Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = contour error compensation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5081 KiB  
Article
A Coupling Error Compensation Approach Concerning Constrained Space Coordinate Precision of a Heavy-Load Longitudinal and Transversal Swing Table
by Manxian Liu, Rui Bao, Shuo Li, Liang Ji, Suozhuang Li, Xiaoqiang Yan and Wei Li
Appl. Sci. 2025, 15(9), 4693; https://doi.org/10.3390/app15094693 - 24 Apr 2025
Cited by 1 | Viewed by 436
Abstract
In this paper, an accurate error compensation method based on geometric parameter correction and process optimization is proposed for the problem of coupling error in a heavy-load longitudinal and transversal swing table (HLTST) under space constraints, which makes it difficult to control the [...] Read more.
In this paper, an accurate error compensation method based on geometric parameter correction and process optimization is proposed for the problem of coupling error in a heavy-load longitudinal and transversal swing table (HLTST) under space constraints, which makes it difficult to control the position efficiently and accurately. The key geometric parameters of pitch and roll layers are determined according to the machining process and assembly relationship, and the kinematic model is modified to effectively reduce the impact of contour error on the system’s accuracy. A coupling error model is established and its transmission mechanism is analyzed to develop a positioning error compensation strategy. Numerical simulation is employed to examine the distribution law, sensitivity, and volatility of independent error and coupling error. This aids in optimizing the design of the table’s machining process by balancing machining accuracy and economy. After the identification of the error parameters, the error compensation model is verified using the uniform design experimentation. The experimental results demonstrate 96.94% and 65.63% reductions in absolute average errors for the pitch and roll angles, respectively, especially when the maximum positioning error under the maximum load condition is controlled within ±5%, which significantly enhances motion accuracy and robustness under complex working conditions. This provides theoretical support and practical guidance for real-world engineering applications. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
Show Figures

Figure 1

18 pages, 6999 KiB  
Article
Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control
by Minghao Liu, Yongmin Zhu, Hongliang Xu, Weirui Liu, Hui Yang and Xingjun Gao
Machines 2024, 12(9), 593; https://doi.org/10.3390/machines12090593 - 26 Aug 2024
Viewed by 1105
Abstract
This paper focuses on improving the tracking accuracy for servo systems and increasing the contouring performance of precision machining. The dynamic friction during precision machining is analyzed using the LuGre model. The dynamic and static parameters in the friction model are efficiently and [...] Read more.
This paper focuses on improving the tracking accuracy for servo systems and increasing the contouring performance of precision machining. The dynamic friction during precision machining is analyzed using the LuGre model. The dynamic and static parameters in the friction model are efficiently and accurately identified using the improved Drosophila swarm algorithm based on cross-mutation. The friction tracking error can be deduced from the friction state space and an expression is derived. To compensate for the tracking error caused by friction, a feedforward compensation control is designed to avoid signal lag in traditional friction controllers. Furthermore, the factors of multi-axis parameter mismatching that impact the machining profile accuracy are analyzed for multi-axis control. An adaptive cross-coupled control-based pre-compensation strategy of contour error is designed to reduce both the tracking error and the contour error. The effectiveness of the proposed method is validated through several experiments, which demonstrate a remarkable improvement in tracking performance and contour accuracy. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

