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Abstract: NURBS curve parameter interpolation is extensively employed in precision trajectory tasks
for industrial robots due to its smoother performance compared to traditional linear or circular
interpolation methods. The trajectory planning systems for industrial robots necessitate four essential
functional modules: first, the spline curve discretization technique ensuring chord error compliance;
second, the contour scanning technique for determining the maximum feasible feed rate for multi-
constraint and multi-segment paths; third, the technique for achieving a smooth feed rate profile;
and fourth, the continuous curve parameter interpolation technique. Therefore, this paper proposes
a high-precision planar NURBS interpolation system for industrial robots. Firstly, a segmentation
method for NURBS curves based on a closed-loop chord error constraint is proposed, which segments
the original global NURBS curve into a collection of Bezier curves that strictly meet the chord error
constraint. Secondly, a bidirectional scanning technique is presented to meet the joint space constraint,
establishing an analytical mapping between the tool tip kinematic constraint and the joint kinematic
constraint. Then, based on the traditional S-shaped feed rate profile, an adaptive algorithm with a
displacement constraint is introduced, considering the real-time speed adjustment requirements of
robots. Finally, a compensation interpolation strategy based on arc length parameterization is adopted
to solve the accumulated error problem in parameter interpolation. The effectiveness of and potential
for enhancing the quality of planar machining of the proposed planar NURBS interpolation system
for industrial robots are validated through simulations and experiments. The results demonstrate the
system’s applicability and accuracy, and its ability to improve planar machining quality.

Keywords: NURBS; parameter interpolation; industrial robot; closed-loop chord error constraint;
S-shaped feed rate profile; bidirectional scanning

1. Introduction

Industrial robot machining systems not only have weak stiffness characteristics com-
pared to traditional numerical control (CNC) machining systems, but also have constraints
on tool path chord error and nonlinear kinematic mapping issues. These are the main
factors that affect machining quality and trajectory accuracy. The purpose of robot body
control and compensation is to reduce the influence of joint weak stiffness on trajectories,
while the purpose of industrial robot interpolation systems is to improve the accuracy and
efficiency of trajectories. Therefore, the adjustment of the feed rate in the industrial robot
curve parameter interpolation system plays a key role in the high-speed and high-precision
machining of molds, aerospace parts, and other applications [1]. Smooth trajectories can
help robots avoid sudden load changes, extend the life of joints, and improve position
control accuracy. On the other hand, discontinuous feed rates can cause vibrations in
the mechanical structure and servo control system, thereby reducing contour accuracy,
affecting trajectory accuracy, and leading to task failures or even accidents [2]. Therefore,
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the research on high-precision trajectory planning and interpolation systems for industrial
robots is of great significance. In order to achieve high-speed and high-precision machining,
many scholars have devoted themselves to studying techniques such as parameter curve
segmentation, feed speed contour adjustment, and parameter curve interpolation. Tradi-
tional flat paths typically use a large number of short line segments instead of the entire
curve, which inevitably leads to discontinuous tangent directions and abrupt changes in
curvature, resulting in a decrease in feed rate. Due to the lack of G1 and G2 continuity
at the junctions of adjacent line segments, rate fluctuations and changes in acceleration
often occur. Nonuniform rational B-spline (NURBS) parameter curves have effectively
addressed the above problems [3] and have become the standard format for free-form
curves and surfaces.

