polymers-logo

Journal Browser

Journal Browser

Conductive Polymers for Electronic Devices, Displays and Sensors

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 607

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical and Materials Engineering, Tunghai University, Taichung 407224, Taiwan
Interests: conductive polymer synthesis and applications; biosensor fabrication and applications; diagnostic method development; green chemical process; protein purification; genetic engineering and cancer research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Conductive polymers (ICPs) are fascinating materials due to their remarkable characteristics, such as tunable electric properties, intrinsic redox activity, potential optical anisotropy, and easy fabrication. So far, ICPs have been explored for various applications, including antistatic and conductive films, biosensor fabrication, organic field-effect transistors, transparent organic-based electronic devices, light-emitting and photovoltaic devices, etc. In this Special Issue, we will provide a scientific platform to highlight advancements and innovative applications of conductive polymers in the fields of electronic devices, displays, and sensors. We cordially invite you to submit your latest research findings on these topics.

Prof. Dr. Yesong Gu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • conductive polymers
  • electronic devices
  • displays
  • sensors
  • biosensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5182 KiB  
Article
High Thermoelectric Performance of Flexible and Free-Standing Composite Films Enabled by 3D Inorganic Ag2Se Conductive Networks Filled with Organic PVDF
by Zishuo Xu, Yuejuan Hu, Yuchen Hu, Xianfeng Xiao and Qin Yao
Polymers 2025, 17(7), 972; https://doi.org/10.3390/polym17070972 - 3 Apr 2025
Viewed by 315
Abstract
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of [...] Read more.
Herein, a flexible and free-standing (substrate-free) PVDF/Ag2Se (Polyvinylidene fluoride) composite film was successfully fabricated through a combination of drop-casting and heat treatment. It was observed that when the drop-casted PVDF/Ag2Se composite film was heated above the melting point of PVDF, the small and separated Ag2Se crystalline grains in the composite film grow and interconnect to form a three-dimensional (3D) conductive network to increase the carrier mobility, while the molten PVDF effectively fills the network voids to enhance the flexibility and mechanical strength. As a result, both the electrical conductivity and Seebeck coefficient of the composite films were significantly enhanced after heat treatment. The power factor of the PVDF/Ag2Se composite with a mass ratio of 1:4 at room temperature reached 488.8 μW m−1 K−2, among the best level of Ag2Se- or PVDF-based flexible and free-standing composite films. Bending tests demonstrated the superior flexibility of the hybrid film, with the electrical conductivity decreasing by only 10% after 1000 bending cycles. Additionally, a five-leg thermoelectric device achieved an impressive output power density of 1.75 W m−2 at a temperature difference (∆T) of 30 K. This study proposes an innovative strategy to enhance the thermoelectric performance and free-standing capability of organic-inorganic composite films, while achieving a competitive power factor and advancing the practical application of flexible thermoelectric devices. Full article
(This article belongs to the Special Issue Conductive Polymers for Electronic Devices, Displays and Sensors)
Show Figures

Figure 1

Back to TopTop