lagopodi, A.; Karamanoli, K.; Vokou, D.; Bardas, G.A.; Menexes, G.; Constantinidou, H.I.A. Inhibitory and stimulatory effects of essential oils and individual monoterpenoids on growth and sporulation of four soil-borne fungal isolates of Aspergillus terreus, Fusarium oxysporum, Penicillium expansum, and Verticillium dahliae. Eur. J. Plant Pathol. 2011, 130, 297–309. [Google Scholar] [CrossRef]
- Reverberi, M.; Fabbri, A.; Zjalic, S.; Ricelli, A.; Punelli, F.; Fanelli, C. Antioxidant enzymes stimulation in Aspergillus parasiticus by Lentinula edodes inhibits aflatoxin production. Appl. Microbiol. Biotechnol. 2005, 69, 207–215. [Google Scholar] [CrossRef]
- Ikeura, H.; Somsak, N.; Kobayashi, F.; Kanlayanarat, S.; Hayata, Y. Application of selected plant extracts to inhibit growth of Penicillium expansum on apple fruits. Plant Pathol. J. 2011, 10, 79–84. [Google Scholar] [CrossRef]
- Ren, X.; Branà, M.T.; Haidukowski, M.; Gallo, A.; Zhang, Q.; Logrieco, A.F.; Li, P.; Zhao, S.; Altomare, C. Potential of Trichoderma spp. for Biocontrol of Aflatoxin-Producing Aspergillus flavus. Toxins 2022, 14, 86. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.; Marín, S.; Ramos, A.J.; Sanchis, V. Influence of postharvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 2010, 21, 953–962. [Google Scholar] [CrossRef]
- Stoev, S.D.; Angelov, G.; Pavlov, D.; Pirovski, L. Some antidotes and paraclinical Investigations in experimental intoxication with ochratoxin A and penicillic acid in chicks. Vet. Arhiv. 1999, 69, 179–189. [Google Scholar]
- Stoev, S.D.; Djuvinov, D.; Mirtcheva, T.; Pavlov, D.; Mantle, P. Studies on some feed additives giving partial protection against ochratoxin A toxicity in chicks. Toxicol. Lett. 2002, 135, 33–50. [Google Scholar] [CrossRef]
- Stoev, S.D.; Stefanov, M.; Denev, S.; Radic, B.; Domijan, A.-M.; Peraica, M. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention by natural plant extracts. Vet. Res. Commun. 2004, 28, 727–746. [Google Scholar] [CrossRef]
- Stoev, S.D.; Njobeh, P.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Denev, S.; Dimitrova, B. Selected herbal feed additives showing protective effects against ochratoxin A toxicosis in broiler chicks. World Mycotoxin J. 2019, 12, 257–268. [Google Scholar]
- Stoev, S.D.; Dimitrov, K.; Zarkov, I.; Mircheva, T.; Zapryanova, D.; Valchev, I.; Denev, S.; Chobanova, S.; Stefanov, M.; Arora, R. Some Indian herbs have protective effects against deleterious effects of ochratoxin A in broiler chicks. World Mycotoxin J. 2021, 14, 525–538. [Google Scholar] [CrossRef]
- Stoev, S.D.; Mircheva, T.; Denev, S.; Chobanova, S.; Ivanov, V. The Protective Effect of Silymarin against Ochratoxin A Induced Histopathological and Biochemical Changes in Chicks. J. Adv. Vet. Res. 2021, 11, 1–8. [Google Scholar]
- Stoev, S.D. Complex Etiology, Prophylaxis and Hygiene Control in Mycotoxic Nephropathies in Farm Animals and Humans, Special Issue “Mycotoxins: Mechanisms of Toxicological Activity—Treatment and Prevention”, Section “Molecular Pathology”. Int. J. Mol. Sci. 2008, 9, 578–605. [Google Scholar]
- Karamalakova, Y.; Agarwal, P.; Nikolova, G.; Adhikari, M.; Gupta, D.; Stoev, S.D.; Georgiev, T.; Hadzhibozheva, P.; Arora, R.; Zhelev, Z.; et al. Influence of ochratoxin-A and an extract of Tinospora cordifolia against biochemical and oxidative changes in mice spleen. Sci. Technol. Med. Biol. Stud. Clin. Stud. Soc. Med. Health Care 2016, 6, 242–251. [Google Scholar]
- Karamalakova, Y.; Nikolova, G.; Adhikari, M.; Stoev, S.D.; Agarwal, P.; Gadjeva, V.; Zhelev, Z. Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. Comp. Clin. Pathol. 2018, 27, 1487–1495. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Wahile, A. Integrated approaches towards drug development from Ayurveda and other Indian system of medicines. J. Ethnopharma 2006, 103, 25–35. [Google Scholar] [CrossRef]
- Khatoon, A.; Khan, M.Z.; Khan, A.; Saleemi, M.K.; Javed, I. Amelioration of Ochratoxin A-induced immunotoxic effects by Silymarin and vitamin E in White Leghorn cockerels. J. Immunotoxicol. 2013, 10, 25–31. [Google Scholar] [CrossRef]
- Muhammad, D.; Chand, N.; Khan, S.; Sultan, A.; Mushtaq, M.; Rafiullah. Hepatoprotective role of milk thistle (Silybum marianum) in meat type chicken fed aflatoxin B1 contaminated feed. Pak. Vet. J. 2012, 32, 443–446. [Google Scholar]
- Tedesco, D.; Domeneghini, C.; Sciannimanico, D.; Tameni, M.; Steidler, S.; Galletti, S. Efficacy of Silymarin-phospholipid complex in reducing the toxicity of aflatoxin B1 in broiler chicks. J. Poult. Sci. 2004, 83, 1839–1843. [Google Scholar] [CrossRef]
- Soto, C.; Pérez, J.; García, V.; Uría, E.; Vadillo, M.; Raya, L. Effect of Silymarin on kidneys of rats suffering from alloxan-induced diabetes mellitus. Phytomedicine 2010, 17, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Varzi, H.N.; Esmailzadeh, S.; Morovvati, H.; Avizeh, R.; Shahriari, A.; Givi, M.E. Effect of Silymarin and vitamin E on gentamicin-induced nephrotoxicity in dogs. J. Vet. Pharmacol. Ther. 2007, 30, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Karimi, G.; Ramezani, M.; Tahoonian, Z. Cisplatin nephrotoxicity and protection by milk thistle extract in rats. J. Evid. Based Complement. Altern. Med. 2005, 2, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Rasool, M.; Iqbal, J.; Malik, A.; Ramzan, H.S.; Qureshi, M.S.; Asif, M.; Qazi, M.H.; Kamal, M.A.; Chaudhary, A.G.A.; Al-Qahtani, M.H.; et al. Hepatoprotective Effects of Silybum marianum (Silymarin) and Glycyrrhiza glabra (Glycyrrhizin) in Combination: A Possible Synergy. Evid. Based Complement. Alternat. Med. 2014, 2014, 641597. [Google Scholar] [CrossRef]
- Shaarawy, S.M.; Tohamy, A.A.; Elgendy, S.M.; Abd Elmageed, Z.A.; Bahnasy, A.; Mohamed, M.S.; Kandil, E.; Matrougui, K. Protective effects of garlic and Silymarin on NDEA-induced rats hepatotoxicity. Int. J. Biol. Sci. 2009, 5, 549–557. [Google Scholar] [CrossRef]
- Kaur, M.; Agarwal, R. Silymarin and epithelial cancer chemoprevention: How close we are to bedside? Toxicol. Appl. Pharmacol. 2007, 224, 350–359. [Google Scholar] [CrossRef]
- Pradeep, K.; Mohan, C.V.; Gobianand, K.; Karthikeyan, S. Silymarin modulates the oxidant-antioxidant imbalance during diethylnitrosamine induced oxidative stress in rats. Eur. J. Pharmacol. 2007, 560, 110–116. [Google Scholar] [CrossRef]