Based on the above issues, the current mainstream research content on planning and in-
terpolation systems can be divided into three aspects. Firstly, there is the estimation method
for NURBS path chord error. Currently, the majority of studies utilize curvature threshold
segmentation techniques, which belong to open-loop chord error control and cannot ensure
that real-time curve interpolation meets the chord error requirements throughout the entire
machining process. Although there have been some studies [4–6] on accurately calculating
chord error, the calculations are quite complex, so approximate estimation methods such as
the second-order penetration circle method [7] are commonly used. Hua et al. [8] proposed
a B-spline approximation scheme method with tool tip position adjustment. NURBS is
divided into several subdivisions according to the discrete curvature. However, it requires
iterative computation of new control points, which is inefficient and alters the original curve
shape. Bi et al. [9] proposed a B-spline fitting scheme taking advantage of the B-spline’s
strong convex hull property. In this process, the knot vectors and control points of curve
segments, exceeding the prescribed tolerance for chord errors, are refined analytically. The
optimization technique [10] fully utilized the tolerance band to minimize the maximum
curvature of a B-spline curve with seven control points by adjusting the positions of two
control points. However, this approach was specifically employed for local transitions.
Ward et al. [11] proposed a novel approach for adaptively discretizing lengthy linear tool-
paths to confine nonlinear interpolation errors. Nevertheless, the existing error models are
not applicable to industrial robots. Recently, Shi et al. [12] constrained the nonlinear errors
in the path in joint space, achieving motion smoothness. However, the drawback is that
the errors in this approach cannot be analytically controlled. By using curvature scanning
to obtain critical points on the curve and dividing the curve into multiple subcurves [13],
it cannot be guaranteed that the chord error in the segmented curves satisfies the given
constraints. Secondly, there is a need for real-time trajectory generation technology that
calculates robot trajectories satisfying kinematic constraints for each axis. Known constraint
parameters are required for feed rate scheduling. Ref. [14] proposes a relatively comprehen-
sive S-shaped feed rate scheduling algorithm (CSFA) with restrictions on jerk, acceleration,
and feed rate. It uses a dynamic forward–backward scanning strategy with restrictions
on chord error, normal/tangential acceleration, jerk, and feed rate. However, in the error
compensation part, a segmented rounding method is used. Although it eliminates the error
in segmented arc length interpolation, it introduces feed rate fluctuations at adjacent spline
connection points and does not consider robot joint constraint issues. Since the bidirectional
scanning cannot guarantee the success of dynamic forward scheduling, ref. [15] introduces
the feed rate bisection method to search for feasible boundary velocities. Although it can
solve the problem of failed dynamic forward scheduling, its execution efficiency is severely
reduced. To compensate for the limitations of unidirectional S-curves in NURBS curve feed
rate scheduling applications, Liu et al. [16] proposed a bidirectional scanning algorithm
that obtains feed rate parameters for key points and considers the rounding error and its
compensation strategy to improve interpolation accuracy. However, this method does not
consider the constraint of a contour error in the middle part of the curve segment, resulting
in the speed exceeding limits in the planned curve.
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To consider the continuous existence of constraints, it is essential to use smooth ve-
locities for trajectory planning. Although the trapezoidal feed rate scheduling method is
simple to implement [17], the discontinuity in acceleration can cause vibrations during
frequent acceleration and deceleration, leading to a decrease in the lifespan of the motion
equipment. The G1 and G2 discontinuities occurring at the junctions of two linear segments
inevitably result in frequent feed rate fluctuations and acceleration variations [18]. There-
fore, toolpath smoothing operations are crucial in numerical control systems to improve
path continuity [19]. To address this problem, many feed rate scheduling methods that
restrict acceleration jumps have been proposed, such as the time-optimal method [20,21],
the sine-shaped method [22], and the S-shaped method [23,24]. Nguyen et al. [25] designed
a systematic approach to design time-optimal S-curve motion profiles. Y. Bai et al. [26]
studied the asymmetric motion properties of feed rate scheduling, as traditional or most
feed rate planning methods rely on symmetric formulas for the start and stop segments,
but the time is not optimized in those cases. Thirdly, for the parametric solution of NURBS
curve interpolation, Shipitalni et al. [27] performed a first-order Taylor expansion treating
the interpolation parameters as a function of time, but the calculation precision is not
high. To improve the calculation precision, Yeh et al. [28] proposed an interpolation point
parameter solution algorithm based on second-order Taylor expansion, but it requires a
large amount of computation, which impacts the real-time capability of the algorithm.
M. Tikhon [29] proposed that within each interpolation period, the maximum feed rate is
determined by the specified chord error and constant material removal rate. In existing
research [30,31], it has been demonstrated that the Taylor expansion method can generate
trajectories identical to the reference method, but feed rate fluctuations are inevitable in
regions with high curvature. An optimization algorithm [32] is proposed to improve the
precision of NURBS curves. This algorithm employs an iterative process to calculate block
displacement, with the NURBS parameter u as the optimization target. However, the re-
quirement to repeatedly compute the accurate value of u results in the inability to perform
online interpolation. Most interpolation methods use Taylor expansion to approximate the
next interpolation parameter.

In response to the above issues, this article proposes a tool speed scheduling and
high-precision interpolation system for industrial robots for NURBS curves. Firstly, a fast
and accurate calculation method for tool path curvature is proposed. The knot insertion
technique is introduced to segment the original tool path into segments based on curvature,
which creates a set of rational Bezier curves. The entire processing curve is ensured to
meet the requirements of the chord error. Secondly, considering the impact of the nonlinear
kinematics of robot joints, a dynamic optimization of the maximum feed rate and maximum
acceleration is conducted during the bidirectional scanning process of the traditional feed
rate extrema curve. This optimization achieves dynamic speed regulation and braking
functions within an adaptive S-shaped feed rate profile. The preset values for the maximum
feed rate and maximum acceleration constraints in bidirectional feed rate scanning are
adjusted, ensuring smooth robot interpolation while adhering to joint kinematic constraint.
Finally, during the curve interpolation stage, a compensation interpolation strategy using
Taylor expansion and arc length parameterization is applied to the segmented NURBS
curve set. The parameter remapping method is used to ensure parameter continuity at the
junction points of adjacent curve segments, without transferring all the original NURBS
control points to the underlying structure. This reduces storage capacity and eliminates
nonlinear errors in interpolation.

The remaining sections of the paper are organized as follows. Section 2 proposes a
method for segmenting NURBS curves into a set of rational Bezier convex curves based on
a closed-loop chord error constraint. Section 3 introduces an improved adaptive S-shaped
feed rate scheduling algorithm, which achieves an adaptive planning mode under a given
displacement. It also presents a method for robot speed control and braking planning under
arbitrary states, enabling smooth speed regulation and braking based on S-shaped feed
rate scheduling. Section 4 proposes a bidirectional feed rate profile scanning algorithm that
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effectively combines robot joint constraints to meet maximum performance requirements.
Section 5 addresses the problem of the continuous interpolation of convex curve sets and
presents a parameter remapping method based on Taylor expansion to ensure parameter
continuity at the junction points of adjacent curves. Section 6 conducts NURBS processing
tests on an industrial robot and provides experiments and simulations, and the conclusion
is given in Section 7.

2. Segment NURBS into Bezier Curves Based on Closed-Loop Chord Error Constraint
2.1. Definition of NURBS Curve and Knot Insertion

This paper uses cubic NURBS curves to describe the planar machining path. The ratio-
nal basis function representation of the NURBS curve equation is expressed as follows [3]:

C(u) =
n
∑

i=0
PiRi,k(u)

Ri,k(u) =
ωi Ni,k(u)

n
∑

j=0
ωi Ni,k(u)

(1)

In the equation, the k-th rational basis function is denoted as Ri,k(u) and has properties
similar to those of the k-th normalized B-spline basis function Ni,k(u), such as normality,
local support, and differentiability. ωi is the weight factor, and the control points are
represented by Pi. Connecting them in order with line segments forms the control polygon.

