Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods
Abstract
1. Introduction
2. Experimental Section
2.1. Reagents and Solutions
2.2. Apparatus
2.3. PPMP Enzyme Preparation
2.4. Electrodeposition Procedure
3. Results and Discussion
3.1. Linear Sweep Voltammetry (LSV) Sensing of PANI-GNPs-GOx-PPMP/SPE
3.2. Selectivity of the PANI-GNPs-GOx-PPMP/GSPE Using Linear Sweep Voltammetry (LSV)
3.3. Square Wave Voltammetry (SWV) Sensing of PANI-GNPs-GOx-PPMP/GSPE
3.4. Selectivity of the PANI-GNPs-GOx-PPMP/GSPE Using Square Wave Voltammetry (SWV)
3.5. Comparison of Electrochemical Glucose Sensors: Advantages of a Novel Electropolymerized SWV-Based Platform
3.6. Comparative Analysis with Previous Works
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PANI | Polyaniline |
GOX | Glucose Oxidase |
PPMP | Recombinant Corn-Derived Enzyme |
BSA | Bovine Serum Albumin |
GNPs | Gold Nanoparticles |
GME | Gold Microelectrodes |
GSPE | Gold Screen-Printed Electrodes |
SWV | Square Wave Voltammetry |
LSV | Linear Sweep Voltammetry |
References
- Seshasai, S.R.; Kaptoge, S.; Thompson, A.; Angelantonio, E.; Gao, P. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011, 364, 829–841. [Google Scholar]
- Ghebreyesus, T.A. World Report on Vision; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Battelino, T.; Bergenstal, R.M. Continuous glucose monitoring–derived data report–simply a better management tool. Diabetes Care 2020, 43, 2327–2329. [Google Scholar] [CrossRef]
- Fahmy Taha, M.H.; Ashraf, H.; Caesarendra, W. A brief description of cyclic voltammetry transducer-based non-enzymatic glucose biosensor using synthesized graphene electrodes. Appl. Syst. Innov. 2020, 3, 32. [Google Scholar] [CrossRef]
- Krzyczmonik, P.; Socha, E.; Skrzypek, S. Electrochemical detection of glucose in beverage samples using poly(3,4-ethylenedioxythiophene)-modified electrodes with immobilized glucose oxidase. Electrocatalysis 2018, 9, 380–387. [Google Scholar] [CrossRef]
- Hood, E.E.; Jilka, J.M. Plant based production of xenogenic proteins. Curr. Opin. Biotechnol. 1999, 10, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Larrick, J.W.; Thomas, D. Human Pharmaceuticals Produced in Plants. In Plants as Factories for Protein Production; Hood, E.E., Howard, J.A., Eds.; Kluwer: Dordrecht, The Netherlands, 2001; pp. 79–101. [Google Scholar]
- Kuwahara, M.; Glenn, J.K.; Morgan, M.A.; Gold, M.H. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1984, 169, 247–250. [Google Scholar] [CrossRef]
- Paice, M.G.; Bourbonnais, R.; Reid, I.D. Bleaching kraft pulps with oxidative enzymes and alkaline hydrogen peroxide. TAPPI J. 1995, 78, 161–169. [Google Scholar]
- Clough, R.C.; Pappu, K.; Thompson, K.; Beifuss, K.; Lane, J.; Delaney, D.E.; Harkey, R.; Drees, C.; Howard, J.A.; Hood, E.E. Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol. J. 2006, 4, 53–62. [Google Scholar] [CrossRef]
- Byrd, J.D.; Hood, E.E. Degradation of synthetic dyes with plant-produced manganese peroxidase and commercial laccase. AATCC J. Res. 2022, 9, 49–59. [Google Scholar] [CrossRef]
- Narimannejad, S.; Biswas, N.; Taylor, K.E.; Hood, E.E. Eco-friendly treatment of phenol and bisphenol A in wastewater using manganese peroxidase. In Proceedings of the Canadian Society for Civil Engineering; El-Salakawy, E., Ed.; CSCE: Winnipeg, MB, Canada, 2025. [Google Scholar]
- Narimannejad, S.; Taylor, K.E.; Hood, E.E.; Biswas, N. Enzymatic treatment feasibility for cannabinoids in wastewater using manganese peroxidase. In Proceedings of the OWWA WEAO, Niagara Falls, ON, Canada, 5–7 May 2024. [Google Scholar]
- Izadyar, A.; Tran, U.; Hood, E.E. Recombinant Mn peroxidase from corn grain has an excellent electrocatalytic effect in a designed amperometric biosensor to detect hydrogen peroxide at low concentrations. ACS Sustain. Chem. Eng. 2019, 7, 19434–19441. [Google Scholar] [CrossRef]
- Izadyar, A.; Rodriguez, K.A.; Van, M.N.; Tran, U.; Hood, E.E. A bienzymatic amperometric glucose biosensor based on using a novel recombinant Mn peroxidase from corn and glucose oxidase with a Nafion membrane. J. Electroanal. Chem. 2021, 895, 115387. [Google Scholar] [CrossRef]