- Pradeep, K.; Mohan, C.V.; Gobianand, K.; Karthikeyan, S. Silymarin: An effective hepatoprotective agent against diethylnitrosamine-induced hepatotoxicity in rats. Pharm. Biol. 2007, 45, 707–714. [Google Scholar] [CrossRef]
- Kiruthiga, P.V.; Shafreen, R.B.; Pandian, S.K.; Devi, K.P. Silymarin protection against major reactive oxygen species released by environmental toxins: Exogenous H2O2 exposure in erythrocytes. Basic Clin. Pharmacol. Toxicol. 2007, 100, 414–419. [Google Scholar] [CrossRef]
- Kiruthiga, P.V.; Pandian, S.K.; Devi, K.P. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes—An in vitro study. Toxicol. Appl. Pharmacol. 2010, 247, 116–128. [Google Scholar] [CrossRef]
- Katiyar, S.K. Silymarin and skin cancer prevention: Anti-inflammatory, antioxidant and immunomodulatory effects (Review). Int. J. Oncol. 2005, 26, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Elberry, A.A.; Harraz, F.M.; Ghareib, S.A.; Nagy, A.A.; Gabr, S.A.; Suliaman, M.I.; Abdel-Sattar, E. Antihepatotoxic effect of Marrubium vulgare and Withania somnifera extracts on carbon tetrachloride-induced hepatotoxicity in rats. J. Basic Clin. Pharm. 2010, 1, 247–254. [Google Scholar] [PubMed]
- Kuttan, G.; Leemol, D. Immunomodulatory activity of Withania somnifera. J. Ethnopharmacol. 2000, 71, 193–200. [Google Scholar]
- Schliebs, R.; Liebmann, A.; Bhattacharya, S.K.; Kumar, A.; Ghosal, S.; Bigl, V. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem. Int. 1997, 30, 181–190. [Google Scholar] [CrossRef]
- Mishra, L.C.; Singh, M.D.; Dagenais, B.B. Scientific basis for the therapeutic use of Withania somnifera (Ashwagandha): A Review. Altern. Med. Rev. 2000, 5, 334–346. [Google Scholar]
- Gohil, K.J.; Patel, J.A.; Gajjar, A.K. Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian J. Pharm. Sci. 2010, 72, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Montecchio, G.P.; Samaden, A.; Carbone, S.; Vigotti, M.; Siragusa, S.; Piovella, F. Centella asiatica triterpenic fraction (CATTF) reduces the number of circulating endothelial cells in subjects with post phlebitis syndrome. Haematology 1991, 76, 256–259. [Google Scholar]
- Upadhyay, A.K.; Kumar, K.; Kumar, A.; Mishra, H.S. Tinospora cordifolia (Willd.) Hook. f. and Thoms. (Guduchi)-validation of the Ayurvedic pharmacology through experimental and clinical studies. Int. J. Ayurveda Res. 2010, 1, 112–121. [Google Scholar] [CrossRef]
- Upadhyaya, R.; Sharma, V.; Anita, K.V. Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia. Res. J. Chem. Sci. 2011, 1, 71–79. [Google Scholar]
- Singh, R.P.; Banerjee, S.; Kumar, P.V.; Raveesha, K.A.; Rao, A.R. Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice. Phytomedicine 2006, 13, 74–84. [Google Scholar] [CrossRef]
- Oyedeji, O.A.; Afolayan, A.J. Chemical composition and antibacterial activity of the essential oil of Centella asiatica growing in South Africa. Pharm. Biol. 2005, 43, 249–252. [Google Scholar] [CrossRef]
- Ranjith, M.S.; Ranjitsingh, A.J.A.; Gokul Shankar, S.; Vijayalaksmi, G.S.; Deepa, K.; Sidhu, H.S. Enhanced Phagocytosis and Antibody Production by Tinospora cordifolia—A new dimension in Immunomodulation. Afr. J. Biotechnol. 2008, 7, 81–85. [Google Scholar]
- Sudhakaran, D.S.; Srirekha, P.; Devasree, L.D.; Premsingh, S.; Michael, R.D. Immunostimulatory effect of Tinospora cordifolia Miers leaf extract in Oreochromis mossambicus. Indian J. Exp. Biol. 2006, 44, 726–732. [Google Scholar] [PubMed]
- Nagarkatti, D.S.; Rege, N.N.; Desai, N.K.; Dahanukar, S.A. Modulation of Kupffer cell activity by Tinospora cordifolia in liver damage. J. Postgrad. Med. 1994, 40, 65–67. [Google Scholar] [PubMed]
- Rege, N.N.; Bapat, R.D.; Koti, R.; Desai, N.K.; Dahanukar, S. Immunotherapy with Tinospora cordifolia: A new lead in the management of obstructive jaundice. Indian J. Gastroenterol. 1993, 12, 5–8. [Google Scholar]
- Premanath, R.; Lakshmidevi, N. Studies on Anti-oxidant activity of Tinospora cordifolia (Miers.) Leaves using in vitro models. Am. J. Sci. 2010, 6, 736–743. [Google Scholar]
- Gupta, R.; Sharma, V. Ameliorative effects of Tinospora cordifolia root extract on histopathological and biochemical changes induced by aflatoxin-b (1) in mice kidney. Toxicol. Int. 2011, 18, 94–98. [Google Scholar]
- Nagarkar, B.; Kulkarni, R.; Bhondave, P.; Kasote, D.; Kulkarni, O.; Harsulkar, A.; Jagtap, S. Comparative Hepatoprotective Potential of Tinospora cordifolia, Tinospora sinensis and Neem-guduchi. Br. J. Pharm. Res. 2013, 3, 906–916. [Google Scholar] [CrossRef]
- Kavitha, B.T.; Shruthi, S.D.; Padmalatha, R.S.; Ramachandra, Y.L. Phytochemical analysis and hepatoprotective properties of Tinospora cordifolia against carbon tetrachloride induced hepatic damage in rats. J. Basic Clin. Pharm. 2011, 2, 139–142. [Google Scholar]
- Sharma, V.; Pandey, D. Protective role of Tinospora cordifolia against lead induced hepatotoxicity. Toxicol. Int. 2010, 17, 12–17. [Google Scholar] [CrossRef]
- Panchabhai, T.S.; Ambarkhane, S.V.; Joshi, A.S.; Samant, B.D.; Rege, N.N. Protective effect of Tinospora cordifolia, Phyllanthus emblica and their combination against antitubercular drugs induced hepatic damage: An experimental study. Phytother. Res. 2008, 22, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Bishayi, B.; Roychowdhury, S.; Ghosh, S.; Sengupta, M. Hepatoprotective and immunomodulatory properties of Tinospora cordifolia in CCl4 intoxicated mature albino rats. J. Toxicol. Sci. 2002, 27, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Chougale, A.D.; Ghadyale, V.A.; Panaskar, S.N.; Arvindekar, A.U. Alpha glucosidase inhibition by stem extract of Tinospora cordifolia. J. Enzym. Inhib. Med. Chem. 2009, 24, 998–1001. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Eliza, J.; Priya, C.E.; Nirmala, A.; Daisy, P. Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. Afr. J. Pharm. Pharmacol. 2009, 3, 171–180. [Google Scholar]
- Latif, M.; Iqbal, L.; Fatima, N. Evaluation of antioxidant & urease inhibition activity of roots of Glycyrrhiza glabra. Pak. J. Pharm. Sci. 2012, 25, 99–102. [Google Scholar]
- Tohma, H.S.; Gulcin, I. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish Liquorice (Glycyrrhiza glabra). Int. J. Food Prop. 2010, 13, 657–671. [Google Scholar] [CrossRef]
- Chin, Y.W.; Jung, H.A.; Liu, Y.; Su, B.N.; Castoro, J.A.; Keller, W.J.; Pereira, M.A.; Kinghorn, D. Anti-oxidant constituents of the roots and stolons of Licorice (Glycyrrhiza glabra). J. Agric. Food Chem. 2007, 55, 4691–4697. [Google Scholar] [CrossRef]