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, otherwise

Ni,k(u) =
u−ui

ui+k−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u)
i = 0, 1, . . . , n

(2)

The nonuniform knots vector U is given as follows:

U =

0, 0, . . . 0,︸ ︷︷ ︸
k+1

uk+1, . . . , un−k−1, 1, 1, . . . , 1︸ ︷︷ ︸
k+1

 (3)

Although the cubic NURBS curves described above can solve the issue of smoothness
in the path, the currently adopted curvature-based speed limiting technology belongs to
open-loop bow chord error control, which cannot guarantee real-time compliance with
chord error requirements throughout the entire machining process. To address this issue,
this paper proposes a closed-loop chord error control technology for planar NURBS curves
to improve machining quality. Firstly, the knot insertion technique is used to segment the
original NURBS curves based on curvature, dividing the curves into multiple segments of
cubic rational Bezier curves. Then, the parameter points where the curvature is zero are
solved for each curve segment, and a projection algorithm is used to project the curves
onto the coordinate axes. The precise chord error is obtained by differentiating the analytic
cubic rational Bezier formula and obtaining the extreme points.

In order to obtain an analytical set of segmented Bezier curves, it is necessary to
introduce the technique of knot insertion, which is a crucial technique in the fundamental
geometric properties of spline curves. When new knots are inserted into the knot vector
interval of the original spline curve, the equality relationship between the number of control
points and knot s results in an increase in the corresponding number of new control points.
Therefore, the node insertion technique achieves the following. Modification of Local
Properties: By inserting nodes, the local properties of the original spline can be altered,
allowing for the control of local shapes and enhancing local characteristics. This, in turn,
increases the flexibility of the spline; and Generation of Local Beziers: When inserted
knots generate new control points according to a certain rule, the original spline can be
constructed into new local Beziers without altering the shape of the original spline. This
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property is advantageous for locally segmenting the spline into Bezier segments, making
the control of segmented Bezier curves simpler, more convenient, and more efficient.

Therefore, the introduction of node insertion technology not only enhances the lo-
cal characteristics of the original spline but also facilitates the segmentation and con-
trol of the spline, leading to improved efficiency. This paper leverages the character-
istics of node insertion to generate additional control points. When new knots are in-
serted into the node vector interval of the original spline curve, the equation relationship
between the number of control points and the number of nodes leads to an increase
in the corresponding number of new control points. This paper takes advantage of
the knot insertion technique to achieve the segmented rational Bezier subdivision of a
NURBS curve. Assuming the knot vector of the original spline of order k with n con-
trol points is U = [u 0, u1, . . . un+k+1], and u ∈ [u i, ui+1] is the knot to be inserted, then
the new node vector is U = [u 0, u1, . . . , ui, u, ui+1, . . . un+k+1], which can be rewritten as
U = [u 0, u1, . . . , ui, ui+1, . . . un+k+2

]
. The new knot vector determines a set of new spline

basis functions. In 1980, Boehm [33] introduced a method for calculating additional control
points without changing the shape and parameters of the spline curve under the condition
of knot insertion.

Pj = Pj, j = 0, 1, . . . , i− k (4)

Pj = αjPj +
(
1− αj

)
Pj, j = i− k + 1, . . . , i− r (5)

Pj = Pj−1, j = i− r + 1, . . . , n + 1 (6)

αj =
t− tj

tj+k − tj
,
(

0
0
= 0

)
(7)

By using the knot insertion technique, a NURBS curve is segmented into multiple
segments of Bezier curves. The rational fraction of a cubic Bezier curve can be simplified to
the form of a polynomial numerator and denominator:

B(u) =
(

1
w(u)

)[(
1− u3

)
ω0P0 + 3u(1− u)2ω1P1 + 3u2(1− u)ω2P2 + u3ω3P3

]
, 0 ≤ u ≤ 1 (8)

w(u) = (1− u)3ω0 + 3u(1− u)2ω1 + 3u2(1− u)ω2 + u3ω3 (9)

By using the knot insertion method, new control points and node vectors are created
for NURBS by segmenting the NURBS curve into several Bezier curves. Table 1 includes
the NURBS control points and knot vectors assigned in this study, and the results of the
initial segmentation can be found in Figure 1.

Table 1. Bezier control points and node vectors obtained after the initial segmentation.

Curve Types Control Points [xy] Node Vectors

NURBS
[

5 6 11 8 12 11
4 12 10 4 3 9

] [
0 0 0 0 1/3 2/3 1 1 1 1

]
Bezier 1

[
5 6 8.5 9.25
4 12 12 9.5

] [
0 0 0 0 1 1 1 1

]
Bezier 2

[
9.25 10 9 9.5
9.5 8 6 4.75

] [
0 0 0 0 1 1 1 1

]
Bezier 3

[
9.5 10 12 11
4.75 3.5 3 9

] [
0 0 0 0 1 1 1 1

]
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segment NURBS curve into 3 Bezier curves and C.P.1-4 is control points.

2.2. Curve Segment Based on Closed-Loop Chord Error

Although the knot insertion method can transform a NURBS curve into multiple
Bezier curves by inserting new control points without altering the geometric type of the
curve, the subdivided cubic Bezier curves have two types: C and S. Figure 1b shows the
insertion results, where Bezier1 and Bezier3 are in type-C, and Bezier2 is in type-S. For
type-C, there is only one extremum point, while type-S has two extremum points. The
curve can be split into two type-Cs at the point where the curvature is zero. One simple
method to solve this is by projecting the curve parameter u onto the x-axis, in which case
the y-axis represents the distance from the curve to the line, which is the chord error. The
curvature is defined as:

κ =
‖

.
B(u)×

..
B(u)‖

‖
.
B(u)‖

3 (10)

where
.
B(u) and

..
B(u) are the first and second derivatives of the curve, respectively, and

the knot with zero curvature is obtained through Equation (10). Figure 2 shows the
segmentation results.
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zero curvature point; (b) the max value on y-axis of the curve is the chord error.