17 pages, 30409 KiB  
Article
Data Fusion of RGB and Depth Data with Image Enhancement
by Lennard Wunsch, Christian Görner Tenorio, Katharina Anding, Andrei Golomoz and Gunther Notni
J. Imaging 2024, 10(3), 73; https://doi.org/10.3390/jimaging10030073 - 21 Mar 2024
Cited by 2 | Viewed by 3382
Abstract
Since 3D sensors became popular, imaged depth data are easier to obtain in the consumer sector. In applications such as defect localization on industrial objects or mass/volume estimation, precise depth data is important and, thus, benefits from the usage of multiple information sources. [...] Read more.
Since 3D sensors became popular, imaged depth data are easier to obtain in the consumer sector. In applications such as defect localization on industrial objects or mass/volume estimation, precise depth data is important and, thus, benefits from the usage of multiple information sources. However, a combination of RGB images and depth images can not only improve our understanding of objects, capacitating one to gain more information about objects but also enhance data quality. Combining different camera systems using data fusion can enable higher quality data since disadvantages can be compensated. Data fusion itself consists of data preparation and data registration. A challenge in data fusion is the different resolutions of sensors. Therefore, up- and downsampling algorithms are needed. This paper compares multiple up- and downsampling methods, such as different direct interpolation methods, joint bilateral upsampling (JBU), and Markov random fields (MRFs), in terms of their potential to create RGB-D images and improve the quality of depth information. In contrast to the literature in which imaging systems are adjusted to acquire the data of the same section simultaneously, the laboratory setup in this study was based on conveyor-based optical sorting processes, and therefore, the data were acquired at different time periods and different spatial locations. Data assignment and data cropping were necessary. In order to evaluate the results, root mean square error (RMSE), signal-to-noise ratio (SNR), correlation (CORR), universal quality index (UQI), and the contour offset are monitored. With JBU outperforming the other upsampling methods, achieving a meanRMSE = 25.22, mean SNR = 32.80, mean CORR = 0.99, and mean UQI = 0.97. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

20 pages, 6769 KiB  
Article
A High-Precision Planar NURBS Interpolation System Based on Segmentation Method for Industrial Robot
by Xun Liu, Yan Xu, Jiabin Cao, Jinyu Liu and Yanzheng Zhao
Appl. Sci. 2023, 13(24), 13210; https://doi.org/10.3390/app132413210 - 13 Dec 2023
Cited by 4 | Viewed by 1992
Abstract
NURBS curve parameter interpolation is extensively employed in precision trajectory tasks for industrial robots due to its smoother performance compared to traditional linear or circular interpolation methods. The trajectory planning systems for industrial robots necessitate four essential functional modules: first, the spline curve [...] Read more.
NURBS curve parameter interpolation is extensively employed in precision trajectory tasks for industrial robots due to its smoother performance compared to traditional linear or circular interpolation methods. The trajectory planning systems for industrial robots necessitate four essential functional modules: first, the spline curve discretization technique ensuring chord error compliance; second, the contour scanning technique for determining the maximum feasible feed rate for multi-constraint and multi-segment paths; third, the technique for achieving a smooth feed rate profile; and fourth, the continuous curve parameter interpolation technique. Therefore, this paper proposes a high-precision planar NURBS interpolation system for industrial robots. Firstly, a segmentation method for NURBS curves based on a closed-loop chord error constraint is proposed, which segments the original global NURBS curve into a collection of Bezier curves that strictly meet the chord error constraint. Secondly, a bidirectional scanning technique is presented to meet the joint space constraint, establishing an analytical mapping between the tool tip kinematic constraint and the joint kinematic constraint. Then, based on the traditional S-shaped feed rate profile, an adaptive algorithm with a displacement constraint is introduced, considering the real-time speed adjustment requirements of robots. Finally, a compensation interpolation strategy based on arc length parameterization is adopted to solve the accumulated error problem in parameter interpolation. The effectiveness of and potential for enhancing the quality of planar machining of the proposed planar NURBS interpolation system for industrial robots are validated through simulations and experiments. The results demonstrate the system’s applicability and accuracy, and its ability to improve planar machining quality. Full article
(This article belongs to the Topic Robotic Intelligent Machining System)
Show Figures