- Mazumdar, P.M.; Patnayak, S.P.; Parwani, H. Evaluation of immunomodulatory activity of Glycyrrhiza glabra roots in combination with zinc. Asian Pac. J. Trop. Med. 2012, 2, S15–S20. [Google Scholar] [CrossRef]
- Al-Razzuqii, R.A.M.; Al-Hussaini, J.A. Hepatoprotective effect of Glycyrrhiza glabra in CCl4 induced model in acute liver injury. J. Physiol. Pharmacol. 2012, 2, 259–263. [Google Scholar]
- Sitohy, M.Z.; El-Massry, R.A.; El-Saadany, S.S.; Labib, S.M. Metabolic effect of licorice roots (Glycyrrhiza Glabra) on lipid distribution pattern, liver and renal functions of albino rats. Nahrung 1991, 35, 799–806. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, H.; Dhindsa, A.S. Glycyrrhiza Glabra: A phytopharmacological review. Int. J. Pharm. Sci. Res. 2013, 4, 2470–2477. [Google Scholar]
- Sakhare, P.; Harne, S.; Kalorey, D.; Warke, S.; Bhandarkar, A.; Kurkure, N. Effect of Polyherbal Feed Supplement “Growell” during Induced Aflatoxicosis, Ochratoxicosis and Combined Mycotoxicoses in Broiler. Vet. Arch. 2007, 77, 129–146. [Google Scholar]
- Kalorey, D.R.; Kurkure, N.V.; Ramgaonkar, I.S.; Sakhare, P.S.; Warke, S.; Nigot, N.K. Effect of polyherbal feed supplement “growell” during induced aflatoxicosis, ochratoxicosis and combined mycotoxicoses in broilers. Asian-Aust. J. Anim. Sci. 2005, 18, 375–383. [Google Scholar] [CrossRef]
- Muhammad, S.A.; Abubakar, A.L.; Rabiu, S.; Sulaiman, I. Antioxidant content and in vitro 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity of selected medicinal plants. J. Intercult. Ethnopharmacol. 2018, 7, 57–65. [Google Scholar]
- Amminikutty, N.; Spalenza, V.; Jarriyawattanachaikul, W.; Badino, P.; Capucchio, M.T.; Colombino, E.; Schiavone, A.; Greco, D.; D’Ascanio, V.; Avantaggiato, G.; et al. Turmeric Powder Counteracts Oxidative Stress and Reduces AFB1 Content in the Liver of Broilers Exposed to the EU Maximum Levels of the Mycotoxin. Toxins 2023, 15, 687. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Shukla, S.; Oh, Y.; Chung, S.H.; Kim, M. Comparative diminution of patulin content in apple juice with food-grade additives sodium bicarbonate, vinegar, mixture of sodium bicarbonate and vinegar, citric acid, baking powder, and ultraviolet irradiation. Front. Pharmacol. 2018, 9, 822. [Google Scholar] [CrossRef]
- Meizhen, Y.U.; Ping, L.I.U. Discussion on emergency management of food safety from the perspective of foodborne diseases caused by mycotoxins. LWT—Food Sci. Technol. 2023, 43, e114622. [Google Scholar] [CrossRef]
- Yun, H.; Lim, S.; Jo, C.; Chung, J.; Kim, S.; Kwon, J.H.; Kim, D. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system. Radiat. Phys. Chem. 2008, 77, 830–834. [Google Scholar] [CrossRef]
- Drusch, S.; Kopka, S.; Kaeding, J. Stability of patulin in a juice-like aqueous model system in the presence of ascorbic acid. Food Chem. 2007, 100, 192–197. [Google Scholar] [CrossRef]
- Fremy, J.M.; Castegnaro, M.J.; Gleizes, E.; De Meo, M.; Laget, M. Procedures for destruction of patulin in laboratory wastes. Food Addit. Contam. 1995, 12, 331–336. [Google Scholar] [CrossRef]
- Haazele, F.M.; Guenter, W.; Marquardt, R.R.; Frohlich, A.A. Benefical effects of dietary ascorbic acid supplement on hens subjected to ochratoxin A toxicosis under normal and high ambient temperatures. Can. J. Anim. Sci. 1993, 73, 149–157. [Google Scholar] [CrossRef]
- Haazele, F.M. Response to Dietary Ascorbic Acid Supplementation in Laying Hens: Effects of Exposure to High Temperature and Ochratoxin Ingestion. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 1992. [Google Scholar]
- Zhang, Q.; Chen, W.; Zhang, B.; Zhang, Y.; Xiao, Y.; An, Y.; Han, L.; Deng, H.; Yao, S.; Wang, H.; et al. Lonp1 and Sig-1R contribute to the counteraction of ursolic acid against ochratoxin A-induced mitochondrial apoptosis. Food. Chem. Toxicol. 2023, 172, 113592. [Google Scholar] [CrossRef]
- Li, C.; Chen, W.; Zheng, L.; Zhang, B.; Yang, X.; Zhang, Q.; Wang, N.; Wang, Y.; Yang, J.; Sha, J.; et al. Ameliorative effect of ursolic acid on ochratoxin A-induced renal cytotoxicity mediated by Lonp1/Aco2/Hsp75. Toxicon 2019, 168, 141–146. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Zhang, B.; Li, C.; Zhang, X.; Wang, Q.; Wang, Y.; Zhou, Q.; Li, X.; Shen, X.L. Central role of TRAP1 in the ameliorative effect of oleanolic acid on the mitochondrial-mediated and endoplasmic reticulum stress-excitated apoptosis induced by ochratoxin A. Toxicology 2021, 450, 152681. [Google Scholar] [CrossRef]
- Rahimtula, A.D.; Bereziat, J.C.; Bussacchini-Griot, V.; Bartsch, H. Lipid peroxidation as a possible cause of ochratoxin A toxicity. Biochem. Pharmacol. 1988, 37, 4469–4477. [Google Scholar] [CrossRef]
- Orrenius, S.; Bellomo, G. Toxicological implications of perturbation of Ca2+ homeostasis in hepatocytes. In Calcium and Cell Function; Cheung, W.Y., Ed.; Academic Press: Orlando, FL, USA, 1986; p. 185. [Google Scholar]
- El-Adawi, H.; El-Azhary, D.; Abd El-Wahab, A.; El-Shafeey, M.; Abdel-Mohsen, M. Protective effect of milk thistle and grape seed extracts on fumonisin B1 induced hepato- and nephrotoxicity in rats. J. Med. Plant Res. 2011, 5, 6316–6327. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Girish, C. Hepatoprotective herbal drug, Silymarin from experimental pharmacology to clinical medicine. Indian J. Med. Res. 2006, 124, 491–504. [Google Scholar] [PubMed]
- Shaker, E.; Mahmoud, H.; Mnaa, S. Silymarin, the antioxidant component and Silybum marianum extracts prevent liver damage. Food Chem. Toxicol. 2010, 48, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Aviello, G.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle for treatment of nonalcoholic fatty liver disease. Hepat. Mon. 2011, 11, 173–177. [Google Scholar]
- Karimi, G.; Vahabzadeh, M.; Lari, P.; Rashedinia, M.; Moshiri, M. Silymarin, a promising pharmacological agent for treatment of diseases. Iran. J. Basic Med. Sci. 2011, 14, 308–317. [Google Scholar]
