Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Experimental Conditions
2.3. Fabrication of the hPG/Au, PANI/hPG/Au, and PANI-Pt/hPG/Au Electrodes
2.4. Material Characterisation
2.5. Assessing the Performance of the Nanocomposite Electrodes
3. Result and Discussion
3.1. Physical Characterisation
3.2. Electrochemical Characterisation of the Electrodes
3.3. Assessing the Stability of the Electrodes in PB and SIF
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nor, N.M.; Ridhuan, N.S.; Razak, K.A. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode. Biosensors 2022, 12, 1136. [Google Scholar] [CrossRef]
- Skroce, K.; Zignoli, A.; Fontana, F.Y.; Maturana, F.M.; Lipman, D.; Tryfonos, A.; Riddell, M.C.; Zisser, H.C. Real World Interstitial Glucose Profiles of a Large Cohort of Physically Active Men and Women. Sensors 2024, 24, 744. [Google Scholar] [CrossRef] [PubMed]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose Sensing for Diabetes Monitoring: Recent Developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Reddy, V.S.; Agarwal, B.; Ye, Z.; Zhang, C.; Roy, K.; Chinnappan, A.; Narayan, R.J.; Ramakrishna, S.; Ghosh, R. Recent Advancement in Biofluid-Based Glucose Sensors Using Invasive, Minimally Invasive, and Non-Invasive Technologies: A Review. Nanomaterials 2022, 12, 1082. [Google Scholar] [CrossRef]
- Nemati, S.S.; Dehghan, G.; Rashtbari, S.; Tan, T.N.; Khataee, A. Enzyme-based and enzyme-free metal-based glucose biosensors: Classification and recent advances. Microchem. J. 2023, 193, 109038. [Google Scholar] [CrossRef]
- Chitare, Y.M.; Jadhav, S.B.; Pawaskar, P.N.; Magdum, V.V.; Gunjakar, J.L.; Lokhande, C.D. Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors. Ind. Eng. Chem. Res. 2021, 60, 18195–18217. [Google Scholar] [CrossRef]
- Govindaraj, M.; Srivastava, A.; Muthukumaran, M.K.; Tsai, P.-C.; Lin, Y.-C.; Raja, B.K.; Rajendran, J.; Ponnusamy, V.K.; Selvi, J.A. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 2023, 253, 126680. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Zheng, G.; Feng, W.; Wang, P.; Gao, J.; Liu, J.; Wang, M.; Wang, Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. Small 2022, 19, e2205924. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Li, Y.; Wen, Z.; Peng, X.; He, Y.; Hou, Y.; Fan, J.; Zang, G.; Zhang, Y. A wearable non-enzymatic sensor for continuous monitoring of glucose in human sweat. Talanta 2024, 278, 126499. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Solino, C.; Bernalte, E.; Metcalfe, B.; Moschou, D.; Di Lorenzo, M. Power generation and autonomous glucose detection with an integrated array of abiotic fuel cells on a printed circuit board. J. Power Sources 2020, 472, 228530. [Google Scholar] [CrossRef]
- Gonzalez-Solino, C.; Bernalte, E.; Bayona Royo, C.; Bennett, R.; Leech, D.; Di Lorenzo, M. Self-Powered Detection of Glucose by Enzymatic Glucose/Oxygen Fuel Cells on Printed Circuit Boards. ACS Appl. Mater. Interfaces 2021, 13, 26704–26711. [Google Scholar] [CrossRef] [PubMed]
- Mahobiya, S.K.; Balayan, S.; Chauhan, N.; Rosario, W.; Kuchhal, N.K.; Islam, S.; Jain, U. Fabricating a rapid and low-cost electrochemical biosensor with imprints of glycated albumin molecules to detect diabetes using bimetallic Au-Pt nanoparticles on μSPE. Appl. Surf. Sci. Adv. 2023, 16, 100425. [Google Scholar] [CrossRef]