Finally, according to the set chord error δ, the new Bezier curves are continuously
segmented into halves until the chord error of all Bezier curves meet the requirement.
Figure 3 shows the second segmentation and subsequent iterative segmentation results.
Details can be found in Algorithm 1.
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Figure 3. Simulation for NURBS curve. Each of the adjacent curves are distinguished by different
colors: (a) NURBS curve segmented into type-C curve by zero curvature point; (b) NURBS curve
segmented into 143 type-C curves that satisfy δ = 0.001 mm.

The pseudo-code is proposed as follows to generate the chord error control method:

Algorithm 1: Segmentation of NURBS curve with chord error δc.

Input: Input NURBS curve parameters, Chord error δ

Output: Bezier curves that satisfy the δc
1: knot insertion→ Bezier curve Bi;
2: for i = 1 to Bezier curve number do
3: calculate the parameter u with zero curvature in the type-S curve Bi.
4: calculate the δmax in the type-C curve Bi.
5: If δmax > δc then
6: Bisection method→ segment curve Bi→ 1 Bi, 2Bi;
7: do algorithm 1 for 1Bi;
8: do algorithm 1 for 2Bi;
9: else
10: return 1Bi, 2Bi;
11: end
12: end

3. S-Shaped Feed Rate Profile Generation and Dynamic Speed Adjustment
3.1. S-Shaped Feed Rate Profile

In this section, we introduce the double S-shaped feed rate profile briefly. The S-shaped
ACC/DEC profile, which consists of seven phases (T1, T2, T3, T4, T5, T6, T7), is shown in
Figure 4.
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The parameters include: vs representing the initial feed rate, vspe representing the
operating feed rate, ve representing the final feed rate, S representing the specified dis-
placement, Vmax representing the maximum feed rate (set to vspe), Amax representing the
maximum acceleration, and J representing the maximum jerk. ts is defined as the variable
time, tls is the critical time for acceleration and deceleration, and tsp represents the duration
of constant acceleration during the variable acceleration phase. The corresponding accel-
eration a(t), feed rate v(t), and displacement S(t) can be calculated based on time and the
three acceleration states using the following formulas:

a(t) =


sign(ve − vs)Jt, 0 ≤ t ≤ ts−tsp

2
1
2 sign(ve − vs)J

(
ts − tsp

)
, tr−tsp

2 < t ≤ ts+tsp
2

sign(ve − vs)J(ts − t), ts+tsp
2 < t ≤ ts

(11)

v(t) =



vs +
1
2 sign(ve − vs)Jt2, 0 ≤ t ≤ ts−tsp

2
vs +

1
8 sign(ve − vs)Jt2

ls
+ 1

2 sign(ve − vs)Jtls

(
t− tls

2

)
, ts−tsp

2 < t ≤ ts+tsp
2

vs +
1
4 sign(ve − vs)Jt2

ls
+ 1

2 sign(ve − vs)Jtlstsp − 1
2 sign(ve − vs)J(ts − t)2, ts+tsp

2 < t ≤ ts

(12)

S(t) =



vst + 1
6 sign(ve − vs)Jt3, 0 ≤ t ≤ ts−tsp

2

vst + 1
48 sign(ve − vs)Jt3

ls +
1
8 sign(ve − vs)Jt2

ls

(
t− tls

2

)
+ 1

4 sign(ve − vs)Jtls

(
t− tls

2

)2
, ts−tsp

2 < t ≤ ts+tsp
2

vst + 1
4 sign(ve − vs)J

(
− 1

2 t3
ls −

3
2 t2

lstsp − t2
sptls + t2

lst + 2tlstspt
)

+ 1
6 sign(ve − vs)J(ts − t)3, ts+tsp

2 < t ≤ ts

(13)

The implementation process is as follows:
Step 1: Based on the input motion parameters and the relationship between vs, ve,

and vspe, determine if there is constant linear interpolation. If vs, ve, and vspe are equal,
it indicates that only constant linear interpolation exists in this planning, so proceed to
interpolation with only the constant linear segment d. If the trajectory does not involve
constant linear interpolation, proceed to step 2;

Step 2: According to the relevant formulas mentioned above, calculate the sum of dis-
placements from vs to vspe, and vspe to ve, denoted as S1. Calculate the variable displacement
S2 when directly accelerating from vs to ve, without going through vspe;

Step 3: Based on the parameter relationships described above, perform classification
and judgment, as shown in the flowchart in Figure 5.

3.2. Dynamic Speed Control Planning

Since this paper is based on the simplification of the problem with zero initial and final
accelerations, the S-shaped method cannot achieve real-time transitions from any motion
state to another. Therefore, this paper proposes a dynamic speed control planning that
ensures speed changes and an acceleration reset in the shortest possible time within the
original S-shaped feed rate profile framework.

First, when the initial acceleration is not zero and acceleration replanning is required,
the maximum jerk J needs to be applied in order to make the acceleration become zero.
By planning with the maximum jerk, we can calculate the time ta0 and the corresponding
velocity va0 needed to change the initial acceleration as to zero.
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ta0 =

∣∣∣∣ as

J

∣∣∣∣ (14)

va0 = vs + asta0 +
Jt2

a0
2

(15)

The formulas for interpolating position, feed rate, and acceleration based on jerk are
as follows: 

S(t) = S(0) + (vs + ( as
2 + Jt

6 )t)t
v(t) = vs + (as +

Jt
2 )t

a(t) = as + Jt
(16)

At this point, the acceleration is reduced to zero, but there is still a nonzero feed rate.
In the second step, it is necessary to replan the acceleration to ensure that the feed rate
changes to the desired state with acceleration also being zero.