- Izadyar, A.; Van, M.V.; Miranda, M.; Weatherford, S.; Hood, E.E. Development of a highly sensitive glucose nanocomposite biosensor based on recombinant enzyme from corn. J. Sci. Food Agric. 2022, 102, 6530–6538. [Google Scholar] [CrossRef]
- Izadyar, A.; Van, M.V.; Miranda, M.; Weatherford, S.; Hood, E.E. Electrocatalytic effect of recombinant Mn peroxidase from corn on microbiosensors to detect glucose. Biocatal. Agric. Biotechnol. 2022, 43, 102445. [Google Scholar] [CrossRef]
- Hayat, A.; Andreescu, S.; Marty, J.L. Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label-free detection of small size molecules. Biosens. Bioelectron. 2013, 45, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Pasakon, P.; Mensing, J.P.; Phokaratkul, D.; Karuwan, C.; Lomas, T.; Wisitsoraat, A.; Tuantranont, A. A high-performance, disposable screen-printed carbon electrode modified with multi-walled carbon nanotubes/graphene for ultratrace level electrochemical sensors. J. Appl. Electrochem. 2019, 49, 217–227. [Google Scholar] [CrossRef]
- Couto, R.A.S.; Lima, J.L.F.C.; Quinaz, M.B. Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 2016, 146, 801–814. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef]
- Yin, T.; Qin, W. Applications of nanomaterials in potentiometric sensors. TrAC Trends Anal. Chem. 2013, 51, 79–86. [Google Scholar] [CrossRef]
- Lerdsri, J.; Upan, J.; Jakmunee, J. Nafion mixed carbon nanotube modified screen-printed carbon electrode as a disposable electrochemical sensor for quantification of Amitraz in honey and longan samples. Electrochim. Acta 2022, 410, 140050. [Google Scholar] [CrossRef]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Wu, B.; Hou, S.; Xue, Y.; Chen, Z.Z. Electrodeposition–assisted assembled multilayer films of gold nanoparticles and glucose oxidase onto polypyrrole-reduced graphene oxide matrix and their electrocatalytic activity toward glucose. Nanomaterials 2018, 8, 993. [Google Scholar] [CrossRef]
- Shahdost-Fard, F.; Roushani, M. Impedimetric detection of trinitrotoluene using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine. Microchim. Acta 2017, 184, 3997–4006. [Google Scholar] [CrossRef]
- Kim, J.H.; Suh, Y.J.; Park, D.; Yim, H.; Kim, H.; Kim, H.J.; Yoon, D.S.; Hwang, K.S. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed. Eng. Lett. 2021, 11, 309–334. [Google Scholar] [CrossRef]
- Morrison, D.W. Clinical Applications of Nanostructures of the chapter. In Biomedical Nanostructures; Gonsalves, K.E., Laurencin, C.L., Halberstadt, C.R., Nair, L.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Yan, D.; Bazant, M.Z.; Biesheuvel, P.M.; Pugh, M.C.; Dawson, F.P. Theory of linear sweep voltammetry with diffuse charge: Unsupported electrolytes, thin films, and leaky membranes. Phys. Rev. E 2017, 95, 033303. [Google Scholar] [CrossRef]
- Gomes, E.C.; Ribeiro, C.L.; Santos, V.O., Jr.; Paterno, L.G. Differential pulse voltammetric detection of acetaminophen using nickel phthalocyanine/CeO2-modified ITO electrodes. Chemosensors 2023, 11, 154. [Google Scholar] [CrossRef]
- Lee, I.; Luo, X.; Cui, X.T.; Yun, M. Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosens. Bioelectron. 2011, 26, 3297–3302. [Google Scholar] [CrossRef]
- Luo, X.; Yao, X.; Zhang, Y.; Zheng, X.; Xie, G.; Cui, Y. Amperometric biosensing system directly powered by button cell battery for lactate. PLoS ONE 2019, 14, e0212943. [Google Scholar] [CrossRef]
- Izadyar, A. Stripping voltammetry at the interface between two immiscible electrolyte solutions: A review. Electroanalysis 2018, 30, 2210–2221. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Urban, G.A. Micro- and nanobiosensors: State of the art and trends. Meas. Sci. Technol. 2008, 20, 012001. [Google Scholar] [CrossRef]
- Gifford, R. Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 2013, 14, 2032–2044. [Google Scholar] [CrossRef] [PubMed]
- MacDiarmid, A.G.; Chiang, J.-C.; Richter, A.F.; Epstein, A.J. Polyaniline: Interconversion of Metallic and Insulating Forms. Synth. Met. 1987, 18, 285–290. [Google Scholar] [CrossRef]
- Genies, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A Historical Survey. Synth. Met. 1990, 36, 139–182. [Google Scholar] [CrossRef]