Figure 1

21 pages, 21604 KiB  
Article
Research on a Method of Robot Grinding Force Tracking and Compensation Based on Deep Genetic Algorithm
by Minghui Meng, Chuande Zhou, Zhongliang Lv, Lingbo Zheng, Wei Feng, Ting Wu and Xuewei Zhang
Machines 2023, 11(12), 1075; https://doi.org/10.3390/machines11121075 - 8 Dec 2023
Cited by 4 | Viewed by 2514
Abstract
In the grinding process of complex-shaped cast workpieces, discrepancies between the workpiece’s contours and their corresponding three-dimensional models frequently lead to deviations in the machining trajectory, resulting in instances of under-grinding or over-grinding. Addressing this challenge, this study introduces an advanced robotic grinding [...] Read more.
In the grinding process of complex-shaped cast workpieces, discrepancies between the workpiece’s contours and their corresponding three-dimensional models frequently lead to deviations in the machining trajectory, resulting in instances of under-grinding or over-grinding. Addressing this challenge, this study introduces an advanced robotic grinding force automatic tracking technique, leveraging a combination of deep neural networks and genetic algorithms. Harnessing the capability of force sensing, our method dynamically recalibrates the grinding path, epitomizing truly flexible grinding. Initially, in line with the prerequisites for force and pose tracking, an impedance control strategy was developed, integrating pose deviations with force dynamics. Subsequently, to enhance steady-state force tracking, we employed a genetic algorithm to compensate for force discrepancies caused by positional errors. This was built upon the foundational concepts of the three-dimensional model, impedance control, and environmental parameter estimation, leading to an optimized grinding trajectory. Following tracking tests, it was observed that the grinding’s normal force was consistently controlled within the bracket of 20 ± 2.5 N. To further substantiate our methodology, a specialized experimental platform was established for grinding complex-shaped castings. Optimized strategies were employed under anticipated forces of 5 N, 10 N, and 15 N for the grinding tests. The results indicated that the contact forces during the grinding process remained stable at 5 ± 1 N, 10 ± 1.5 N, and 15 ± 2 N. When juxtaposed with conventional teaching grinding methods, our approach manifested a reduction in grinding forces by 71.4%, 70%, and 75%, respectively. Post-grinding, the workpieces presented a pronounced enhancement in surface texture, exhibiting a marked increase in surface uniformity. Surface roughness metrics, originally recorded at 17.5 μm, 17.1 μm, and 18.7 μm, saw significant reductions to 1.5 μm, 1.6 μm, and 1.4 μm, respectively, indicating reductions by 76%, 73%, and 78%. Such outcomes not only meet the surface finishing standards for complex-shaped castings but also offer an efficacious strategy for robot-assisted flexible grinding. Full article
(This article belongs to the Topic Robotic Intelligent Machining System)
Show Figures

Figure 1

17 pages, 1571 KiB  
Article
A Feedrate Planning Method in CNC System Based on Servo Response Error Model
by Baoquan Liu, Haoming Zhang, Yi Liu and Maomao Lu
Electronics 2023, 12(14), 3150; https://doi.org/10.3390/electronics12143150 - 20 Jul 2023
Cited by 4 | Viewed by 1869
Abstract
Reducing servo response error and further making reduction on contour error is crucial for high-precision computer numerical control (CNC) machine tools. For a permanent magnet synchronous motor (PMSM) servo system, there is always a response lag in feedrate tracking, which would introduce response [...] Read more.
Reducing servo response error and further making reduction on contour error is crucial for high-precision computer numerical control (CNC) machine tools. For a permanent magnet synchronous motor (PMSM) servo system, there is always a response lag in feedrate tracking, which would introduce response error into the machining trajectory. Therefore, it is necessary to improve the performance of feedrate planning and interpolation for trajectory path. In this paper, a novel contour error compensation strategy is proposed. Compared with the mainstream methods, the proposed method offers a simplified alternative to existing contour error estimation techniques. Through a three-closed-loop control structure of a PMSM servo system, a response error model is founded. Afterwards, an improved S-model feedrate planning method is introduced according to the servo response error compensation. This predicted error is subsequently compensated in each interpolation cycle, resulting in a reduction of contour error. Finally, simulations and experiments are performed to demonstrate that the contour error can be reduced in both the ‘∞’-shaped Non-Uniform Rational B-Spline (NURBS) curve path and the butterfly-shaped NURBS curve path using the proposed method. Full article
Show Figures