Sa(vs, ve) =

 (vs + ve)
√

ve−vs
Jmax

ve − vs ≤ Amax
2

Jmax

1
2 (vs + ve)

[
Amax
Jmax

+ (ve−vs)
Amax

]
ve − vs >

Amax
2

Jmax

(17)

Sd(vs, ve) =

 (vs + ve)
√

vs−ve
Jmax

vs − ve ≤ Amax
2

Jmax

1
2 (vs + ve)

[
Amax
Jmax

+ (vs−ve)
Amax

]
vs − ve >

Amax
2

Jmax

(18)
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In the formula, Amax represents the maximum acceleration, and Jmax represents the
maximum jerk. Based on the current vs and the desired ve, a determination is made whether
to accelerate or decelerate. If acceleration is required, Equation (17) is employed. Con-
versely, if deceleration is needed, Equation (18) is used. Sa and Sd denote the displacement
for acceleration and deceleration, respectively. By ensuring an adequate length of displace-
ment for feed rate lookahead, smooth braking can be achieved. Figure 6 illustrates these
two scenarios.
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4. Bidirectional Feed Rate Scanning of S-Shaped Profile

For the processing trajectory of the end effector of the manipulator, its feed rate vector
is obtained by combining the tangential velocities of the tool tip and the tool axis direction,
with its magnitude equal to the feed rate modulus and its direction determined by the
tangential composition of the tool tip spline and the tool axis direction spline. In this study,
the feed rate in the tool axis direction is set to zero. Similarly, the acceleration vector is
obtained by combining the tangential acceleration and the normal acceleration of the tool
tip and the tool axis motion. Therefore, the feed rate vector V and the acceleration vector A
at any point on the processing trajectory of the manipulator‘s end effector can be expressed
as follows:

V = [vτ, 0] (19)

A =

[
aτ +

v2

ρ
n, 0
]

(20)

where the unit tangential at any point on the tool tip spline is denoted as τ, while the
unit normal at any point on the tool tip spline is denoted as n. The curvature radius is
represented by ρ.
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The obtained representation pertains to the feed rate and acceleration of arbitrary
points on the processing trajectory in the task space. However, during the actual machining
process, the known variables are the velocity

.
θ and acceleration

..
θ constraints of each axis

in the joint space. It becomes necessary to make real-time adjustments to the maximum
feed rate and acceleration in the bidirectional velocity scanning, as well as the velocity
extremum at the endpoints, based on the known kinematic constraints in the joint space.
According to the differential kinematic relationship, the following mapping relationships
exist between the velocity and acceleration vectors in the joint space and the task space.

.
θ = Jac

−1V (21)

..
θ = Jac

−1A− Jac
−1 .

Jac

(
Jac
−1V

)
(22)

The feed rate constraints in the bidirectional scanning can be divided into geometric
constraints and time constraints in the task space. Geometric constraints include the max-
imum feed rate Vmax, maximum normal acceleration An,max, and maximum normal jerk
Jn,max. Time constraints consist of the maximum tangential acceleration At,max and maxi-
mum tangential jerk Jt,max. The geometric parameters of the path include the maximum
chord error δ and the curvature κi,max at key points along the curve segment. These pa-
rameters summarizing the tangential velocity constraints in the task space are discussed in
Reference [9]. In this paper, we provide a summary in the bidirectional scanning flowchart
as shown in Figure 7. In the figure, the velocity curve from right to left represents the
backward scanning, and vice versa for the forward scanning.
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In order to simplify calculations, it is common to approximate the feed rate at points
along the path as the maximum or very close to the maximum velocity. Based on this ap-
proximation, the formulas for correcting the maximum tangential feed rate and acceleration
are straightforward. By calculating the corresponding Jacobian matrix Jac and the curve
unit tangent τ, optimized values for the maximum tangential feed rate Vopt

max and maximum
tangential acceleration Aopt

max can be obtained. The formulas are as follows:

Vopt
max = min

(
Vmax,

.
θmax

Jac
−1τ

)
(23)

Aopt
max = min

(
At,max,

..
θmax + J−1

.
J
(

J−1V
)

J−1τ

)
(24)
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Assuming the current iteration is the i-th segment, with a lookahead window
length of N, the end feed rate of the (i − 1)th segment (the start feed rate of the i-th
segment) is denoted as Vend,i−1. The lookahead sublist of segment length is represented as

L(N)
i,list= {L0, L1, · · · , Li, · · · , LN}, and the lookahead sublist of feed rates is denoted as

F(N)
i,list= {F0, F1, · · · , Fi, · · · , FN}. Additionally, the forward scanning feed rate is calculated

as V f
end,i and the backward scanning feed rate as V b

end,i. Considering all velocity constraints
and optimization strategies, the dynamic lookahead bidirectional scanning algorithm
follows the workflow outlined Algorithm 2 below:

Algorithm 2: Bidirectional Scanning.

Input:

Vend,i−1 is the end feed rate of the (i − 1)th segment (the start feed rate of the i-th

segment); L(N)
i,list is the lookahead sublist of segment length; F(N)

i,list is the lookahead sublist
of feed rates; Vmax is the maximum feed rate; At,max/Jt,max are the maximum tangential
acceleration/jerk; δ is the maximum chord error; κi,max is the curvature at key points
along the curve segment; An,max/Jn,max are the maximum normal acceleration/jerk;
Ts is the sampling period.