- Bahmani, M.; Shirzad, H.; Rafieian, S.; Rafieian-Kopaei, M. Silybum marianum: Beyond Hepatoprotection. J. Evid.-Based Complem. Altern. Med. 2015, 20, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, D.R.; Heussner, A.H.; O’Brien, E. Ochratoxin A: Comparative pharmacokinetics and toxicological implications (experimental and domestic animals and humans). Food Addit. Contam. 2005, 22, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ludovico, A.; Capasso, R.; Milic, N.; Capasso, F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010, 24, 1423–1432. [Google Scholar]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Rawal, A.; Muddeshwar, M.; Biswas, S. Effect of rubia cordifolia, Fagonia cretica Linn, and Tinospora cordifolia on free radical generation and lipid peroxidation during oxygen-glucose deprivation in rat hippocampal slices. Biochem. Biophys. Res. Commun. 2004, 324, 588–596. [Google Scholar] [CrossRef]
- Sangeetha, M.K.; Balaji, R.H.R.; Gayathri, V.; Vasanthi, H.R. Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. Nat. Med. 2011, 65, 544–550. [Google Scholar] [CrossRef]
- Agarwal, P.; Karamalakova, Y.; Adhikari, M.; Gupta, D.; Nikolova, G.; Hadzhibozheva, P.; Gadjeva, V.; Stoev, S.; Arora, R.; Zheleva, A. Investigations on DPPH scavenging capacity before and after UV-irradiation of aqueous root extract of Glycyrrhiza glabra. J. BioSci. Biotechnol. 2015, SE/ONLINE, 183–188. [Google Scholar]
- Sinha, K.; Mishra, N.P.; Singh, J.; Khanuja, S.P.S. Tinospora cordifolia (Guduchi), a reservoir plant for therapeutic applications: A Review. Indian J. Tradit. Knowl. 2004, 3, 257–270. [Google Scholar]
- Atal, C.K.; Sharma, M.L.; Kaul, A.; Khajuria, A. Immunomodulating agents of plant origin. I: Preliminary screening. J. Ethnopharmacol. 1986, 18, 133–141. [Google Scholar] [CrossRef]
- Sorrenti, V.; Di Giacomo, C.; Acquaviva, R.; Barbagallo, I.; Bognanno, M.; Galvano, F. Toxicity of Ochratoxin A and Its Modulation by Antioxidants: A Review. Toxins 2013, 5, 1742–1766. [Google Scholar] [CrossRef]
- Stoev, S.D. Long term preliminary studies on toxic and carcinogenic effect of individual or simultaneous exposure to ochratoxin A and penicillic acid in mice. Toxicon 2020, 184, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Ezealigo, U.S.; Joshua, P.E.; Ononiwu, C.P.; Agbo, M.O.; Asomadu, R.O.; Ogugua, V.N. Total phenolic and flavonoid content and in vitro antioxidant activity of methanol extract and solvent fractions of Desmodium Ramosissimum G. Don. Med. Sci. Forum 2021, 2, 15. [Google Scholar] [CrossRef]
- Rastegar, H.; Shoeibi, S.; Yazdanpanah, H.; Amirahmadi, M.; Khaneghah, A.M.; Campagnollo, F.B.; Sant’Ana, A.S. Removal of aflatoxin B1 by roasting with lemon juice and/or citric acid in contaminated pistachio nuts. Food Control 2017, 71, 279–284. [Google Scholar] [CrossRef]
- Mamo, F.T.; Abate, B.A.; Tesfaye, K.; Nie, C.; Wang, G.; Liu, Y. Mycotoxins in Ethiopia: A review on prevalence, economic and health impacts. Toxins 2020, 12, 648. [Google Scholar] [CrossRef]
- Abbas, H.K.; Accinelli, C.; Shier, W.T. Biological control of aflatoxin contamination in US crops and the use of bioplastic formulations of Aspergillus flavus biocontrol strains to optimize application strategies. J. Agric. Food Chem. 2017, 65, 7081–7087. [Google Scholar] [PubMed]
- Diao, E.; Ren, D.; Liu, T.; Zhang, J.; Hu, W.; Hou, H. Ozone detoxification of patulin in aqueous solution and cytotoxic evaluation using human hepatic carcinoma cells. Toxicon 2018, 155, 21–26. [Google Scholar]
- Nurul Adilah, Z.; Mohd Redzwan, S. Effect of dietary macronutrients on aflatoxicosis: A mini-review. J. Sci. Food Agric. 2017, 97, 2277–2281. [Google Scholar] [PubMed]
- Sreemannarayana, O.; Frohlich, A.A.; Vitti, T.G.; Marquardt, R.R.; Abramson, D. Studies of the tolerance and disposition of ochratoxin A in young calves. J. Anim. Sci. 1988, 66, 1703–1711. [Google Scholar] [CrossRef]
- Creppy, E.E.; Lugnier, A.A.J.; Fasiolo, F.; Heller, K.; Roschenthaler, R.; Dirheimer, G. In vitro inhibition of yeast phenylalanyl-tRNA synthetase by ochratoxin A. Chem. Biol. Interact. 1979, 24, 257–261. [Google Scholar]
Biodegradation or Binding by Microorganisms, Yeasts, Fungi, or Enzymes | Degradation/Detoxification or Binding Mycotoxins | Reference |
---|---|---|
Microorganisms | ||
Lactobacillus rhamnosus | AFs binding capability | [46,47] |
Lactobacillus plantarum | PAT degradation capacity to hydroascladiol | [48] |
Lactobacillus acidophilus | PAT and OTA degradation capacity | [49] |
L. sanfrancisco, L. plantarum, L. brevis, Saccharomyces cerevisiae yeast strain | OTA degradation capacity (around 50–54%) | [50,51] |
L. brevis, L. plantarum, Oenococcus oeni, Leuconostoc mesenteroides, Pediococcus acidilactici identified from wine or grape must | OTA degradation capacity | [52] |
Bifidobacterium bifidum, B. breve, Lactobacillus delbrueckii bulgaricus, L. casei, L. paracasei, L. johnsonii, L. rhamnosus, L. plantarum, L. salivarius | OTA degradation capacity (around 30–97%) to non-toxic compound OTα | [53] |
Lactic acid bacteria (LAB) | PAT removing capacity | [54] |
Alicyclobacillus spp. | PAT degradation capacity in juice | [55] |
Actinobacterial strains, e.g., Streptomyces AT8, AT10, SN7, G10, PT1 | OTA degradation capacity (between 22% and 52%) and/or adsorption capacity (between 16% and 33%) | [56] |
Flavobacterium aurantiacum | AFs removing capacity | [57] |
Lactobacillus kefiri,Acetobacter syzygii | OTA, AFB1 and ZEA degradation capacity | [58] |
Oenococcus oeni identified from wine | OTA degradation capacity | [59] |
Gluconobacter oxydans | PAT degradation capacity to Z-ascladiol and E-ascladiol in juice from apples | [60] |
Eubacterium BBSH 797 strain | DON degradation capacity to the non-toxic de-epoxy-DON | [61] |
Bacillus licheniformisCM21,Sl-1 | OTA degradation capacity (35–98%) | [62,63] |
Bacillus licheniformis | AFB1 degradation capacity (around 74%) | [63] |
Bacillussubtilis | AFB1 degradation capacity (around 85%) | [63] |
Pediococcus parvulus UTAD 473 | OTA degradation capacity (80–90%) to non-toxic compound OTα | [64] |
Acinetobacter calcoaceticus str. | OTA degradation capacity to non-toxic compound OTα | [65,66] |
Bacillus amyloliquefaciens ASAG1 | OTA degradation capacity (about 98%) to non-toxic compound OTα | [67] |
Brevibacterium casei, B. epidermidis, B. iodinum, B. linens | OTA degradation capacity (100%) to non-toxic compound OTα | [68] |
Bacillus subtilis CW 14 | OTA degradation capacity (up to 97%) | [69] |
Stenotrophomonas nitritreducens, Eubacterium callanderi, Sphingomonas paucimobilis, S. asaccharolytica | OTA degradation capacity (between 95% and 100%) to non-toxic compound OTα | [70] |
Eubacterium biforme MM11 identified from intestinal content of swine | OTA and AFB1 degradation capacity (between 77% and 100%) | [71] |