Figure 1

32 pages, 12976 KiB  
Article
A New Medical Analytical Framework for Automated Detection of MRI Brain Tumor Using Evolutionary Quantum Inspired Level Set Technique
by Saad M. Darwish, Lina J. Abu Shaheen and Adel A. Elzoghabi
Bioengineering 2023, 10(7), 819; https://doi.org/10.3390/bioengineering10070819 - 9 Jul 2023
Cited by 5 | Viewed by 3198
Abstract
Segmenting brain tumors in 3D magnetic resonance imaging (3D-MRI) accurately is critical for easing the diagnostic and treatment processes. In the field of energy functional theory-based methods for image segmentation and analysis, level set methods have emerged as a potent computational approach that [...] Read more.
Segmenting brain tumors in 3D magnetic resonance imaging (3D-MRI) accurately is critical for easing the diagnostic and treatment processes. In the field of energy functional theory-based methods for image segmentation and analysis, level set methods have emerged as a potent computational approach that has greatly aided in the advancement of the geometric active contour model. An important factor in reducing segmentation error and the number of required iterations when using the level set technique is the choice of the initial contour points, both of which are important when dealing with the wide range of sizes, shapes, and structures that brain tumors may take. To define the velocity function, conventional methods simply use the image gradient, edge strength, and region intensity. This article suggests a clustering method influenced by the Quantum Inspired Dragonfly Algorithm (QDA), a metaheuristic optimizer inspired by the swarming behaviors of dragonflies, to accurately extract initial contour points. The proposed model employs a quantum-inspired computing paradigm to stabilize the trade-off between exploitation and exploration, thereby compensating for any shortcomings of the conventional DA-based clustering method, such as slow convergence or falling into a local optimum. To begin, the quantum rotation gate concept can be used to relocate a colony of agents to a location where they can better achieve the optimum value. The main technique is then given a robust local search capacity by adopting a mutation procedure to enhance the swarm’s mutation and realize its variety. After a preliminary phase in which the cranium is disembodied from the brain, tumor contours (edges) are determined with the help of QDA. An initial contour for the MRI series will be derived from these extracted edges. The final step is to use a level set segmentation technique to isolate the tumor area across all volume segments. When applied to 3D-MRI images from the BraTS’ 2019 dataset, the proposed technique outperformed state-of-the-art approaches to brain tumor segmentation, as shown by the obtained results. Full article
(This article belongs to the Special Issue Novel MRI Techniques and Biomedical Image Processing)
Show Figures

Figure 1

14 pages, 1078 KiB  
Article
Adaptive Backlash Compensation for CNC Machining Applications
by Lu Gan, Liuping Wang and Fei Huang
Machines 2023, 11(2), 193; https://doi.org/10.3390/machines11020193 - 1 Feb 2023
Cited by 8 | Viewed by 5205
Abstract
The mechanical transmission employed inside the computer numerical control (CNC) machine electromechanical system usually has an inherent backlash. As a position-controlled system is commonly used for the electromechanical system, the backlash limits the performance of the motion control system due to its nonlinearity [...] Read more.
The mechanical transmission employed inside the computer numerical control (CNC) machine electromechanical system usually has an inherent backlash. As a position-controlled system is commonly used for the electromechanical system, the backlash limits the performance of the motion control system due to its nonlinearity and discontinuity. This paper proposes an effective method to adaptively detect and compensate for the backlash effect in real time, in which the end-effect load position of the CNC machine is estimated and controlled by the position-controlled servo system, in order to eliminate the influence of backlash on the contour path performance. The simulation results obtained from the model of a realistic CNC machine show the successful elimination of the error between the reference and the end-effector position and a significant improvement in the control system performance. Full article
(This article belongs to the Special Issue Recent Trends in Robot Motion Planning and Control)
Show Figures

Figure 1

18 pages, 21081 KiB  
Article
Five-Axis Contour Error Control Based on Numerical Control Data
by Jiangang Li, Ruijie Yue and Yiming Fei
Machines 2023, 11(1), 85; https://doi.org/10.3390/machines11010085 - 10 Jan 2023
Cited by 2 | Viewed by 2737
Abstract
Improving contour accuracy is one of the significant goals of industrial machining. This paper proposes a contour error estimation and compensation algorithm for five-axis computer numerical control (CNC) machine tools based on modified numerical control (NC) codes. The expected path analyzed by NC [...] Read more.
Improving contour accuracy is one of the significant goals of industrial machining. This paper proposes a contour error estimation and compensation algorithm for five-axis computer numerical control (CNC) machine tools based on modified numerical control (NC) codes. The expected path analyzed by NC data and the actual trajectory collected by sensors are spatially mapped by the hidden Markov model (HMM). Next, an evaluation function that hybrids the tool tip position and tool orientation change trend is proposed as the index of contour error estimation. Finally, spatial iterative learning control (ILC) is used to compensate the contour error, and high-precision machining instructions are obtained after multiple iterations. Experiments with different trajectories are performed on a five-axis platform to verify the proposed algorithm’s effectiveness. The results show that the proposed algorithm without using planned trajectories, has the same good control effect as traditional methods, which must know the planning trajectory for simple trajectories. At the same time, the method proposed in this paper has better performance than existing algorithms based on tool tip position nearest principle at sharp corners. In conclusion, on the basis of not depending on the planning trajectories, this method has a better compensation effect for the overall accuracy of trajectories and is easier to implement in industrial applications. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

