Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = electrochemical glucose sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1283 KB  
Review
Functional Nanomaterial-Based Electrochemical Biosensors Enable Sensitive Detection of Disease-Related Small-Molecule Biomarkers for Diagnostics
by Tongtong Xun, Jie Zhang, Xiaojuan Zhang, Min Wu, Yueyan Huang, Huanmi Jiang, Xiaoqin Zhang and Baoyue Ding
Pharmaceuticals 2026, 19(2), 223; https://doi.org/10.3390/ph19020223 - 27 Jan 2026
Viewed by 120
Abstract
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable [...] Read more.
Biomolecules play pivotal roles in cellular signaling, metabolic regulation and the maintenance of physiological homeostasis in the human body, and their dysregulation is closely associated with the onset and progression of various human diseases. Consequently, the development of highly sensitive, selective, and stable detection platforms for these molecules is of significant value for drug discovery, pharmaceutical quality control, pharmacodynamic studies, and personalized medicine. In recent years, electrochemical biosensors, particularly those integrated with functional nanomaterials and biorecognition elements, have emerged as powerful analytical platforms in pharmaceutics and biomedical analysis, owing to their high sensitivity, exquisite selectivity, rapid response, simple operation, low cost and suitability for real-time or in situ monitoring in complex biological systems. This review summarizes recent progress in the electrochemical detection of representative biomolecules, including dopamine, glucose, uric acid, hydrogen peroxide, lactate, glutathione and cholesterol. By systematically summarizing and analyzing existing sensing strategies and nanomaterial-based sensor designs, this review aims to provide new insights for the interdisciplinary integration of pharmaceutics, nanomedicine, and electrochemical biosensing, and to promote the translational application of these sensing technologies in drug analysis, quality assessment, and clinical diagnostics. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

18 pages, 5173 KB  
Article
Glucose Sensor Using Fe3O4 Functionalized MXene Nanosheets as a Promising Sensing Platform: Exploring the Potential of Electrochemical Detection of Glucose
by Yu Yang, Danning Li, Changchang Zheng, Ling Zhang and Xuwei Chen
Chemosensors 2026, 14(1), 19; https://doi.org/10.3390/chemosensors14010019 - 8 Jan 2026
Viewed by 391
Abstract
Enzymatic electrochemical sensors are promising for real-time glucose monitoring due to their high sensitivity and continuous detection capability. In this work, a magnetic Fe3O4@MXene nanocomposite was synthesized hydrothermally. The introduction of Fe3O4 not only reduced MXene’s [...] Read more.
Enzymatic electrochemical sensors are promising for real-time glucose monitoring due to their high sensitivity and continuous detection capability. In this work, a magnetic Fe3O4@MXene nanocomposite was synthesized hydrothermally. The introduction of Fe3O4 not only reduced MXene’s inherent negative surface charge, improving interaction with glucose oxidase (GOD), but also formed a porous structure that enhances enzyme immobilization via physical adsorption. Based on these properties, a Fe3O4@MXene/GOD/Nafion/GCE electrode was fabricated. The composite’s high specific surface area, excellent conductivity, and good biocompatibility significantly promoted the direct electron transfer (DET) of GOD. Meanwhile, the apparent electron transfer rate constant (ks) was calculated to be 9.57 s−1, representing a 1.26-fold enhancement over the MXene-based electrode (7.57 s−1) and confirming faster electron transfer kinetics. The sensor showed a bilinear glucose response in the ranges of 0.05–15 mM, with sensitivity of 120.47 μA·mM−1·cm−2 and a detection limit of 38 μM. It also exhibited excellent selectivity, reproducibility and stability. Satisfactory recovery rates were achieved in artificial serum samples while demonstrating comparable detection performance to commercial blood glucose meters. Full article
(This article belongs to the Special Issue Electrochemical Biosensors for Global Health Challenges)
Show Figures