- Dong, L.; Ren, S.; Zhang, X.; Yang, Y.; Wu, Q.; Lei, T. In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing. Carbohydr. Polym. 2022, 303, 120463. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly Imprinted Polymers in Electrochemical and Optical Sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Feleni, U. Electroconductive Green Metal-polyaniline Nanocomposites: Synthesis and Application in Sensors. Electroanalysis 2022, 35, e202100636. [Google Scholar] [CrossRef]
- Diouf, A.; Bouchikhi, B.; El Bari, N. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Mater. Sci. Eng. C 2019, 98, 1196–1209. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, M.; Yan, Z.; Chen, J. Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites. Microchem. J. 2020, 152, 104266. [Google Scholar] [CrossRef]
- Shakeel, N.; Perveen, R.; Ahamed, M.I.; Ahmad, A. Inamuddin Cherry-like Pt@Fe3O4 decorated MWCNT/PANI nanohybrid based bioanode for glucose biofuel cell application. Fuel 2023, 341, 127579. [Google Scholar] [CrossRef]
- Qiu, J.; Shi, L.; Liang, R.; Wang, G.; Xia, X. Controllable Deposition of a Platinum Nanoparticle Ensemble on a Polyaniline/Graphene Hybrid as a Novel Electrode Material for Electrochemical Sensing. Chem.–A Eur. J. 2012, 18, 7950–7959. [Google Scholar] [CrossRef]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R. Minimally-invasive Microneedle-based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid. Electroanalysis 2019, 31, 374–382. [Google Scholar] [CrossRef]
- Niyazi, A.; Metcalfe, B.; Leese, H.S.; Di Lorenzo, M. One-step polyaniline-platinum nanoparticles grafting on porous gold anode electrodes for high-performance glucose fuel cells. J. Power Sources 2025, 654, 237815. [Google Scholar] [CrossRef]
- He, F.; Qiao, Z.; Qin, X.; Chao, L.; Tan, Y.; Xie, Q.; Yao, S. Dynamic gas bubble template electrodeposition mechanisms and amperometric glucose sensing performance of three kinds of three-dimensional honeycomb-like porous nano-golds. Sensors Actuators B: Chem. 2019, 296, 126679. [Google Scholar] [CrossRef]
- Sharma, S.K.; Pasricha, R.; Weston, J.; Blanton, T.; Jagannathan, R. Synthesis of Self-Assembled Single Atomic Layer Gold Crystals-Goldene. ACS Appl. Mater. Interfaces 2022, 14, 54992–55003. [Google Scholar] [CrossRef] [PubMed]
- Ly, L.Q.; Bonvicini, S.N.; Shi, Y. Platinum Nanoparticle Formation by Pulsed Laser-induced Dewetting and Its Application as Catalyst in Silicon Nanowire Growth. J. Phys. Chem. C 2025, 129, 4553–4564. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.S.; Park, J.M.; Lee, S.; Hong, S.J.; Park, J.S.; Park, K.-H. Fabrication of Nanocomposites Complexed with Gold Nanoparticles on Polyaniline and Application to Their Nerve Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 30750–30760. [Google Scholar] [CrossRef] [PubMed]
- Alipour, A.; Lakouraj, M.M.; Tashakkorian, H. Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Wittstock, G.; Bäumer, M.; Dononelli, W.; Klüner, T.; Lührs, L.; Mahr, C.; Moskaleva, L.V.; Oezaslan, M.; Risse, T.; Rosenauer, A.; et al. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem. Rev. 2023, 123, 6716–6792. [Google Scholar] [CrossRef]
- Niyazi, A.; Metcalfe, B.; Leese, H.S.; Di Lorenzo, M. Enhanced stability of highly porous nanostructured gold anodes via polyaniline coating for abiotic glucose fuel cell. Electrochimica Acta 2024, 508, 145281. [Google Scholar] [CrossRef]