13 pages, 3790 KiB  
Article
Disturbance-Observer-Based Dual-Position Feedback Controller for Precision Control of an Industrial Robot Arm
by Namhyun Kim, Daejin Oh, Jun-Young Oh and Wonkyun Lee
Actuators 2022, 11(12), 375; https://doi.org/10.3390/act11120375 - 14 Dec 2022
Cited by 2 | Viewed by 3265
Abstract
Recently, the fourth industrial revolution has accelerated the application of multiple degrees-of-freedom (DOF) robot arms in various applications. However, it is difficult to utilize robot arms for precision motion control because of their low stiffness. External loads applied to robot arms induce deflections [...] Read more.
Recently, the fourth industrial revolution has accelerated the application of multiple degrees-of-freedom (DOF) robot arms in various applications. However, it is difficult to utilize robot arms for precision motion control because of their low stiffness. External loads applied to robot arms induce deflections in the joints and links, which deteriorates the positioning accuracy. To solve this problem, control methods using a disturbance observer (DOB) with an external sensory system have been developed. However, external sensors are expensive and have low reliability because of noise and reliance on the surrounding environment. A disturbance-observer-based dual-position feedback (DOB-DPF) controller is proposed herein to improve the positioning accuracy by compensating for the deflections in real time using only an internal sensor. The DOB was designed to derive the unpredictable disturbance torque applied to each joint using the command voltage generated by the position controller. The angular deflection of each joint was calculated based on the disturbance torque and joint stiffness, which were identified experimentally. The DPF controller was designed to control the joint motor while simultaneously compensating for angular deflection. A five-DOF robot arm testbed with a position controller was constructed to verify the proposed controller. The contouring performance of the DOB-DPF controller was compared with that of a conventional position controller with an external load applied to the end effector. The increases in the root mean square values of the contour errors were 1.71 and 0.12 mm with a conventional position controller and the proposed DOB-DPF controller, respectively, after a 2.2 kg weight was applied to the end effector. The results show that the contour error caused by the external load is effectively compensated for by the DOB-DPF controller without an external sensor. Full article
(This article belongs to the Special Issue Modeling, Optimization and Control of Robotic Systems)
Show Figures