Figure 1

24 pages, 2330 KB  
Review
Analytical Determination of Heavy Metals in Water Using Carbon-Based Materials
by Zhazira Mukatayeva, Diana Konarbay, Yrysgul Bakytkarim, Nurgul Shadin and Yerbol Tileuberdi
Molecules 2026, 31(1), 5; https://doi.org/10.3390/molecules31010005 - 19 Dec 2025
Viewed by 614
Abstract
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents [...] Read more.
This review presents a critical and comparative analysis of carbon-based electrochemical sensing platforms for the determination of heavy metal ions in water, with emphasis on Pb2+, Cd2+, and Hg2+. The growing discharge of industrial and mining effluents has led to persistent contamination of aquatic environments by toxic metals, creating an urgent need for sensitive, rapid, and field-deployable analytical technologies. Carbon-based nanomaterials, including graphene, carbon nanotubes (CNTs), and MXene, have emerged as key functional components in modern electrochemical sensors due to their high electrical conductivity, large surface area, and tunable surface chemistry. Based on reported studies, typical detection limits for Pb2+ and Cd2+ using differential pulse voltammetry (DPV) on glassy carbon and thin-film electrodes are in the range of 0.4–1.2 µg/L. For integrated thin-film sensing systems, limits of detection of 0.8–1.2 µg/L are commonly achieved. MXene-based platforms further enhance sensitivity and enable Hg2+ detection with linear response ranges typically between 1 and 5 µg/L, accompanied by clear electrochemical or optical signals. Beyond conventional electrochemical detection, this review specifically highlights self-sustaining visual sensors based on MXene integrated with enzyme-driven bioelectrochemical systems, such as glucose oxidase (GOD) and Prussian blue (PB) assembled on ITO substrates. These systems convert chemical energy into measurable colorimetric signals without external power sources, enabling direct visual identification of Hg2+ ions. Under optimized conditions (e.g., 5 mg/mL GOD and 5 mM glucose), stable and distinguishable color responses are achieved for rapid on-site monitoring. Overall, this review not only summarizes current performance benchmarks of carbon-based sensors but also identifies key challenges, including long-term stability, selectivity under multi-ion interference, and large-scale device integration, while outlining future directions toward portable multisensor water-quality monitoring systems. Full article
Show Figures

Graphical abstract

13 pages, 2415 KB  
Article
Non-Fullerene Organic Semiconductor ITIC as a Redox Mediator in Electrochemical Glucose Biosensors
by Maurício A. P. Papi, Victor G. Scheidweiler, Sandra de Melo Cassemiro, Leni C. Akcelrud, Marcio F. Bergamini and Luiz Humberto Marcolino-Junior
Sensors 2025, 25(24), 7535; https://doi.org/10.3390/s25247535 - 11 Dec 2025
Viewed by 471
Abstract
ITIC’s superior electron-accepting capacity and efficient oxygen reduction motivated the design of a sensor to enhance sensitivity, selectivity, and stability over conventional oxygen-dependent or fullerene-based systems. As oxygen acts as the terminal reagent in enzymatic glucose oxidation, we developed an ITIC-mediated glucose oxidase [...] Read more.
ITIC’s superior electron-accepting capacity and efficient oxygen reduction motivated the design of a sensor to enhance sensitivity, selectivity, and stability over conventional oxygen-dependent or fullerene-based systems. As oxygen acts as the terminal reagent in enzymatic glucose oxidation, we developed an ITIC-mediated glucose oxidase (GOx) biosensor on glassy carbon (GCE) and screen-printed carbon electrodes (SPCE). ITIC, a non-fullerene organic semiconductor, was drop-cast onto the electrode to catalyze oxygen reduction, followed by GOx immobilization in a chitosan matrix. Scanning electron microscopy (SEM) confirmed uniform, ultrathin coatings without significant morphological changes upon ITIC and GOx deposition. Electrochemical studies (cyclic (CV) and differential pulse voltammetry (DPV)) revealed a distinct ITIC reduction peak at –0.7 V (vs. Ag/AgCl) and a glucose-dependent current decrease, consistent with mediated electron transfer during enzymatic oxidation. Under optimized conditions, the GCE-based biosensor showed a sensitivity of 10.7 μA L mmol−1, a linear dynamic range (LDR) of 0.10–1.00 mmol L−1, and detection (LOD)/quantification (LOQ) limits of 0.02 and 0.06 mmol L−1, respectively. The SPCE device displayed sensitivity (3.8 μA L mmol−1) and maintained excellent linearity (R2 > 0.99) with LOD and LOQ of 0.05 and 0.16 mmol L−1. Both platforms showed good precision (RSD < 5%) and reliable recovery in deproteinized plasma and artificial tears (90–104%). The superior performance of the GCE is attributed to higher ITIC loading, faster electron transfer, and reduced background current, while the SPCE offers a low-cost, disposable format with sufficient analytical performance for point-of-care glucose monitoring. Full article
Show Figures