Cupriavidus basilensis ŐR16 str. identified from soil | OTA degradation capacity (100%) to non-toxic compound OTα | [72] |
Luteimonas sp. CW574, Silanimonas sp. CW282, Stenotrophomonas sp. CW117, Pseudomonas aeruginosa N17-1, Lysobacter sp. CW239 | OTA degradation capacity | [39] |
Yeasts and Fungi | ||
Trichosporon mycotoxinivorans yeast strain | OTA and ZEA detoxification capacity | [73] |
Trichosporon mycotoxinivorans yeast strain | ZEA degradation capacity to non-toxic compound ZOM-1 | [74] |
Trichosporon mycotoxinivorans yeast str. and Eubacterium BBSH 797 | DON, ZEA and OTA in vivo degradation capacity | [61,75,76] |
Komagataella pastoris yeast strain | FUMs detoxification capacity | [77] |
Yeast strains Metschnikowia pulcherrima M320, MACH1; Pichia guilliermondii M8, M29; Rhodococcus erythropolis AR14; Kloeckera lindneri GAL5 | OTA degradation capacity (between 26% and 84%) | [78] |
Phaffia rhodozyma yeast strain CBS 5905 | OTA degradation capacity (around 90%) to non-toxic compound OTα, and OTA adsorption capacity (around 23%) | [79] |
Kluyveromyces marxianus yeast strain C2, identified from intestinal content of pigs | OTA degradation capacity (82–83%) | [39] |
Yarrowia lipolytica yeast strain | OTA degradation capacity (around 88%) | [80] |
Trichosporon yeast strains DSM 14162, DSM 14156, DSM 14153, 178; Trichosporon mycotoxinivorans MTV, 115; Cryptococcus 118; Rhodotorula sp. DSM 14155, 124 | OTA degradation capacity (between 80 and 100%) to non-toxic compound OTα | [70,73,81] |
Saccharomyces cerevisiae yeast strain | AFs binding capability | [82] |
Saccharomyces cerevisiaeyeast strain | PAT degradation capacity to Z-ascladiol and E-ascladiol | [83] |
Yeast strains Schizosaccharomyces pombe, Kloeckera apiculata, Saccharomyces cerevisiae, Candida pulcherima, Candida intermedia, Candida friedrichii, Cyberlindnera jadinii, Torulaspora delbrueckii, Lachancea thermotolerans | OTA degradation capacity (between 25% and 84%) to non-toxic compound OTα | [84,85,86,87] |
Rhodosporidium paludigenum yeast strain | PAT degradation capacity to less toxic compound desoxypatulinic acid | [88] |
Rhodosporidium kratochvilovae strain LS11 and Sporobolomyces sp. yeast strain IAM 13481 | PAT degradation capacity to less toxic metabolites, e.g., desoxypatulinic acid and ascladiol | [89,90] |
Yarrowia lipolytica yeast strain Y-2,Brevundimonas vermicularis B-1 | OTA degradation capacity (between 84% and 87%) | [91] |
Phoma sp., Mucor sp., Rhizopus spp. 663, 668 and 710, Trichoderma sp. 639, Trichoderma harzianum, Bacillus subtilis, Alternaria sp. and some Sporotrichum strains | AFs degradation capacity is around 65–99% | [92,93,94,95] |
Oyster mushroom Pleurotus ostreatus | OTA detoxification capacity | [45] |
Byssochlamys nivea str. FF1-2 | PAT degradation capacity | [96] |
Aspergillus. Japonicus AX35, A. carbonarius SA332, A. niger GX312 | OTA degradation capacity (between 83% and 99%) to non-toxic compound OTα | [97] |
A. niger M00120 | OTA degradation capacity (up to 99%) to non-toxic compound OTα | [98] |
A. tubingensis M074, M036 | OTA degradation capacity (up to 95%) to non-toxic metabolite OTα | [99] |
A. wentii, A. carbonarius, A. niger, A. Japonicus, A. ochraceus, A. fumigatus, A. clavatus, A. versicolor, Cladosporium sp., P. spinulosum, P. aurantiogriseum, Botrytis cinerea, identified from grapes | OTA degradation capacity (up to 80%) to non-toxic metabolite OTα | [100,101,102] |
Rhizopus microsporus, R. stolonifer, R. oryzae, R. homothallicus | OTA degradation capacity (up to 96.5%) to non-toxic compound OTα | [103] |
Aureobasidium pullulans AU34-2, AU18-3B, AU14-3-1, LS30 | OTA degradation capacity (between 75 and 90%) to non-toxic compound OTα | [104] |
Pleurotus ostreatus | OTA degradation capacity (up to 77%) to non-toxic compound OTα | [105] |
Candida guilliermondii | PAT degradation capacity | [106] |
Candida guilliermondii, Candida lusitaniae, Candida famata, Kloeckera spp., Cryptococcus laurentii, Rhodotorula glutinis identified from Turkish grapes for wine | OTA degradation capacity | [107] |
Enzymes | ||
Carboxypeptidase Y originating from Saccharomyces cerevisiae | OTA degradation capacity to non-toxic compound OTα | [108] |
Carboxypeptidase A originating from bovine pancreas | OTA degradation capacity to non-toxic compound OTα | [109,110,111] |
Carboxypeptidase originating from Bacillus amyloliquefaciens, Acinetobacter sp. neg1, Phaffia rhodozyma, | OTA degradation capacity to non-toxic compound OTα | [67,79,112] |
Hydrolase originating from A. niger | OTA degradation capacity to non-toxic compound OTα | [113] |
Lipase A originating from A. niger | OTA degradation capacity to non-toxic compound OTα | [114] |
A crude metalloenzyme originating from A. niger | OTA hydrolyzation capacity | [115] |
A crude enzyme Ancex | OTA degradation capacity | [109] |
Protease A originating from A. niger | OTA degradation capacity to non-toxic compound OTα | [109] |
CotA laccase originating from Bacillus licheniformis ZOM-1 | AFs, ZEA, and AOH degradation capacity | [116] |
Enzymes glucose oxidase and/or peroxidase | Alternaria mycotoxin AOH degradation capacity in fruits | [116,117] |
Enzymes polyphenol oxidase and/or peroxidase | PAT degradation capacity in fruits | [118] |
Microorganisms, Yeasts, Fungi, or Bioactive Natural Substances Effective Against Target Mycotoxin-Producing Fungi | Inhibition or Suppression of Fungal Development/Growth and Subsequent Mycotoxin Production of Following Fungi | Reference |
---|---|---|
Microorganisms | ||
Bacillus subtilis strains | Inhibition of fungal development of Fusarium strains and following production of FUMs. | [34] |
Bacillus spp., e.g., B. subtilis, B. megaterium, B. mojavensis, B. amyloliquefaciens, B. mycoides, B. pumilus, B. cereus, and B. mojavensis | Reported as good biocontrol agents against AFs contamination. | [147,148,149,150,151] |
Bacillus megaterium | Reported to prevent nearly 100% of AFs production in broth medium. | [148] |
Bacillus subtilis | Reported to control the development of Aspergillus parasiticus (nearly 92%) and subsequent AFs production by up to 100%. | [149] |
Apple dip treatment with suspension of microorganisms Bacillus subtilis or Pseudomonas fluorescens | Inhibition of fungal development of P. expansum at the time of cold storage and following PAT production in apples. | [170,171] |