Output: Vend,i
Step 1: 1.1. If N = 1, stop the lookahead calculation and let Vend,i = 0; Otherwise, go to 1.2.

1.2. Let k = N − 1, V b
end,i = 0;

Step 2:

2.1. L(N)
i,list[0], Vend,i−1, F(N)

i,list[0], Jt,max, At,max, Ts are utilized in the backward scanning,
recursively backtracking from the last segment of the lookahead window to the second
segment, to calculate the end feed rate V b

end,i based on the current segment velocity and
constraints;
2.2. The minimum feed rate under the given geometric constraints, as well as the
kinematic constraints in both the task space and joint space, is assigned as the end feed
rate of the current segment. It is given that

V b
end,,i= min

(
V b

end,,i, Vopt
max, 2

T

√
2δ

κi,max
−δ2,

√
An,max
κi,max

,
√

Jn,max

κ2
i,max

)
Step 3: Let k = k − 1, if k = 0, go to step 4; Otherwise, go to step 2;
Step 4: Let k = 0, V f

end,i = 0;

Step 5:
5.1. L(N)

i,list[k], Vend,i−1, F(N)
i,list[k], Jt,max, At,max, Ts are utilized in the forward scanning,

recursively from the first segment of the lookahead window to the (N − 1)th segment, to
calculate the end feed rate V f

end,i;
5.2. Determine the feed rate at the end of the segment by

V b
end,i= min(V f

end,iV
b

end,i

)
Step 6: Let k = k + 1, and if k = N − 1, stop and derive the result; Otherwise, go to step 4.

In order to ensure the success of bidirectional scanning, the aforementioned strategy
employs a scanning approach with an initial feed rate of zero and the end feed rate of zero.
However, when dynamic lookahead is performed, there may be cases where the initial feed
rate is nonzero. Suppose the initial feed rate for the current segment i, which has achieved
successful planning, is denoted as Vi. By performing a backward scanning to the feed rate
of the (i + 1)th segment, denoted as V b

end,i+1, if the forward scanning based on Vi yields a

feed rate V f
end,i+1 greater than V b

end,i+1, there is a possibility of a planning failure as shown
in Figure 8.

To address this issue, a feed rate bisection method was introduced in [10] to search for
the feasible feed rate Vi+1. While this method resolves the problem of dynamic lookahead
planning failure, it significantly reduces execution efficiency. Whenever the aforementioned
condition occurs, the bisection method is invoked to search for the feasible feed rate Vi+1

between V b
end,i+1 and V f

end,i+1. However, in this paper, an adaptive S-shaped method is
adopted, which allows for dynamic adjustment of the boundary feed rate based on the
relationship between arc length and feed rate. By employing this adaptive S-shaped
method, the optimal feed rate profile can be directly obtained. Consequently, by initiating



Appl. Sci. 2023, 13, 13210 13 of 20

the forward scanning anew based on the current situation, the execution efficiency of the
actual program is improved.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

Algorithm 2: Bidirectional Scanning. 

Input: 

Vend,i-1 is the end feed rate of the (i − 1)th segment (the start feed rate of the i-
th segment); Li,list

(N)  is the lookahead sublist of segment length; Fi,list
(N)  is the 

lookahead sublist of feed rates; Vmax is the maximum feed rate; At,max/Jt,max are 
the maximum tangential acceleration/jerk; δ is the maximum chord error; 
κi,max is the curvature at key points along the curve segment; An,max/Jn,max are 
the maximum normal acceleration/jerk; Ts is the sampling period. 

Output: Vend,i 

Step 1: 1.1. If N = 1, stop the lookahead calculation and let Vend,i = 0; Otherwise, go to 
1.2. 

 1.2. Let k = N − 1, Vend,i
 b  = 0; 

Step 2: 

2.1. Li,list
(N) [0], Vend,i−1, Fi,list

(N) [0], Jt,max, At,max, Ts are utilized in the backward scan-
ning, recursively backtracking from the last segment of the lookahead win-
dow to the second segment, to calculate the end feed rate Vend,i

 b  based on the 
current segment velocity and constraints; 

 

2.2. The minimum feed rate under the given geometric constraints, as well as 
the kinematic constraints in both the task space and joint space, is assigned as 
the end feed rate of the current segment. It is given that 

Vend,i
 b =min Vend,i

 b ,Vmax
opt ,

2
T

2δ
κi,max

-δ2,
An,max

κi,max
,

Jn,max

κi,max
2  

Step 3: Let k = k − 1, if k = 0, go to step 4; Otherwise, go to step 2; 
Step 4: Let k = 0, Vend,i

 f  = 0; 

Step 5: 
5.1. Li,list

(N) [k], Vend,i−1, Fi,list
(N) [k], Jt,max, At,max, Ts are utilized in the forward scanning, 

recursively from the first segment of the lookahead window to the (N − 1)th 
segment, to calculate the end feed rate Vend,i

 f ; 

 
5.2. Determine the feed rate at the end of the segment by 
Vend,i

 b =min(Vend,i
 f Vend,i

 b ) 

Step 6: Let k = k + 1, and if k = N − 1, stop and derive the result; Otherwise, go to step 
4. 

In order to ensure the success of bidirectional scanning, the aforementioned strategy 
employs a scanning approach with an initial feed rate of zero and the end feed rate of 
zero. However, when dynamic lookahead is performed, there may be cases where the in-
itial feed rate is nonzero. Suppose the initial feed rate for the current segment i, which has 
achieved successful planning, is denoted as Vi. By performing a backward scanning to 
the feed rate of the (i + 1)th segment, denoted as Vend,i+1

 b , if the forward scanning based on 
Vi yields a feed rate Vend,i+1

 f  greater than Vend,i+1
 b , there is a possibility of a planning failure 

as shown in Figure 8. 