- Neha, N.; Rafaïdeen, T.; Faverge, T.; Maillard, F.; Chatenet, M.; Coutanceau, C. Revisited Mechanisms for Glucose Electrooxidation at Platinum and Gold Nanoparticles. Electrocatalysis 2022, 14, 121–130. [Google Scholar] [CrossRef]
- Hua, X.; Xia, H.-L.; Long, Y.-T. Revisiting a classical redox process on a gold electrode by operando ToF-SIMS: Where does the gold go? Chem. Sci. 2019, 10, 6215–6219. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, Y.; Yu, Z.; Yang, Y.; Yan, C.; Huang, J. Revisiting the Electrochemical Impedance Spectroscopy of Porous Electrodes in Li-ion Batteries by Employing Reference Electrode. Angew. Chem. Int. Ed. Engl. 2024, 63, e202406054. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tai, N.-H. Carbon nanomaterials and their composites for electrochemical glucose biosensors: A review on fabrication and sensing properties. J. Taiwan Inst. Chem. Eng. 2023, 154, 104957. [Google Scholar] [CrossRef]
- Lipińska, W.; Siuzdak, K.; Karczewski, J.; Dołęga, A.; Grochowska, K. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens. Actuators B Chem. 2021, 330, 129409. [Google Scholar] [CrossRef]
- Lei, L.; Xu, C.; Dong, X.; Ma, B.; Chen, Y.; Hao, Q.; Zhao, C.; Liu, H. Continuous Glucose Monitoring in Hypoxic Environments Based on Water Splitting-Assisted Electrocatalysis. Chemosensors 2023, 11, 149. [Google Scholar] [CrossRef]
- Lichtenberg, J.Y.; Ling, Y.; Kim, S. Non-Specific Adsorption Reduction Methods in Biosensing. Sensors 2019, 19, 2488. [Google Scholar] [CrossRef]
- Schmickler, W.; Santos, E. Adsorption on Metal Electrodes: Examples; Springer: Berlin/Heidelberg, Germany, 2010; pp. 51–65. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xu, H.; Wu, A.; Chen, Y.; Li, G.; Dong, C.; Li, Y.; Mei, C.; Li, S.; et al. Self-plasticized Ca2+-selective electrode with polyaniline and copolymer of aniline and 2,5-dimethoxyaniline as solid contact layers. J. Mater. Sci. 2024, 59, 16129–16140. [Google Scholar] [CrossRef]
- Ramadan, A.; Ramadan, W. Carbon and Metal Doped Polyaniline (PANI) for Energy Storage. In Synthesis and Applications of Nanomaterials and Nanocomposites; Springer Nature Singapore: Singapore, 2023; pp. 331–359. [Google Scholar] [CrossRef]
- Zhai, Q.; Gong, S.; Wang, Y.; Lyu, Q.; Liu, Y.; Ling, Y.; Wang, J.; Simon, G.P.; Cheng, W. Enokitake Mushroom-like Standing Gold Nanowires toward Wearable Noninvasive Bimodal Glucose and Strain Sensing. ACS Appl. Mater. Interfaces 2019, 11, 9724–9729. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Satti, A.T.; Kim, D.; Cho, S. Minimally invasive and continuous glucose monitoring sensor based on non-enzymatic porous platinum black-coated gold microneedles. Electrochim. Acta 2021, 369, 137691. [Google Scholar] [CrossRef]
- Xu, M.; Song, Y.; Ye, Y.; Gong, C.; Shen, Y.; Wang, L.; Wang, L. A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sens. Actuators B Chem. 2017, 252, 1187–1193. [Google Scholar] [CrossRef]
- Devi, L.S.; Paily, R.; Dasmahapatra, A.K. Platinum embedded conducting polyaniline/polyvinyl alcohol hydrogel for enhanced glucose biomolecule detection. Polymer 2024, 317, 127947. [Google Scholar] [CrossRef]
- Maiti, T.K.; Liu, W.; Niyazi, A.; Squires, A.M.; Chattpoadhyay, S.; Di Lorenzo, M. Soft-Template-Based Manufacturing of Gold Nanostructures for Energy and Sensing Applications. Biosensors 2024, 14, 289. [Google Scholar] [CrossRef]