Fermented cell-free supernatants of Paenibacillus chibensis CECT 375, Bacillus amyloliquefaciens CECT 493, and Pantoea agglomerans CECT 850. | In vitro antifungal activities against OTA- and AFs-producing fungi due to high content of acetic acid, lactic acid, phenyllactic acid, and benzoic acid. | [172] |
Actinobacterial strains, e.g., Streptomyces G10, ML5, and MS1 | Inhibition of expression of target genes responsible for biosynthesis of OTA by A. carbonarius. | [56] |
Lactobacillus plantarum | Inhibition of fungal development of P. expansum and A. parasiticus, and following production of PAT and AFs. | [135] |
Lactobacillus (LAB), e.g., L. delbrueckii, L. plantarum, L. reuteri, L. acidophilus, L. rhamnosus, L. paraplantarum, L. fermentum, L. casei and L. pentosus | Reported to be effective towards AFs, but L. plantarum was found to be the most effective against AFs production. | [173,174,175] |
Lactobacillus plantarum B4496, Lactobacillus brevis 207 and Lactobacillus sanfranciscensis BB12 isolated from fermenting cocoa | Reported to have good in vitro antifungal activities against OTA-producing fungi A. niger, A. Carbonarius, and A. ochraceus, with capabilities ranging from 15% to 67%. | [176] |
Pseudomonas fluorescens | Suppresses the conidia germination of A. flavus by nearly 20%, in addition to the inhibition of AFB1 production (above 99%) in peanut medium. | [177,178] |
Pseudomonas chlororaphis isolated from maize | Reported to inhibit the development of A. flavus by nearly 100%. | [152] |
Pseudomonas protegens strain AS15 isolated from rice grains | Suppress up to 83% of AFs production, in addition to the suppression of the development of A. flavus (up to 68%). | [179] |
Pseudomonas syringae | Inhibition of postharvest fungal development of P. expansum and Botrytis cinerea (gray mold and blue mold) on apples and following PAT production. | [131] |
Streptomyces strains, e.g., S. anulatus, S. yanglinensis, S. roseolus, and S. alboflavus | Found to be very effective against aflatoxigenic fungi such as Aspergillus flavus. | [153,154,155] |
Bacteria Serratia marcescens strain JPP1 isolated from peanut shells | Suppress AFs production by nearly 98%, and subsequent development of A. parasiticus by nearly 95%. | [180] |
Bacteria Nannocystis exedens | Found to suppress significantly the growth of A. flavus and A. parasiticus. | [156] |
Fungi and Yeasts | ||
Ascomycota yeast species (Candida guilliermondii P3 and Pichia ohmeri 158) | Inhibition of fungal development of Penicillium expansum and following PAT production. | [181] |
Non-toxigenic strains, e.g., Aspergillus flavus | Displacement of mycotoxigenic strains by biocompetition and subsequent decrease in AFs levels in the feedstuffs or foods. | [140,141,182] |
Non-toxigenic strains of Aspergillus flavus AF36 | Displacement of mycotoxigenic strains by biocompetition and subsequent decrease of AFs production in cotton and peanut between 70% and 90%. | [146] |
Non-toxigenic A. flavus strain NRRL21882 and A. parasiticus strain NRRL21369, and commercially available biopesticide Afla-guard (A. flavus strain NRRL21882). | Reported to be very effective biocontrol agents against AFs contamination in peanuts when applied in field conditions at preharvest time or in postharvest storage. | [183] |
Non-toxigenic A. parasiticus applied in the field | Decreases AFs contamination during storage time. | [161] |
Atoxigenic strain BN30 | Reported as very effective in preventing AFs contamination of maize in Africa. | [184] |
A. flavus strains AF051 | Reported as very effective in decreasing AFs contamination in peanut fields in China by up to 99%. | [185] |
Atoxigenic CT3 and K49 strains | Reported to decrease AFs contamination of maize by up to 65–94% in a four-year study | [145] |
Atoxigenic AR100G, AR27, and AFCHG2 strains of A. flavus | Reported to decrease AFs contamination in groundnut fields in Argentina. | [186] |
Atoxigenic Aspergillus niger strain FS10 | Reported to decrease AFs production in the field. | [187,188] |
Atoxigenic Penicillium chrysogenum strain RP42C | Suppresses the growth of toxigenic Aspergillus strains. | [189] |
Yeast strains: Kluyveromyces spp., Debaryomyces hansenii strain BCS003, Candida maltose, Pichia anomala, Saccharomyces cerevisiae RC016, and Saccharomyces cerevisiae RC008 | Suppress the growth of toxigenic Aspergillus strains and subsequent AFs production | [147] |
Trichoderma spp.: T. viridae, T. harzianum, T. Auroviride, and T. longibrachiatum | Reported to be very effective against AFs production in the field at a rate between 50% and 80%. | [147,190] |
Trichoderma spp. | Reported to be very effective against AFs contamination in sweet corn and groundnut by 65% and 57%, respectively. | [157] |
Rhodotorula glutinis LS11 | Inhibition of fungal development of P. expansum and following PAT production. | [90] |
Pichia ohmeri 158 | Inhibition of fungal development of P. expansum and following PAT production. | [191] |
Pichia caribbica yeast | Inhibition of blue mold rot and following production of PAT in apples. | [192] |
Pantoea agglomerans CPA-1 and Candida sake CPA-2 | Inhibition of fungal development of P. expansum and following PAT production. | [193] |
Torulaspora delbrueckii and Candida membranifaciens | Inhibition of fungal development of P. expansum and following PAT production. | [194,195] |
Saccharomycopsis schoenii predacious yeast | Suppression and biological control of fungal development of P. expansum, P. Digitatum, and P. italicum by true predation. | [196] |
Bioactive natural substances | ||
Vanillic acid | Inhibition of fungal development of Aspergillus species and following OTA production. | [197] |
Polyphenols, flavonoids, silymarin, and carotenoids | Inhibition of fungal development of A. flavus and following AFs production. | [198,199,200] |
Target essential oils, e.g., clove oil and cinnamon | Lowering PAT content in apples. | [201] |
Natural extracts of orange peel, cistus, and eucalyptus extract in a grape-based medium at concentrations of 10 and 20 mg/mL | Natural extracts of orange peel and cistus were found to have a good antifungal activity against the toxigenic Aspergillus carbonarius strain, whereas eucalyptus extract was reported to reduce OTA production by up to 85% at concentration 10 mg/mL with slight influence on fungal growth. | [202] |