Figure 1

25 pages, 4866 KiB  
Article
Adaptive Neural Network Global Nonsingular Fast Terminal Sliding Mode Control for a Real Time Ground Simulation of Aerodynamic Heating Produced by Hypersonic Vehicles
by Xiaodong Lv, Guangming Zhang, Mingxiang Zhu, Huimin Ouyang, Zhihan Shi, Zhiqing Bai and Igor V. Alexandrov
Energies 2022, 15(9), 3284; https://doi.org/10.3390/en15093284 - 30 Apr 2022
Cited by 11 | Viewed by 2740
Abstract
This paper presents a strategy for a thermal-structural test with quartz lamp heaters (TSTQLH), combined with an ultra-local model, a closed-loop controller, a linear extended state observer (LESO), and an auxiliary controller. The TSTQLH is a real time ground simulation of aerodynamic heating [...] Read more.
This paper presents a strategy for a thermal-structural test with quartz lamp heaters (TSTQLH), combined with an ultra-local model, a closed-loop controller, a linear extended state observer (LESO), and an auxiliary controller. The TSTQLH is a real time ground simulation of aerodynamic heating for hypersonic vehicles to optimize their thermal protection systems (TPS). However, lack of a system dynamic model for the TSTQLH results in inaccurate tracking of aerodynamic heating. In addition, during the control process, the TSTQLH has internal uncertainties of resistance and external disturbances. Therefore, it is necessary to establish a mathematical model between controllable α(t) and measurable T1(t). An ultra-local model of model-free control plays a crucial role in simplifying system complexity and reducing high-order terms due to high nonlinearities and strong couplings in the system dynamic model, and a global nonsingular fast terminal sliding mode control (GNFTSMC) is added to an ultra-local model, which is used to guarantee great tracking performance in the sliding phase and fast convergence to the equilibrium state in finite time. Moreover, the LESO is used mainly to estimate all disturbances in real time, and an adaptive neural network (ANN) shows a good approximation property in compensation for estimation errors by using a cubic B-spline function. The fitted curve of the wall temperature in the time sequence represents a reference temperature trajectory from the surface contour of an X-43A’s wing. The comparative results validate that the proposed control strategy possesses strong robustness to track the reference temperature trajectory. Full article
(This article belongs to the Special Issue Control in Mechanical-Electrical Energy Conversion System)
Show Figures

Figure 1

16 pages, 4377 KiB  
Article
Cooperative Control for Dual Permanent Magnet Motor System with Unified Nonlinear Predictive Control
by Zhanqing Zhou, Zhengchao Xu, Guozheng Zhang and Qiang Geng
World Electr. Veh. J. 2021, 12(4), 266; https://doi.org/10.3390/wevj12040266 - 17 Dec 2021
Cited by 1 | Viewed by 2641
Abstract
In order to improve the position tracking precision of dual permanent magnet synchronous motor (PMSM) systems, a unified nonlinear predictive control (UNPC) strategy based on the unified modeling of two PMSM systems is proposed in this paper. Firstly, establishing a unified nonlinear model [...] Read more.
In order to improve the position tracking precision of dual permanent magnet synchronous motor (PMSM) systems, a unified nonlinear predictive control (UNPC) strategy based on the unified modeling of two PMSM systems is proposed in this paper. Firstly, establishing a unified nonlinear model of the dual-PMSM system, which contains uncertain disturbances caused by parameters mismatch and external load changes. Then, the position contour error and tracking errors are regarded as the performance index inserted into the cost function, and the single-loop controller is obtained by optimizing the cost function. Meanwhile, the nonlinear disturbance observer is designed to estimate the uncertain disturbances, which is used for feed-forward compensation control. Finally, the proposed strategy is experimentally validated on two 2.3 kW permanent magnet synchronous motors, and the experimental results show that effectiveness and feasibility of proposed strategy. Full article
(This article belongs to the Special Issue Power Converters and Electric Motor Drives)
Show Figures

Figure 1

8 pages, 2079 KiB  
Proceeding Paper
Collaborative Tracking Control Strategy for Autonomous Excavation of a Hydraulic Excavator
by Fattah Hanafi Sheikhha, Ali Afzalaghaeinaeini and Jaho Seo
Eng. Proc. 2021, 10(1), 43; https://doi.org/10.3390/ecsa-8-11333 - 1 Nov 2021
Cited by 2 | Viewed by 2675
Abstract
A hydraulic excavator consists of multiple electrohydraulic actuators (EHA). Due to uncertainties and nonlinearities in EHAs, it is challenging to devise a proper control strategy. To tackle this issue, a major goal of our study is to provide an efficient control strategy to [...] Read more.
A hydraulic excavator consists of multiple electrohydraulic actuators (EHA). Due to uncertainties and nonlinearities in EHAs, it is challenging to devise a proper control strategy. To tackle this issue, a major goal of our study is to provide an efficient control strategy to minimize tracking errors of the bucket tip position for autonomous excavation. To accomplish the goal, the study offers a collaboration of PID and fuzzy controllers that are used to compensate for contour errors and achieve accurate actuator position control, respectively. Co-simulation models including control algorithms and hydraulic components were created using Matlab and Amesim to validate the performance of the designed controllers. Simulations indicate that the proposed method enables achieving accurate tracking control for autonomous excavation with small tracking errors despite the nonlinear characteristics of the hydraulic excavator system. Full article
Show Figures