Figure 1

17 pages, 8602 KB  
Article
A ZIF-8-Based High-Performance Glucose Electrochemical Detection Platform Constructed Using a Multi-Layer Interface Optimization Strategy
by Canjie Hu, Pengjia Qi, Lichao Liu, Yang Chen and Jijun Tong
Sensors 2025, 25(22), 7064; https://doi.org/10.3390/s25227064 - 19 Nov 2025
Viewed by 766
Abstract
To meet the demand for rapid and accurate glucose determination in clinical diagnostics, food testing, and related fields, this study developed a high-performance electrochemical glucose biosensor based on multi-walled carbon nanotubes/Prussian blue/zeolitic imidazolate framework-8@glucose oxidase/chitosan (MWCNTs/PB/ZIF-8@GOx/CS). The MWCNTs/PB conductive network significantly accelerated electron [...] Read more.
To meet the demand for rapid and accurate glucose determination in clinical diagnostics, food testing, and related fields, this study developed a high-performance electrochemical glucose biosensor based on multi-walled carbon nanotubes/Prussian blue/zeolitic imidazolate framework-8@glucose oxidase/chitosan (MWCNTs/PB/ZIF-8@GOx/CS). The MWCNTs/PB conductive network significantly accelerated electron transfer and catalytic activity, while the ZIF-8, with its regular pore structure and high specific surface area, provides an efficient microenvironment for the immobilization and conformational stabilization of glucose oxidase (GOx), thereby improving substrate diffusion and maintaining enzyme activity. The MWCNTs/PB/ZIF-8@GOx/CS sensor demonstrates excellent sensing performance, featuring a wide linear response to glucose concentrations ranging from 4.8 μM to 2.24 mM, a high sensitivity of 579.57 μA/mM/cm2, and a low detection limit of 0.55 μM (S/N = 3). In addition, the sensor performs excellent repeatability (RSD = 1.49%) and retained 86.23% of its initial response after 3 weeks of storage at 4 °C, highlighting its strong potential for practical application in glucose detection. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

56 pages, 10980 KB  
Review
Artificial Intelligence-Based Wearable Sensing Technologies for the Management of Cancer, Diabetes, and COVID-19
by Amit Kumar, Shubham Goel, Abhishek Chaudhary, Sunil Dutt, Vivek K. Mishra and Raj Kumar
Biosensors 2025, 15(11), 756; https://doi.org/10.3390/bios15110756 - 13 Nov 2025
Cited by 1 | Viewed by 6382
Abstract
Integrating artificial intelligence (AI) with wearable sensor technologies can revolutionize the monitoring and management of various chronic diseases and acute conditions. AI-integrated wearables are categorized by their underlying sensing techniques, such as electrochemical, colorimetric, chemical, optical, and pressure/stain. AI algorithms enhance the efficacy [...] Read more.
Integrating artificial intelligence (AI) with wearable sensor technologies can revolutionize the monitoring and management of various chronic diseases and acute conditions. AI-integrated wearables are categorized by their underlying sensing techniques, such as electrochemical, colorimetric, chemical, optical, and pressure/stain. AI algorithms enhance the efficacy of wearable sensors by offering personalized, continuous supervision and predictive analysis, assisting in time recognition, and optimizing therapeutic modalities. This manuscript explores the recent advances and developments in AI-powered wearable sensing technologies and their use in the management of chronic diseases, including COVID-19, Diabetes, and Cancer. AI-based wearables for heart rate and heart rate variability, oxygen saturation, respiratory rate, and temperature sensors are reviewed for their potential in managing COVID-19. For Diabetes management, AI-based wearables, including continuous glucose monitoring sensors, AI-driven insulin pumps, and closed-loop systems, are reviewed. The role of AI-based wearables in biomarker tracking and analysis, thermal imaging, and ultrasound device-based sensing for cancer management is reviewed. Ultimately, this report also highlights the current challenges and future directions for developing and deploying AI-integrated wearable sensors with accuracy, scalability, and integration into clinical practice for these critical health conditions. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Graphical abstract