Plant extracts of target essential oils, e.g., oregano (Origanum vulgare subsp. hirtum), lavender (Lavandula stoechas), spearmint (Mentha spicata), and sage (Salvia Fruticosa), as well as some monoterpenoids, e.g., enchone, carvone, carvacrol, 1,8-cineole, terpinen-4-ol, and α-pinene | Inhibition of fungal development of Fusarium oxysporum, P. expansum, A. terreus, Verticillium dahliae, and mycotoxin production by the same species. | [203] |
Lyophilized filtrates of Lentinula edodes | Stimulated production of antioxidant enzymes (e.g., glutathione peroxidase, superoxide dismutase, and catalase,) by A. parasiticus and inhibited AFs production by the same species. | [204] |
Garlic vapor or extract exposure of apples | Inhibition of fungal development of P. expansum and following PAT production. | [205] |
Herbs/Plants, Vitamins, or Natural Bio-Substances | Protective Properties Against Mycotoxins in Experimental Animals or Poultry | Reference |
---|---|---|
Herbs and Plants | ||
Roxazyme-G (polyenzyme complement synthesized by “Trichoderma” fungi) given at 200 ppm to chicken feeds | -Increases OTA-induced suppression of body weight gain -Increases OTA-induced decrease in egg production -Decrease OTA-induced rise in serum levels of urea, creatinine, and glucose -Protection against OTA-induced kidney and liver damages -Protection against OTA-induced suppression of humoral immune response -Protection against OTA-induced damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus | [6,209] |
Rosallsat (a plant extract of bulbus Allii Sativi and seminum Rosae caninae), at dose 0.6 mL/kg b.w. per day, given to chicken feeds | -Decreases OTA content in kidneys and liver -Suppresses OTA-induced lipid peroxidation -Protection against OTA-provoked kidney and liver damages -Protection against OTA-provoked damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus | [210] |
5% total water extract of Cynara scolymus L (Artichoke) prepared as steam infusion and given to chicks in levels of 5 mL/kg.b.w. via feeds or drinking water | -Increases hepatobiliary excretion of OTA -Improves diuresis and increases urinary excretion of OTA -Decreases OTA content in kidneys and liver -Improves OTA-induced suppression of body weight gain -Increases OTA-induced decrease in egg production -Protection against OTA-provoked liver and kidney damages -Protection against OTA-provoked damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus -Anti-permeability and vasoconstrictive effects towards OTA-provoked edematous changes -Decreases OTA-induced rise in serum levels of urea, creatinine, uric acid, and glucose -Protection against OTA-induced suppression of humoral immune response | [6,17,208,209,210] |
Sesame seed given at level 80,000 ppm to chicken feed | -Improves OTA-induced suppression of body weight gain -Increases OTA-induced decrease in eggs production -Improves OTA-inhibited protein synthesis -Protection against OTA-provoked kidney and liver damages -Protection against OTA-provoked damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus -Decreases OTA-induced rise in serum urea and creatinine -Protection against OTA-induced suppression of humoral immune response | [6,209] |
Silybum marianum given at levels of 1100 ppm to chicken feeds or Silymarin introduced at 1% to chicken diet | -Protection against OTA-provoked liver and kidney damages -Protection against OTA-provoked damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus -Decrease OTA-induced rise in serum levels of uric acid -Decrease OTA-induced rise in serum enzyme levels of AST and ALT -Protection against OTA-provoked suppression in humoral immune response | [211,213] |
Silymarin given at 10,000 ppm to chicken feeds | Ameliorates the immunotoxic effects induced by 1 ppm OTA | [218] |
Silybum marianum given at levels of 10,000 ppm to chicken feeds or Silymarin at 600 mg/kg b.w. | -Improve AFs-induced suppression of body weight gain -Decreases AFs-induced rise in serum enzyme levels of ALT, AST and ALP -Protection against AFs-provoked liver damages -Improves feed conversion ratio in AFs-treated chicks | [219,220] |
Silymarin given orally to rats at dose 200 mg/kg b.w. daily | -Protection against AFs-provoked diabetic nephropathy -Increases the renal activity of antioxidant enzymes | [221] |
S. marianum extract given to rats at 600 mg/kg b.w. or Silymarin given to rats at 50 mg/kg b.w. or dogs at 20 mg/kg b.w. | -Protection against experimental damages in kidneys -Protection against the increase in lipid peroxidation -Protective effect against the increase in serum creatinine and urea | [222,223] |
Silybum marianum given at various levels or Silymarin given to rats at dose 50–200 mg/kg b.w. per day | -Protection against experimental damages in liver -Protection against the increased serum levels of ALT, AST, ALP, γ-GT, and LDH -Suppresses lipid peroxidation in rats/mice -Protection against oxidative stress -Protection against carcinogenicity of various chemical agents | [224,225,226,227,228] |
Silybum marianum or Silymarin studied in in vivo or in vitro studies | -Protection against humoral and cellular immunity -Antioxidative effect against oxidative stress -Protective effects against chemical carcinogenesis | [229,230,231] |
Withania somnifera extract given at dose 500 mg/kg/day or Silymarin given at dose 150 mg/kg/day to rats | -Protective effect against liver damages -Suppressive effect on lipid peroxidation -Decreases serum enzyme levels of AST, ALT, and LDH -Antioxidative effect against oxidative stress | [232] |
Withania somnifera given at levels of 4000 ppm to chicken feeds | -Protection against OTA-induced liver damages -Protection against OTA-provoked damages in lymphoid organs -Protection against OTA-induced suppression on humoral immune response -Decreases OTA-induced rise in serum enzyme levels of ALT and AST | [211] |
Withania somnifera extract at dose 20 mg (dose per mouse i.p.) | -Protection of humoral and cellular immunity -Antioxidative properties | [233] |
Withania somnifera extract given at dose 40 mg/kg b.w. | -Protection against brain damages | [234] |
Withania somnifera given at various feed levels | -Improves body weight gain -Immunomodulatory properties -Antioxidative properties -Anti-neoplastic properties -Anti-inflammatory properties | [235] |
Centella asiatica at different doses in different animals | -Protection of skin, vascular intima and gastrointestinal mucosa -Protection against oxidative stress -Antibacterial properties | [236,237] |