- Lakhdari, D.; Guittoum, A.; Benbrahim, N.; Belgherbi, O.; Berkani, M.; Vasseghian, Y.; Lakhdari, N. A novel non-enzymatic glucose sensor based on NiFe(NPs)–polyaniline hybrid materials. Food Chem. Toxicol. 2021, 151, 112099. [Google Scholar] [CrossRef] [PubMed]
- Farid, A.; Khan, A.S.; Javid, M.; Usman, M.; Khan, I.A.; Ahmad, A.U.; Fan, Z.; Khan, A.A.; Pan, L. Construction of a binder-free non-enzymatic glucose sensor based on Cu@Ni core–shell nanoparticles anchored on 3D chiral carbon nanocoils-nickel foam hierarchical scaffold. J. Colloid Interface Sci. 2022, 624, 320–337. [Google Scholar] [CrossRef]
- Şavk, A.; Aydın, H.; Cellat, K.; Şen, F. A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite. J. Mol. Liq. 2020, 300, 112355. [Google Scholar] [CrossRef]
- Sobahi, N.; Alam, M.; Imran, M.; Khan, M.E.; Mohammad, A.; Yoon, T.; Mehedi, I.M.; Hussain, M.A.; Abdulaal, M.J.; Jiman, A.A. Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance. Molecules 2024, 29, 2439. [Google Scholar] [CrossRef]
- Ahmed, J.; Rashed, A.; Faisal, M.; Harraz, F.A.; Jalalah, M.; Alsareii, S. Novel SWCNTs-mesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor. Appl. Surf. Sci. 2021, 552, 149477. [Google Scholar] [CrossRef]
- Qu, K.; Wang, S.; He, W.; Yin, H.; Wang, L.; Zheng, Y. Ternary metal oxide nanorods (Ni0.5Cu0.5Co2O4) as efficient positive materials for non-enzymatic glucose sensing and fuel cell application. Solid State Sci. 2022, 135, 107070. [Google Scholar] [CrossRef]
- Zeng, G.; Li, W.; Ci, S.; Jia, J.; Wen, Z. Highly Dispersed NiO Nanoparticles Decorating graphene Nanosheets for Non-enzymatic Glucose Sensor and Biofuel Cell. Sci. Rep. 2016, 6, 36454. [Google Scholar] [CrossRef]
- Zhang, E.; Xie, Y.; Ci, S.; Jia, J.; Wen, Z. Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 2016, 81, 46–53. [Google Scholar] [CrossRef]
- Chang, G.; Shu, H.; Huang, Q.; Oyama, M.; Ji, K.; Liu, X.; He, Y. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing. Electrochim. Acta 2015, 157, 149–157. [Google Scholar] [CrossRef]
- Bilal, S.; Ullah, W.; Shah, A.-U.A. Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 2018, 284, 382–391. [Google Scholar] [CrossRef]
- Wang, K.; He, S.; Zhang, B.; Cao, Z.; Zhou, T.; He, J.; Chu, G. Self-Supported 3D PtPdCu Nanowires Networks for Superior Glucose Electro-Oxidation Performance. Molecules 2023, 28, 5834. [Google Scholar] [CrossRef]
- Eswaran, M.; Rahimi, S.; Pandit, S.; Chokkiah, B.; Mijakovic, I. A flexible multifunctional electrode based on conducting PANI/Pd composite for non-enzymatic glucose sensor and direct alcohol fuel cell applications. Fuel 2023, 345, 128182. [Google Scholar] [CrossRef]
Working Electrode Catalyst | Linear Range | Solution | Sensitivity (μA mM−1 cm−2) | Ref. |
---|---|---|---|---|
hPG coated with PANI containing Pt nanoparticles | 0.2–10 mM | SIF | 28.23 ± 2.39 | This work |
hPG coated with PANI containing Pt nanoparticles | 0.1–30 mM | 0.1 M PB solution, pH 7.4 | 95.12 ± 2.54 | This work |
Gold Nanowires | 0–1.15 mM | 10 mM PB, pH 7.4 | 23.72 | [41] |
hPG | 0.3–9 mM | 0.1 M PB, pH 7.4 | 8.8 | [12] |
Highly porous platinum black on Au micro-needles electrode arrays | 1–20 mM | 10× PB, pH = 7.4 | 5.78 ± 0.17 | [42] |
Highly porous platinum black on Au micro-needles electrode arrays | 1–20 mM | SIF | 4.38 ± 0.21 | [42] |
Flexible AuNPs/PANI/carbon cloth integrated electrode | 10.26 μM–10 mM | 0.5 M KOH | 150 | [43] |
Pt decorated PANI/polyvinyl alcohol hydrogel | 1 μM–30 mM | 0.1 M PB, pH 7.4 | 7.364 | [44] |
