Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrument
2.3. Synthesis of Mediators and Polymers
2.4. Fabrication of Electrodes
3. Results
3.1. Structural Characterization of the Mediators
3.2. Electrochemical Properties of Mediators
3.3. Morphological Properties of Electrodes
3.4. Electrochemical Characteristics of PVP(Q)-C2H4OH-Os(dmo-bpy)2Cl/GDH/SPCEs
3.5. Electrochemical Characteristics of PVP(Q)-C2H4OH-Os(dmo-bpy)2Cl/GDH/Silane/Au (MW 160,000)
3.6. Long-Term Test and Serum Sample Test
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CGM | Continuous glucose monitoring |
| GDH | Glucose dehydrogenase |
| GOx | Glucose oxidase |
| BGM | Blood glucose monitoring |
| PEGDGE | Poly(ethylene glycol) diglycidyl ether |
| AA | Ascorbic acid |
| DA | Dopamine hydrochloride |
| UA | Uric acid |
| 3-GOPTS | (3-glycidyloxypropyl)trimethoxysilane |
| FAD | Flavin adenine dinucleotide |
| SPCEs | Screen-printed carbon electrodes |
| OHP | Overhead project |
| CV | Cyclic voltammetry |
| MPS | Multi-potential step |
| PVP | Poly(4-Vinylpyridine) |
| PVP(Q) | Quaternized Poly(4-Vinylpyridine) |
References
- Accili, D.; Deng, Z.; Liu, Q. Insulin Resistance in Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2025, 21, 413–426. [Google Scholar] [CrossRef]
- Babel, R.A.; Dandekar, M.P. A Review on Cellular and Molecular Mechanisms Linked to the Development of Diabetes Complications. Curr. Diabetes Rev. 2021, 17, 457–473. [Google Scholar] [CrossRef]
- Park, C.; Le, Q.A. The Effectiveness of Continuous Glucose Monitoring in Patients with Type 2 Diabetes: A Systematic Review of Literature and Meta-Analysis. Diabetes Technol. Ther. 2018, 20, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Maurya, P.K.; Chandra, P. Fundamentals and Commercial Aspects of Nanobiosensors in Point-of-Care Clinical Diagnostics. 3 Biotech 2018, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Katey, B.; Voiculescu, I.; Penkova, A.N.; Untaroiu, A. A Review of Biosensors and Their Applications. ASME Open J. Eng. 2023, 2, 020201. [Google Scholar] [CrossRef]
- Tetyana, P.; Shumbula, P.M.; Njengele-Tetyana, Z.; Tetyana, P.; Shumbula, P.M.; Njengele-Tetyana, Z. Biosensors: Design, Development and Applications. In Nanopores; IntechOpen: London, UK, 2021; ISBN 978-1-83880-210-3. [Google Scholar]
- Min, S.; Geng, H.; He, Y.; Xu, T.; Liu, Q.; Zhang, X. Minimally and Non-Invasive Glucose Monitoring: The Road toward Commercialization. Sens. Diagn. 2025, 4, 370–396. [Google Scholar] [CrossRef]
- Pohanka, M. Piezoelectric Chemosensors and Biosensors in Medical Diagnostics. Biosensors 2025, 15, 197. [Google Scholar] [CrossRef]
- Maier, I.; Morgan, M.R.A.; Lindner, W.; Pittner, F. Optical Resonance-Enhanced Absorption-Based near-Field Immunochip Biosensor for Allergen Detection. Anal. Chem. 2008, 80, 2694–2703. [Google Scholar] [CrossRef]
- Zheng, Y.-H.; Hua, T.-C.; Xu, F. A Thermal Biosensor Based on Enzyme Reaction. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 1909–1912. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Tseng, T.-F.; Yang, Y.-L.; Chuang, M.-C.; Lou, S.-L.; Galik, M.; Flechsig, G.-U.; Wang, J. Thermally Stable Improved First-Generation Glucose Biosensors Based on Nafion/Glucose-Oxidase Modified Heated Electrodes. Electrochem. Commun. 2009, 11, 1819–1822. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef]
- Okuda-Shimazaki, J.; Yoshida, H.; Sode, K. FAD Dependent Glucose Dehydrogenases—Discovery and Engineering of Representative Glucose Sensing Enzymes. Bioelectrochemistry 2020, 132, 107414. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xue, W.; Zhao, J.; Bao, Q.; Zhang, K.; Liu, Y.; Li, H. Direct Electrochemistry of Glucose Dehydrogenase-Functionalized Polymers on a Modified Glassy Carbon Electrode and Its Molecular Recognition of Glucose. Int. J. Mol. Sci. 2023, 24, 6152. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Cheng, J.; Tian, L.; Zhang, S.; Wang, Y.; Li, G. Hybridization Chain Reaction-Based Electrochemical Biosensors by Integrating the Advantages of Homogeneous Reaction and Heterogeneous Detection. Biosensors 2023, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Lin, R.; Hua, X.; Churilov, L.; Gaca, M.J.; James, S.; Clarke, P.M.; O’Neal, D.; Ekinci, E.I. A Systematic Review: Cost-Effectiveness of Continuous Glucose Monitoring Compared to Self-Monitoring of Blood Glucose in Type 1 Diabetes. Endocrinol. Diabetes Metab. 2022, 5, e369. [Google Scholar] [CrossRef]