 
Figure 8. Bidirectional scanning case classification. Figure 8. Bidirectional scanning case classification.

5. NURBS Interpolation

After segmenting the NURBS curve into Bezier curves, the derivative of the Bezier
curve cannot be used directly for Taylor expansion since it does not satisfy the C2 continuity
condition. Thus, each segment of the Bezier curve has to be mapped back to the original
NURBS curve to obtain the parameter continuity defined by the knot vector. Assuming u
as the curve parameter of a discrete Bezier curve and u as the corresponding parameter
on the NURBS curve, u can be expressed as fi(µ), where fi(·) is a mapping function that
maps the NURBS curve parameter u ∈ [m i, ni] to the Bezier curve parameter u ∈ [0,1].
The knot vector interval of the i-th Bezier curve segment, obtained by decomposing the
original NURBS curve through node insertion, is represented by [m i, ni]. Consequently,
the following formula can be derived.

Bi(u) = Bi( fi(µ)) = {xi( fi(µ)), yi( fi(µ)), zi( fi(µ))} (25)

.
Bi(µ) =

.
Bi(u) ·

.
f i(µ) (26)

..
Bi(µ) =

.
Bi(u) ·

..
f i(µ) +

..
Bi(u) ·

( .
f i(u)

)2
(27)

u = fi(µ) =
µ−mi
mi − ni

(28)

.
f i(µ) =

1
ni −mi

,
..
f i(µ) = 0 (29)

Therefore, the relationship between the derivatives of NURBS curves and the deriva-
tives of Bezier curves is:

.
Bi(µ) =

.
Bi(u)

1
ni −mi

(30)

..
Bi(µ) =

..
Bi(u)

1

(mi − ni)
2 (31)

Utilizing the composite Simpson’s rule [34] to calculate the arc length can be perceived
as a continuous iterative process for determining the value of the parameter u. This is
achieved by computing the parameter ui+1, which corresponds to the next position coordi-
nate of the interpolation cycle, based on the current position’s corresponding parameter
ui. Derivatives of the parameter u with respect to time t can be derived, and by expanding
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these first-order derivatives into a second-order Taylor series, a second-order Taylor direct
interpolation formula [35] based on feed rate can be obtained:

..
Bi(µ) =

..
Bi(u)

1

(mi − ni)
2 (32)

ui+1 ≈ ui + T
du
dt

+
T2

2
d2u
dt2 (33)

ui+1 = ui +
TVi

‖B′(ui)‖
+

T2

2

(
Ai

‖B′(ui)‖
−

V2
i 〈B′(ui), B′′ (ui)〉
‖B′(ui)‖4

)
(34)

B′(ui) =
dB(u)

du

∣∣∣∣
u=ui

(35)

B′′ (ui) =
d2B(u)

du2

∣∣∣∣
u=ui

(36)

u(si+1) = u(si) +
du
ds

∣∣∣∣
s=si

∆si +
1
2

d2u
ds2

∣∣∣∣
s=si

∆s2
i (37)

where uk is the curve parameter obtained from the previous interpolation step, and T
represents the interpolation period. ∆si is the arc length increment in the current interval.

The interpolation is directly computed using the anticipated increment u without any
compensatory measures, categorizing it as an open-loop Taylor direct interpolation. To
address the aforementioned issues, initially, the second-order Taylor expansion is employed
to calculate the initial value of the parameter u. Subsequently, an optimization model,
considering both the arc length and parameters, is established:

u(si+1) = u(si) +
du
ds

∣∣∣∣
s=si

∆si +
1
2

d2u
ds2

∣∣∣∣
s=si

∆s2
i (38)

us = arg min
u∈[0,1]

(B(u)− s)2 (39)

The entire system flow is illustrated in Figure 9.
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where uk is the curve parameter obtained from the previous interpolation step, and T rep-
resents the interpolation period. ∆si is the arc length increment in the current interval. 

The interpolation is directly computed using the anticipated increment u without any 
compensatory measures, categorizing it as an open-loop Taylor direct interpolation. To 
address the aforementioned issues, initially, the second-order Taylor expansion is em-
ployed to calculate the initial value of the parameter u. Subsequently, an optimization 
model, considering both the arc length and parameters, is established: 
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The entire system flow is illustrated in Figure 9. 
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Figure 9. Interpolation process of robot NURBS curve motion.
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6. Experiment and Results

In order to verify the algorithm’s robustness, two verification experiments are carried
out in this section. The first one is used to verify the effectiveness of the high-precision
NURBS interpolator proposed in this paper, and the second one is used to verify the
practicality of the proposed robot tool tip and attitude synchronous interpolation.