Figure 1

22 pages, 1483 KiB  
Article
A Spatial Variant Motion Compensation Algorithm for High-Monofrequency Motion Error in Mini-UAV-Based BiSAR Systems
by Zhanze Wang, Feifeng Liu, Simin He and Zhixiang Xu
Remote Sens. 2021, 13(17), 3544; https://doi.org/10.3390/rs13173544 - 6 Sep 2021
Cited by 3 | Viewed by 2523
Abstract
High-frequency motion errors can drastically decrease the image quality in mini-unmanned-aerial-vehicle (UAV)-based bistatic synthetic aperture radar (BiSAR), where the spatial variance is much more complex than that in monoSAR. High-monofrequency motion error is a special BiSAR case in which the different motion errors [...] Read more.
High-frequency motion errors can drastically decrease the image quality in mini-unmanned-aerial-vehicle (UAV)-based bistatic synthetic aperture radar (BiSAR), where the spatial variance is much more complex than that in monoSAR. High-monofrequency motion error is a special BiSAR case in which the different motion errors from transmitters and receivers lead to the formation of monofrequency motion error. Furthermore, neither of the classic processors, BiSAR and monoSAR, can compensate for the coupled high-monofrequency motion errors. In this paper, a spatial variant motion compensation algorithm for high-monofrequency motion errors is proposed. First, the bistatic rotation error model that causes high-monofrequency motion error is re-established to account for the bistatic spatial variance of image formation. Second, the corresponding parameters of error model nonlinear gradient are obtained by the joint estimation of subimages. Third, the bistatic spatial variance can be adaptively compensated for based on the error of the nonlinear gradient through contour projection. It is suggested based on the simulation and experimental results that the proposed algorithm can effectively compensate for high-monofrequency motion error in mini-UAV-based BiSAR system conditions. Full article
Show Figures

Graphical abstract

27 pages, 8237 KiB  
Article
The Influence of Image Processing and Layer-to-Background Contrast on the Reliability of Flatbed Scanner-Based Characterisation of Additively Manufactured Layer Contours
by David Blanco, Pedro Fernández, Alejandro Fernández, Braulio J. Alvarez and José Carlos Rico
Appl. Sci. 2021, 11(1), 178; https://doi.org/10.3390/app11010178 - 27 Dec 2020
Cited by 6 | Viewed by 2449
Abstract
Flatbed scanners (FBSs) provide non-contact scanning capabilities that could be used for the on-machine verification of layer contours in additive manufacturing (AM) processes. Layer-wise contour deviation assessment could be critical for dimensional and geometrical quality improvement of AM parts, because it would allow [...] Read more.
Flatbed scanners (FBSs) provide non-contact scanning capabilities that could be used for the on-machine verification of layer contours in additive manufacturing (AM) processes. Layer-wise contour deviation assessment could be critical for dimensional and geometrical quality improvement of AM parts, because it would allow for close-loop error compensation strategies. Nevertheless, contour characterisation feasibility faces many challenges, such as image distortion compensation or edge detection quality. The present work evaluates the influence of image processing and layer-to-background contrast characteristics upon contour reconstruction quality, under a metrological perspective. Considered factors include noise filtering, edge detection algorithms, and threshold levels, whereas the distance between the target layer and the background is used to generate different contrast scenarios. Completeness of contour reconstruction is evaluated by means of a coverage factor, whereas its accuracy is determined by comparison with a reference contour digitised in a coordinate measuring machine. Results show that a reliable contour characterisation can be achieved by means of a precise adjustment of image processing parameters under low layer-to-background contrast variability. Conversely, under anisotropic contrast conditions, the quality of contour reconstruction severely drops, and the compromise between coverage and accuracy becomes unbalanced. These findings indicate that FBS-based characterisation of AM layers will demand developing strategies that minimise the influence of anisotropy in layer-to-background contrast. Full article
(This article belongs to the Special Issue Intelligent Processing on Image and Optical Information, Volume II)
Show Figures

Figure 1

Back to TopTop