30 pages, 3133 KB  
Review
Functional Solid–Liquid Interfaces for Electrochemical Blood Glucose Sensing: New Insights and Future Prospects
by Zarish Maqbool, Nadeem Raza, Azra Hayat, Mostafa E. Salem and Muhammad Faizan Nazar
Chemosensors 2025, 13(11), 385; https://doi.org/10.3390/chemosensors13110385 - 3 Nov 2025
Cited by 1 | Viewed by 1531
Abstract
Blood glucose monitoring is essential for the treatment of diabetes, a chronic disease that affects millions of people worldwide. Non-electrochemical blood glucose sensors often lack sensitivity and selectivity, especially in complex biological fluids, and are not suitable for wearable point-of-care devices. Electrochemical blood [...] Read more.
Blood glucose monitoring is essential for the treatment of diabetes, a chronic disease that affects millions of people worldwide. Non-electrochemical blood glucose sensors often lack sensitivity and selectivity, especially in complex biological fluids, and are not suitable for wearable point-of-care devices. Electrochemical blood glucose sensors, on the other hand, are easy to handle, inexpensive, and offer high sensitivity and selectivity even in the presence of interfering molecules. They can also be seamlessly integrated into wearable devices. This review explores the key blood glucose technologies, emphasizing the operating principle and classification of electrochemical glucose sensors. It also highlights the role of functional solid–liquid interfaces in optimizing sensor performance. Recent developments in solid–liquid interfacial materials, including metal-based, metal oxide-based, carbon-based, nanoparticle-based, conductive polymer, and graphene-based interfaces, are systematically analyzed for their sensing potential. Furthermore, this review highlights existing patents, the evolving market landscape, and data from clinical studies that bridge the gap between laboratory research and commercial application. Finally, we present future perspectives and highlight the need for next-generation wearable and enzyme-free glucose sensors for continuous and non-invasive glucose monitoring. Full article
Show Figures

Figure 1

16 pages, 17098 KB  
Article
Facile Preparation of High-Performance Non-Enzymatic Glucose Sensors Based on Au/CuO Nanocomposites
by Lian Ma, Tao Wang, Hao Mei, Yuhao You, Zhandong Lin, Weishuang Li, Bojie Li, Silin Kang and Lei Zhu
Catalysts 2025, 15(11), 1020; https://doi.org/10.3390/catal15111020 - 30 Oct 2025
Viewed by 651
Abstract
Non-enzymatic glucose sensing has attracted considerable interest as a promising alternative to enzyme-based sensors, addressing limitations such as poor stability and high cost. To overcome the challenges of expensive noble metals and the inherent issues of pure copper oxide (CuO), including low conductivity [...] Read more.
Non-enzymatic glucose sensing has attracted considerable interest as a promising alternative to enzyme-based sensors, addressing limitations such as poor stability and high cost. To overcome the challenges of expensive noble metals and the inherent issues of pure copper oxide (CuO), including low conductivity and aggregation tendency, this study developed a composite sensing material based on two-dimensional CuO nanosheets decorated with gold nanoparticles (Au NPs). A series of Au/CuO nanocomposites with varying Au loadings were synthesized through a combined hydrothermal and in situ reduction approach. Systematic electrochemical characterization revealed that the composite with 7.41 wt% Au loading exhibited optimal sensing performance, achieving sensitivities of 394.29 and 257.14 μA·mM−1·cm−2 across dual linear ranges of 5–3550 μM and 4550–11,550 μM, respectively, with a detection limit of 10 μM and a rapid response time of 3 s. The sensor also demonstrated selectivity against common interferents as well as long-term stability. This work highlights the importance of precise noble metal loading control in optimizing sensor performance and offers a feasible material design strategy for developing high-performance non-enzymatic glucose sensors. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in China: New Horizons and Recent Advances)
Show Figures