Centella asiatica given at levels of 4600 ppm to chicken feeds | -Slight protective properties against OTA-induced suppression of humoral immunity -A slight protection against OTA-provoked damages in lymphoid organs -Decreases OTA-induced rise in serum enzyme activity of AST | [211] |
Tinospora cordifolia extracts at different doses in different animals | -Antioxidative, anti-neoplastic, hepatoprotective, antidiabetic, and anti-inflammatory properties -Immunomodulatory properties -Suppression of lipid peroxidation -Diuretic properties | [238,239,240] |
Centella asiatica essential oil | -Immunostimulating properties -Protection towards kidney and liver damages -Antibacterial properties | [241] |
Tinospora cordifolia given at levels of 4000 ppm to chicken feeds | -Improves OTA-suppressed body weight gain -Protection against OTA-induced suppression of humoral immune response -Protection against OTA-induced kidney and liver damages -Decreases OTA-induced rise in serum levels of uric acid and glucose | [212] |
Tinospora cordifolia extract given at 100 mg/kg b.w. per day to mice for 12 days | -Protection against OTA-induced changes in spleen and blood biochemistry in mice -Antioxidative properties against OTA-induced oxidative stress -Protection against genotoxic effect of OTA | [215,216] |
Tinospora cordifolia at different doses in different animals or humans | -Protection against liver damages -Improves humoral and cellular immunity | [239,242,243,244,245] |
Tinospora cordifolia extract in vitro study | -Antioxidative properties | [246] |
Tinospora cordifolia extract given to mice at doses of 50–200 mg/kg b.w.per day | -Protection against AFs-induced oxidative stress -Protection against AFs-induced liver and kidney damages | [247] |
Tinospora cordifolia at different doses in different animals or humans | -Protection of gastrointestinal mucosa -Protection against liver damages -Improves humoral and cellular immunity | [248,249,250,251,252] |
Tinospora cordifolia extract given to rats at dose of 250 mg/kg b.w.per day | -Antidiabetic properties proven by suppression of alpha glucosidase activity | [253,254] |
Glycyrrhiza glabra extract in vitro study | -Suppression of lipid peroxidation -Antioxidative properties | [255,256,257] |
Glycyrrhiza glabra extract given to mice at doses of 750–1500 mg/kg b.w.per day | -Improves humoral and cellular immunity | [258] |
Glycyrrhiza glabra extract given at dose of 2000 mg/kg b.w./day to rats or 50–200 mg/kg b.w. day to rats | -Hepatoprotective properties -Antioxidative properties -Decreases enzyme activities of ALT, ALP, and AST in serum | [224,259] |
Glycyrrhiza glabra given at levels of 6600 ppm to chicken feeds | -Improves OTA-suppressed body weight gain -Decreases OTA-induced rise in serum enzyme levels of AST -Protection against OTA-induced liver damages -Protection against OTA-induced suppression of humoral immunity | [212] |
Glycyrrhiza glabra given at different doses to rats | -Protection of liver -Lipid-lowering action -Decrease cholesterol -Inhibition of lipid peroxidation | [260] |
Glycyrrhiza glabra at different doses in different animals | -Antibacterial/antiviral properties -Anti-inflammatory properties -Anti-hyper glycemic properties | [261] |
Polyherbal additive “Growell” given at 350 or 750 ppm to chicken feed | -Protection against AFs- or OTA-provoked blood biochemical changes -Protection against AFs- or OTA-provoked pathological changes in internal organs, e.g., liver, kidney, spleen, bursa of Fabricius, and thymus of broilers | [262,263] |
B. refescens, A. leiocarpus, I. asarifolia, G. senegalensis and M. oleifera | -Antioxidative properties | [264] |
Turmeric powder given at 400 ppm to chicken feed | -Antioxidative properties in broilers -Protection against AFB1-provoked increase in lipid peroxidation -Decreases AFB1 contamination levels in liver of broilers up to undetectable levels | [265] |
Vitamins or natural bio-substances | ||
Phenylalanine given to mice, rats, or chicks at levels 20–25 ppm to the feeds | -Improves OTA-induced suppression of body weight gain -Improves OTA-induced suppression of eggs production -Improves OTA-induced suppression of protein synthesis -Protection against OTA-provoked kidney and liver damages -Protection against OTA-provoked damages in lymphoid organs, e.g., spleen, bursa of Fabricius, and thymus -Decreases OTA-induced rise in serum urea and creatinine -Protection against OTA-provoked suppression of humoral immune response -Protection against OTA-provoked carcinogenic effect in rats or chicks -Protection against OTA-provoked teratogenic effect in mice | [6,10,11,14,15] [209] |
Citric acid addition to apple juice | -Decreases content of PAT in apple juice | [266] |
Ascorbic acid and/or vitamin B addition in vivo or in vitro studies | -Decreases content of PAT in apple juice | [267,268,269,270] |
Ascorbic acid addition at 300 ppm to the diet of laying hens | -Protection against OTA-provoked decrease on egg production, eggs shell damages, and decrease in eggs’ weight | [271,272] |
Vitamin E supplementation at 200 ppm to the cockerels’ diet | -Protection against OTA-provoked immunosuppression | [218] |
Ursolic acid | -Protection against OTA-induced kidney damages -Antioxidative properties against OTA-induced oxidative stress -Reducing the apoptotic effect of OTA -Protection against OTA-induced decrease in cell viability of human embryonic kidney 293T (HEK293T) cells | [273,274] |
Oleanolic acid | -Protection against OTA-induced kidney damages -Amelioration of OTA-induced apoptotic damages -Increased viability of OTA-treated HK-2 cells | [275] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoev, S.D. Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins. Foods 2025, 14, 1960. https://doi.org/10.3390/foods14111960
Stoev SD. Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins. Foods. 2025; 14(11):1960. https://doi.org/10.3390/foods14111960
Chicago/Turabian StyleStoev, Stoycho D. 2025. "Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins" Foods 14, no. 11: 1960. https://doi.org/10.3390/foods14111960
APA StyleStoev, S. D. (2025). Biocontrol Agents and Natural Feed Supplements as a Safe and Cost-Effective Way for Preventing Health Ailments Provoked by Mycotoxins. Foods, 14(11), 1960. https://doi.org/10.3390/foods14111960