- Lind, N.; Christensen, M.B.; Hansen, D.L.; Nørgaard, K. Comparing Continuous Glucose Monitoring and Blood Glucose Monitoring in Adults with Inadequately Controlled, Insulin-Treated Type 2 Diabetes (Steno2tech Study): A 12-Month, Single-Center, Randomized Controlled Trial. Diabetes Care 2024, 47, 881–889. [Google Scholar] [CrossRef]
- Chavan, S.G.; Rathod, P.R.; Koyappayil, A.; Hwang, S.; Lee, M.-H. Recent Advances of Electrochemical and Optical Point-of-Care Biosensors for Detecting Neurotransmitter Serotonin Biomarkers. Biosens. Bioelectron. 2025, 267, 116743. [Google Scholar] [CrossRef]
- Johnston, L.; Wang, G.; Hu, K.; Qian, C.; Liu, G. Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front. Bioeng. Biotechnol. 2021, 9, 733810. [Google Scholar] [CrossRef]
- Kennemur, J.G. Poly(Vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019, 52, 1354–1370. [Google Scholar] [CrossRef]
- Mavronasou, K.; Zamboulis, A.; Klonos, P.; Kyritsis, A.; Bikiaris, D.N.; Papadakis, R.; Deligkiozi, I. Poly(Vinyl Pyridine) and Its Quaternized Derivatives: Understanding Their Solvation and Solid State Properties. Polymers 2022, 14, 804. [Google Scholar] [CrossRef]
- Soylemez, S.; Yoon, B.; Toppare, L.; Swager, T.M. Quaternized Polymer–Single-Walled Carbon Nanotube Scaffolds for a Chemiresistive Glucose Sensor. ACS Sens. 2017, 2, 1123–1127. [Google Scholar] [CrossRef]
- Ohara, T.J.; Rajagopalan, R.; Heller, A. “Wired” Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances. Anal. Chem. 1994, 66, 2451–2457. [Google Scholar] [CrossRef]
- Seo, T.-W.; Jeon, W.-Y.; Choi, Y.-B. Enhanced Modification between Glucose Dehydrogenase and Mediator Using Epoxy Silane Assembly for Monitoring Glucose. Chemosensors 2023, 11, 485. [Google Scholar] [CrossRef]
- Jonas, E.; Kuhn, S.; Schlörer, N. Prediction of Chemical Shift in NMR: A Review. Magn. Reson. Chem. MRC 2022, 60, 1021–1031. [Google Scholar] [CrossRef]
- Rudin, A.; O’Driscoll, K.F.; Rumack, M.S. Use of n.m.r. Data to Calculate Copolymer Reactivity Ratios. Polymer 1981, 22, 740–747. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting Zeta Potential, the Key Feature of Interfacial Phenomena, with Applications and Recent Advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Hambly, B.P.; Sheppard, J.B.; Pendley, B.D.; Lindner, E. Voltammetric Determination of Diffusion Coefficients in Polymer Membranes: Guidelines to Minimize Errors. Electroanalysis 2018, 30, 681–689. [Google Scholar] [CrossRef]
- Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Pajkossy, T.; Ceblin, M.U.; Mészáros, G. Dynamic Electrochemical Impedance Spectroscopy for the Charge Transfer Rate Measurement of the Ferro/Ferricyanide Redox Couple on Gold. J. Electroanal. Chem. 2021, 899, 115655. [Google Scholar] [CrossRef]
- Mohamed, I.M.A.; Kanagaraj, P.; Yasin, A.S.; Iqbal, W.; Liu, C. Electrochemical Impedance Investigation of Urea Oxidation in Alkaline Media Based on Electrospun Nanofibers towards the Technology of Direct-Urea Fuel Cells. J. Alloys Compd. 2020, 816, 152513. [Google Scholar] [CrossRef]
- Azila, A.A.; Barbari, T.; Searson, P. Poly(Vinyl Alcohol): A Potential Matrix for Glucose Oxidase Immobilization? Med. J. Malaysia 2004, 59 (Suppl. SB), 51–52. [Google Scholar]
- Wu, S.; Wu, S.; Zhang, X.; Feng, T.; Wu, L. Chitosan-Based Hydrogels for Bioelectronic Sensing: Recent Advances and Applications in Biomedicine and Food Safety. Biosensors 2023, 13, 93. [Google Scholar] [CrossRef]
- Aoki, A.; Rajagopalan, R.; Heller, A. Effect of Quaternization on Electron Diffusion Coefficients for Redox Hydrogels Based on Poly(4-Vinylpyridine). J. Phys. Chem. 1995, 99, 5102–5110. [Google Scholar] [CrossRef]















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.Y.; Seo, T.-W.; Choi, Y.-B.; Jeon, W.-Y. Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection. Polymers 2025, 17, 2874. https://doi.org/10.3390/polym17212874
Cho YY, Seo T-W, Choi Y-B, Jeon W-Y. Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection. Polymers. 2025; 17(21):2874. https://doi.org/10.3390/polym17212874
Chicago/Turabian StyleCho, Yun Yeong, Tae-Won Seo, Young-Bong Choi, and Won-Yong Jeon. 2025. "Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection" Polymers 17, no. 21: 2874. https://doi.org/10.3390/polym17212874
APA StyleCho, Y. Y., Seo, T.-W., Choi, Y.-B., & Jeon, W.-Y. (2025). Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection. Polymers, 17(21), 2874. https://doi.org/10.3390/polym17212874