Figure 1

17 pages, 5894 KB  
Article
Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection
by Yun Yeong Cho, Tae-Won Seo, Young-Bong Choi and Won-Yong Jeon
Polymers 2025, 17(21), 2874; https://doi.org/10.3390/polym17212874 - 28 Oct 2025
Viewed by 741
Abstract
Hydrophilic polymer–osmium complexes enhance electron transfer between enzymes and electrodes in biosensors. In this study, hydrophobic poly(4-vinylpyridine) (PVP) was quaternized with 2-bromoethanol to synthesize water-soluble PVP(Q)-C2H4OH polymers (MW 60,000 and 160,000). The resulting PVP(Q)-C2H4OH-Os(dmo-bpy)2 [...] Read more.
Hydrophilic polymer–osmium complexes enhance electron transfer between enzymes and electrodes in biosensors. In this study, hydrophobic poly(4-vinylpyridine) (PVP) was quaternized with 2-bromoethanol to synthesize water-soluble PVP(Q)-C2H4OH polymers (MW 60,000 and 160,000). The resulting PVP(Q)-C2H4OH-Os(dmo-bpy)2Cl complexes were verified by UV-Vis, FT-IR, 1H NMR, SEM-EDS, and zeta potential analyses, confirming successful quaternization and osmium coordination with good dispersion stability. Electrochemical tests (cyclic voltammetry, multi-potential step, amperometry) demonstrated that electrodes with quaternized mediators showed greatly enhanced catalytic currents for glucose (0–20 mM), with sensitivities of 6.9791 (MW 60,000) and 6.6279 μA·mM−1·cm−2 (MW 160,000), respectively, which were 6.6–10.3 times higher than those of non-quaternized polymers. Selectivity tests showed negligible interference from common species such as ascorbic acid, dopamine, uric acid, and serotonin. Continuous glucose monitoring (CGM) electrodes were fabricated by immobilizing the mediator and glucose dehydrogenase on silanized Au electrodes. SEM, scan rate, and impedance analyses confirmed stable binding. The modified electrodes showed strong linearity (R2 = 0.992) and high sensitivity (2.56 μA·mM−1·cm−2), and good stability, maintaining ~82% activity for seven days. Human plasma testing validated accurate glucose detection (6.05 mM), consistent with physiological levels. Overall, quaternized PVP(Q) mediators significantly improved solubility and electron transfer, enabling the development of a stable, selective glucose sensor suitable for CGM applications. Full article
(This article belongs to the Special Issue Conductive Polymers for Electronic Devices, Displays and Sensors)
Show Figures

Graphical abstract

43 pages, 1412 KB  
Review
Surface Modification of Screen-Printed Carbon Electrodes
by Naila Haroon and Keith J. Stine
Coatings 2025, 15(10), 1182; https://doi.org/10.3390/coatings15101182 - 9 Oct 2025
Cited by 6 | Viewed by 3516
Abstract
SPCEs are crucial for electrochemical sensing because of their portability, low cost, disposability, and ease of mass production. This study details their manufacture, surface modifications, electrochemical characterization, and use in chemical and biosensing. SPCEs integrate working, reference, and counter electrodes on PVC or [...] Read more.
SPCEs are crucial for electrochemical sensing because of their portability, low cost, disposability, and ease of mass production. This study details their manufacture, surface modifications, electrochemical characterization, and use in chemical and biosensing. SPCEs integrate working, reference, and counter electrodes on PVC or polyester substrates for compact sensor design. Surface modifications, such as plasma treatment (O2, Ar), nanomaterial addition (AuNPs, GO, CNTs), polymer coatings, and MIPs, enhance performance. These changes improve sensitivity, selectivity, stability, and electron transport. Electrochemical methods such as CV, DPV, SWV, and EIS detect analytes, including biomolecules (glucose, dopamine, and pathogens) and heavy metals (Pb2+, As3+). Their applications include healthcare diagnostics, environmental monitoring, and food safety. Modified SPCEs enable rapid on-site analysis and offer strong potential to transform our understanding of the physical world. Full article
Show Figures