- Stejskal, J.; Gilbert, R.G. Polyaniline. Preparation of a Conducting Polymer. Pure Appl. Chem. 2002, 74, 857–867. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 10th ed.; W.H. Freeman and Company: New York, NY, USA, 2020. [Google Scholar]
- Idumah, C.I. Novel trends in conductive polymeric nanocomposites and bionanocomposites. Synth. Met. 2021, 273, 116674. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M. Carbon-nanotube modified screen-printed electrodes for amperometric detection of glucose. Anal. Chim. Acta 2003, 511, 33–36. [Google Scholar] [CrossRef]
- Koyun, A.; Aydın, E.B.; Aydın, M.; Sezgintürk, M.K. A novel glucose biosensor based on gold nanoparticles modified screen-printed electrode. J. Electroanal. Chem. 2022, 901, 115747. [Google Scholar]
- Preechaworapun, A.; Chuanuwatanakul, S.; Chailapakul, O. Highly sensitive electrochemical glucose biosensor based on graphene oxide/silver nanoparticles on screen-printed carbon electrode. Sens. Actuators B Chem. 2020, 303, 127233. [Google Scholar]
- Alahi, M.E.E.; Mukhopadhyay, S.C. Development of a novel silver/silver chloride-based nonenzymatic glucose sensor using a screen-printed electrode. Sens. Actuators B Chem. 2017, 245, 243–251. [Google Scholar]
- Zhao, Y.; Li, L.; Wang, Y.; Zhang, J.; Liu, Z.; Wang, P.; Chen, X.; Liu, Y. A novel non-enzymatic glucose sensor based on CuO nanowires modified screen-printed electrode using square wave voltammetry. Electrochim. Acta 2021, 389, 138686. [Google Scholar]
- Damirchi, Z.; Firoozbakhtian, A.; Hosseini, M.; Ganjali, M.R. An enzyme-free Ti3C2/Ni/Sm-LDH-based screen-printed electrode for real-time sweat detection of glucose. Biosens. Bioelectron. 2023, 228, 115986. [Google Scholar]
- Bariya, M.; Nyein, H.Y.Y.; Javey, A. Wearable sweat sensors. Nat. Electron. 2018, 1, 160–171. [Google Scholar] [CrossRef]
- Wen, X.Y.; Yang, X.H.; Ge, Z.X.; Ma, H.Y.; Wang, R.; Tian, F.J.; Teng, P.P.; Gao, S.; Li, K.; Zhang, B.; et al. Self-powered optical fiber biosensor integrated with enzymes for non-invasive glucose sensing. Biosens. Bioelectron. 2024, 253, 8. [Google Scholar] [CrossRef] [PubMed]
Glucose Sensors | Electrochemical Method | Linear Response | LOD | Ref. |
---|---|---|---|---|
Carbon-nanotube modified-SPE | Amperometric | up to 20 mM | 0.1 mM | [43] |
Gold nanoparticles modified-SPE | Cyclic Voltammetry | 0.05–5.0 mM | 0.02 mM | [44] |
Graphene oxide/silver nanoparticles-SPE | Amperometric | 0.1–1.0 mM | 0.05 mM | [45] |
silver/silver chloride-based nonenzymatic-SPE | Cyclic Voltammetry (CV) | 0.1–10 mM | 0.05 mM | [46] |
CuO nanowires modified-SPE | Square Wave Voltammetry (SWV) | 0.1–5.0 mM | 0.05 mM | [47] |
SPE | Square Wave Voltammetry (SWV) | 0.05–2.0 mM | 0.02 mM | [48] |
Enzyme-free Ti3C2/Ni/Sm-LDH-SPE | Linear Sweep Voltammetry (LSV) | 0.001–0.1 mM and 0.25–7.5 mM | 0.24 μM | [49] |
Modified Electrodes | (V) | Linearity (mM) | LOD (µM) | Ref. |
---|---|---|---|---|
PANI-GOX-PPMPBSA/Au | 0.55 ± 0.06 | 0.020–15.0 | 2.9 | [14] |
PANI-GNPs-GOX-PPMP-BSA/Au | 0.79 ± 0.04 | 0.005–6.0 | 1.0 | [15] |
PANI-GOX-PPMP-BSA/GNPs/Au | 0.45 ± 0.04 | 0.001–16.0 | 1.0 | [16] |
PANI-GNPs-GOX-PPMP-BSA/GME | 0.90 ± 0.05 | 0.005–16.0 | 0. 5 | [17] |
PANI-GNPs-GOx-PPMP-BSA/GSPE (SWV) PANI-GNPs-GOx-PPMP-BSA/GSPE (LSV) | 0.58 ± 0.03 0.58 ± 0.05 | 0.0006–6.5 0.001–6.5 | 0.29 0.50 | Current work Current work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadyar, A.; McCain, E.; Hood, E.E. Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods. Sensors 2025, 25, 5974. https://doi.org/10.3390/s25195974
Izadyar A, McCain E, Hood EE. Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods. Sensors. 2025; 25(19):5974. https://doi.org/10.3390/s25195974
Chicago/Turabian StyleIzadyar, Anahita, Ezekiel McCain, and Elizabeth E. Hood. 2025. "Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods" Sensors 25, no. 19: 5974. https://doi.org/10.3390/s25195974
APA StyleIzadyar, A., McCain, E., & Hood, E. E. (2025). Rapid and Sensitive Glucose Detection Using Recombinant Corn Mn Peroxidase and Advanced Voltammetric Methods. Sensors, 25(19), 5974. https://doi.org/10.3390/s25195974