Nanofeather-like gold film | 2.5–20 mM | 0.1 M PBS solution, pH 7.4 | 9.6 ± 1.5 | [45] |
Electrode | Initial Current (µA cm−2) | Percentage Decrease (%) |
---|---|---|
hPG/Au | 386.89 ± 29.14 | 85.2% |
PANI/hPG/Au | 247.68 ± 9.39 | 2.19% |
PANI-Pt/hPG/Au | 519.86 ± 35.03 | 3.94% |
Details on the Nanostructured Electrode | Stability Towards Glucose Oxidation | Testing Time and Conditions * | Ref. |
---|---|---|---|
PANI-Pt/hPG/Au | >96% retention of initial current | Repetitive CA tests in 6 mM glucose, 0.1 M PB, at 37 °C, over 3 months | This work |
PANI-Pt/hPG/Au | >90% retention of initial current | Repetitive CA tests in 6 mM glucose in SIF, at 37 °C, over 3 months | This work |
3D carbon nanocoils on hierarchical macroporous nickel foam/Cu@Ni core–shell nanoparticles | 81% retention of the initial current | Repetitive CA tests over 30 days in 0.1 M NaOH containing 0.1 mM glucose | [47] |
Activated carbon-supported Pt-Ni nanocomposite | 89% retention of the initial current | Measuring changes in the anodic peak current in CV tests at +0.55 V in 0.1 M NaOH containing 0.3 mM glucose | [48] |
PANI decorated with Nickel-Iron nanoparticles | 90% retention of initial current | Repetitive CA tests over 30 days in 0.1 M NaOH and 1 mM glucose | [46] |
PANI Nanofibers | Negligible changes in the redox current | Redox peaks from CV over 7 days in 0.1 M PB containing 2 mM glucose and 10 mM of ascorbic acid, uric acid, and lactate | [49] |
Single-walled carbon nanotubes-porous silicon nanocomposites | 95% retention of initial activity | CV responses recorded in PB over 25 days containing 2 mM glucose | [50] |
Glassy carbon electrode modified with Ni0.5Cu0.5Co2O4 nanorods | No considerable changes | 15 CV cycles in 1 mM glucose, 0.1 M NaOH | [51] |
Graphene nanosheet modified with Nickel oxide | No considerable changes | Monitoring current over time for 10 days under a 100 Ω external load, in 0.1 M KOH containing 0.1 M glucose | [52] |
Cobalt oxide hollow nanododecahedra | 94.6% retention of the initial current | Repetitive CA tests 15 days in 0.1 M KOH with 0.5 mM glucose | [53] |
Pt nanoparticles on graphene | >95% retention of initial current | CV tests for 20 days in 0.1 M PB (pH 7.4), 50 mM glucose | [54] |
Polyaniline decorated with copper-nickel | 89% retention of the initial current | Repetitive CA tests over 15 days in 1 mM glucose, 0.1 M NaOH | [55] |
Pt27Pd47Cu26 alloy nanowires | No considerable changes | CA for 1 h in 0.1 M glucose, 0.5 M KOH | [56] |
Polyimide/Au-polyaniline (PAN)/Pd | >98% retention of redox peaks | 200 consecutive CV cycles in 10 µM glucose, 0.1 M NaOH | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niyazi, A.; Linden, A.; Di Lorenzo, M. Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing. Biosensors 2025, 15, 588. https://doi.org/10.3390/bios15090588
Niyazi A, Linden A, Di Lorenzo M. Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing. Biosensors. 2025; 15(9):588. https://doi.org/10.3390/bios15090588
Chicago/Turabian StyleNiyazi, Asghar, Ashley Linden, and Mirella Di Lorenzo. 2025. "Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing" Biosensors 15, no. 9: 588. https://doi.org/10.3390/bios15090588
APA StyleNiyazi, A., Linden, A., & Di Lorenzo, M. (2025). Robust Pt/Au Composite Nanostructures for Abiotic Glucose Sensing. Biosensors, 15(9), 588. https://doi.org/10.3390/bios15090588