Figure 1

30 pages, 2315 KB  
Review
Progress in NiO Based Materials for Electrochemical Sensing Applications
by Praveen Kumar, Mohammad Aslam, Saood Ali, Khaled Hamdy, Khursheed Ahmad and Danishuddin
Biosensors 2025, 15(10), 678; https://doi.org/10.3390/bios15100678 - 9 Oct 2025
Cited by 1 | Viewed by 2231
Abstract
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental [...] Read more.
Nickel oxide (NiO), a wide bandgap p-type semiconductor, has emerged as a promising material for electrochemical sensing owing to its excellent redox properties, chemical stability, and facile synthesis. Its strong electrocatalytic activity enables effective detection of diverse analytes, including glucose, hydrogen peroxide, environmental pollutants, and biomolecules. Advances in nanotechnology have enabled the development of NiO-based nanostructures such as nanoparticles, nanowires, and nanoflakes, which offer enhanced surface area and improved electron transfer. Integration with conductive materials like graphene, carbon nanotubes, and metal–organic frameworks (MOFs) further enhance sensor performance through synergistic effects. Innovations in synthesis techniques, including hydrothermal, sol–gel, and green approaches, have expanded the applicability of NiO in next-generation sensing platforms. This review summarizes recent progress in the structural engineering, composite formation, and electrochemical mechanisms of NiO-based materials for advanced electrochemical sensing applications. Full article
Show Figures

Figure 1

38 pages, 2063 KB  
Review
Nanostructured Materials in Glucose Biosensing: From Fundamentals to Smart Healthcare Applications
by Rajaram Rajamohan and Seho Sun
Biosensors 2025, 15(10), 658; https://doi.org/10.3390/bios15100658 - 2 Oct 2025
Viewed by 2426
Abstract
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, [...] Read more.
The rapid development of nanotechnology has significantly transformed the design and performance of glucose biosensors, leading to enhanced sensitivity, selectivity, and real-time monitoring capabilities. This review highlights recent advances in glucose-sensing platforms facilitated by nanomaterials, including metal and metal oxide nanoparticles, carbon-based nanostructures, two-dimensional materials, and metal–organic frameworks (MOFs). The integration of these nanoscale materials into electrochemical, optical, and wearable biosensors has addressed longstanding challenges associated with enzyme stability, detection limits, and invasiveness. Special emphasis is placed on non-enzymatic glucose sensors, flexible and wearable devices, and hybrid nanocomposite systems. The multifunctional properties of nanomaterials, such as large surface area, excellent conductivity, and biocompatibility, have enabled the development of next-generation sensors for clinical, point-of-care, and personal healthcare applications. The review also discusses emerging trends such as biodegradable nanosensors, AI-integrated platforms, and smart textiles, which are poised to drive the future of glucose monitoring toward more sustainable and personalized healthcare solutions. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

16 pages, 2987 KB  
Article
Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods
by Anahita Izadyar, Ezekiel McCain and Elizabeth E. Hood
Sensors 2025, 25(19), 5974; https://doi.org/10.3390/s25195974 - 26 Sep 2025
Viewed by 1034
Abstract
We present a novel disposable electrochemical biosensor for highly sensitive and selective glucose detection, employing gold-modified screen-printed electrodes combined with square wave (SWV) and linear sweep voltammetry (LSV). The sensor integrates recombinant corn-derived manganese peroxidase with glucose oxidase, bovine serum albumin, and gold [...] Read more.
We present a novel disposable electrochemical biosensor for highly sensitive and selective glucose detection, employing gold-modified screen-printed electrodes combined with square wave (SWV) and linear sweep voltammetry (LSV). The sensor integrates recombinant corn-derived manganese peroxidase with glucose oxidase, bovine serum albumin, and gold nanoparticles to enhance stability and signal transduction. Glucose detection by LSV covered 0.001–6.5 mM (R2 = 0.9913; LOD = 0.50 µM), while SWV achieved a broader range of 0.0006–6.5 mM (R2 = 0.998; LOD = 0.29 µM). The sensor demonstrated excellent selectivity, showing minimal interference from common electroactive species including caffeine, aspartame, and ascorbic acid, and provided rapid responses, making it ideal for point-of-care and food monitoring applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