6.1. NURBS Interpolator for Butterfly Curve

In this section, simulations are conducted to show the effectiveness of the proposed
method. The computer utilized has a CPU: I7-11800H-2.30 GHz (Intel Corporation, Santa
Clara, CA, USA), 64 G-3200 MHZ memory, and the MATLAB (The MathWorks, Natick,
MA, USA) version is 2022b. The plane butterfly NURBS curve (see Figure 10a) is employed
as the test subject for algorithm evaluation. The chord error is set as δ = 0.001 mm.
Figure 10b shows the butterfly curve segmented into a type-C curve by the zero curvature
point, and Figure 10c shows the butterfly curve segmented into 1579 type-C curves that
satisfy δ = 0.001 mm. Each Bezier curve is distinguished by color. In Figure 10d, with
the chord error, the chord value is less than 0.001 mm, while the chord is a hundred times
higher when without chord error control. In Figure 10e,f, respectively, the displacement
and feed rate of the bidirectional feed rate scanning of the S-shaped profile are shown.
Based on these figures, the plant area always has a longer Bezier curve, while the peak part
has a shorter curve, which makes sense.
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Figure 10. Simulation for butterfly NURBS curve: (a) butterfly NURBS curve; (b) curve segmented
into type-C curve by zero curvature point; (c) type-C curves that satisfy δ = 0.001 mm; (d) comparison
with/without chord error constraint; (e) NURBS interpolation displacement; (f) NURBS interpolation
feed rate.

Systematic comparisons are implemented between the proposed method and the other
methods (L.H. [8], X.D. [14], L.F. [32]) mentioned in this paper. The different characteristics
are compared and analyzed in Table 2. Due to the randomness in each run time, the
recorded times in the table represent approximate values within the specified intervals.
The methods employed by X.D. and L.F. fall under the category of open-loop chord error
constraint curve segmentation, thus eliminating the need for iteration and avoiding an
increase in time cost. On the other hand, L.H. and the method proposed in this paper
primarily consume time in curve iteration and segmentation. Despite requiring more time
compared to open-loop methods, the additional time cost is relatively small due to the
chord error meeting the machining requirements, and its significance far outweighs the time
cost. Regarding cumulative interpolation errors, both L.F. and the method proposed in this
paper can achieve unbiased interpolation. However, L.F. incurs a longer processing time,
primarily attributed to the continuous updating of the parameter u in the binary search
method, rendering it challenging for real-time interpolation processes. The total duration
time increases compared to X.D., but this is acceptable because it meets the machining
quality requirements, providing a certain level of efficiency and precision improvement
compared to the other two methods.

Table 2. Performance parameters for different methods.

Parameters X.D. [14] L.H. [8] L.F. [32] Ours

Number of iterations 0 9 0 5
Iterations’ computational time (s) 0 8 0 0.7

Max chord error (mm) 1.8 0.03 2 0.001
End value of u 0.997 0.997 0.999 1

Truncation error (mm) 0.001 0.001 0 0
Bidirectional scanning (s) 0.01 0.1 0.01 0.3

Once s-shaped feed rate profile (s) 0.00006 0.00006 0.00006 0.00007
Interpolation time (s) 9 10 13 10
Total duration time (s) 10 19 14 12

Figure 11 illustrates the results of the segmentation and interpolation of NURBS
using different methods. From Figure 11b,c, it can be observed that X.D. is subject to an
open-loop chord error constraint, leading to significant trajectory deviation. L.H. involves
altering control points to ensure chord error constraint, but such modifications result in
trajectory displacement. Figure 11d presents truncation error, indicating that without
closed-loop Taylor interpolation, the curve is influenced by cumulative interpolation and
Taylor expansion truncation error, preventing closure. In contrast, the proposed method in
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this paper ensures trajectory accuracy while eliminating cumulative interpolation errors,
resulting in an unbiased trajectory.
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6.2. Experiment of Robot Path for a Fan NURBS Curve

To demonstrate the proposed method, an experiment was conducted on a 6-DoF
industrial robot. The robot machining system is shown in Figure 12. A complete robot
system typically comprises three frames: the base frame, the tool frame, and the workpiece
frame. The workpiece frame {w} is exclusively associated with the machining process and
is unrelated to calibration. The base frame {base} is typically fixed beneath the first joint of
the robot, serving as the primary reference system. The tool frame {tool} is located at the
end of the robot.
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The controller’s hardware platform is equipped with the SpeedGoat RCP (The Speed-
Goat, Bern, Switzerland) real-time simulation platform, featuring a computation cycle of
1 ms. The control system is developed using the MDH model and leverages the real-time
functionality of MATLAB Simulink (The MathWorks, Natick, MA, USA). The computer
utilized has a CPU: I7-11800H-2.30 GHz (Intel Corporation, Santa Clara, CA, USA), 64 G-
3200 MHZ memory, and the MATLAB version is 2022b. In Figure 13a, the fan curve segmen-
tation result is presented, employing the chord error constraint method with 1454 segments,
and the maximum chord error is 0.001 mm. Figure 13b displays the bidirectional feed
rate scanning of the S-shaped profile. The surface of the fan NURBS curve is shown in
Figure 13c,d. It can be observed from the figures that the machining surface obtained
by the proposed method exhibits no obvious overcutting, indicating a relatively smooth
surface quality.
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The proposed method was validated through a milling experiment using a planar fan
NURBS curve path on a robot. The results confirm the correctness and effectiveness of the
proposed approach. It is demonstrated that the method can generate smoother machining
paths, leading to a smoother tool tip feed rate. Consequently, this significantly enhances
both the efficiency and quality of robot machining.

7. Conclusions

This paper introduces a high-precision planar NURBS interpolation system for indus-
trial robots. Leveraging knot insertion technology, the global NURBS curve is segmented
into multiple rational Bezier subcurves that satisfy the chord error constraint. Subsequently,
to address limitations in the current S-shaped profile, a real-time speed adjustment schedul-
ing method is proposed to ensure feed rate adjustments within the lookahead range during
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bidirectional scanning. Additionally, by integrating segmented Bezier parameter remap-
ping theory, the continuity of parameters at the junctions of two segments is preserved. The
robustness of the proposed scheme is validated through butterfly NURBS curve simulations,
and the effectiveness of the proposed approach is verified by an experiment conducted on
an industrial robot using a fan NURBS curve.
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