22 pages, 1231 KB  
Proceeding Paper
Emerging Trends in Paper-Based Electrochemical Biosensors for Healthcare Applications
by Aparoop Das, Partha Protim Borthakur, Dibyajyoti Das, Jon Jyoti Sahariah, Parimita Kalita and Kalyani Pathak
Eng. Proc. 2025, 106(1), 8; https://doi.org/10.3390/engproc2025106008 - 11 Sep 2025
Viewed by 2887
Abstract
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary [...] Read more.
Paper-based electrochemical biosensors have emerged as a revolutionary technology in healthcare diagnostics due to their affordability, portability, ease of use, and environmental sustainability. These biosensors utilize paper as the primary material, capitalizing on its unique properties such as high porosity, flexibility, and capillary action, which make it an ideal candidate for low-cost, functional, and reliable diagnostic devices. The simplicity and cost-effectiveness of paper-based biosensors make them especially suitable for point-of-care (POC) applications, particularly in resource-limited settings where traditional diagnostic tools may be inaccessible. Their lightweight nature and ease of operation allow non-specialized users to perform diagnostic tests without the need for complex laboratory equipment, making them suitable for emergency, field, and remote applications. Technological advancements in paper-based biosensors have significantly enhanced their capabilities. Integration with microfluidic systems has improved fluid handling and reagent storage, resulting in enhanced sensor performance, including greater sensitivity and specificity for target biomarkers. The use of nanomaterials in electrode fabrication, such as reduced graphene oxide and gold nanoparticles, has further elevated their sensitivity, allowing for the precise detection of low-concentration biomarkers. Moreover, the development of multiplexed sensor arrays has enabled the simultaneous detection of multiple biomarkers from a single sample, facilitating comprehensive and rapid diagnostics in clinical settings. These biosensors have found applications in diagnosing a wide range of diseases, including infectious diseases, cancer, and metabolic disorders. They are also effective in genetic analysis and metabolic monitoring, such as tracking glucose, lactate, and uric acid levels, which are crucial for managing chronic conditions like diabetes and kidney diseases. In this review, the latest advancements in paper-based electrochemical biosensors are explored, with a focus on their applications, technological innovations, challenges, and future directions. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Biosensors)
Show Figures

Figure 1

17 pages, 2819 KB  
Article
Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing
by Asghar Niyazi, Ashley Linden and Mirella Di Lorenzo
Biosensors 2025, 15(9), 588; https://doi.org/10.3390/bios15090588 - 8 Sep 2025
Viewed by 1014
Abstract
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, [...] Read more.
Effective glucose monitoring is paramount for patients with diabetes to effectively manage their condition and prevent health complications. Electrochemical sensors for glucose monitoring have key advantages over other systems, including cost-effectiveness, miniaturisation and portability, enabling the design of compact and wearable devices. Typically, enzymes are used in these sensors, with the limitations of poor stability and high cost. In alternative, this study reports the development of a gold and platinum composite nanostructured electrode and its testing as an abiotic (enzyme-free) electrocatalyst for glucose oxidation. The electrode consists of a film of highly porous gold electrodeposited onto gold-plated electrodes on a printed circuit board (PCB), which is coated with polyaniline decorated with platinum nanoparticles. The resulting nanocomposite structure shows a sensitivity towards glucose as high as 95.12 ± 2.54 µA mM−1 cm−2, nearly twice that of the highly porous gold electrodes, and excellent stability in synthetic interstitial fluid over extended testing, thus demonstrating robustness. Accordingly, this study lays the groundwork for the next generation of durable, selective, and affordable abiotic glucose biosensors. Full article
Show Figures

Figure 1

Back to TopTop