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Abstract: In the grinding process of complex-shaped cast workpieces, discrepancies between the
workpiece’s contours and their corresponding three-dimensional models frequently lead to deviations
in the machining trajectory, resulting in instances of under-grinding or over-grinding. Addressing
this challenge, this study introduces an advanced robotic grinding force automatic tracking tech-
nique, leveraging a combination of deep neural networks and genetic algorithms. Harnessing the
capability of force sensing, our method dynamically recalibrates the grinding path, epitomizing truly
flexible grinding. Initially, in line with the prerequisites for force and pose tracking, an impedance
control strategy was developed, integrating pose deviations with force dynamics. Subsequently,
to enhance steady-state force tracking, we employed a genetic algorithm to compensate for force
discrepancies caused by positional errors. This was built upon the foundational concepts of the
three-dimensional model, impedance control, and environmental parameter estimation, leading to an
optimized grinding trajectory. Following tracking tests, it was observed that the grinding’s normal
force was consistently controlled within the bracket of 20 £ 2.5 N. To further substantiate our method-
ology, a specialized experimental platform was established for grinding complex-shaped castings.
Optimized strategies were employed under anticipated forces of 5N, 10 N, and 15 N for the grinding
tests. The results indicated that the contact forces during the grinding process remained stable at
5+ 1N,10+£ 15N, and 15 £ 2 N. When juxtaposed with conventional teaching grinding meth-
ods, our approach manifested a reduction in grinding forces by 71.4%, 70%, and 75%, respectively.
Post-grinding, the workpieces presented a pronounced enhancement in surface texture, exhibiting a
marked increase in surface uniformity. Surface roughness metrics, originally recorded at 17.5 um,
17.1 pm, and 18.7 um, saw significant reductions to 1.5 um, 1.6 um, and 1.4 pum, respectively, indicat-
ing reductions by 76%, 73%, and 78%. Such outcomes not only meet the surface finishing standards
for complex-shaped castings but also offer an efficacious strategy for robot-assisted flexible grinding.

Keywords: industrial robotics; deep genetic algorithm; adaptive grinding process; grinding force
tracking and compensation

1. Introduction

With the advancement of the industrial economy and intelligent manufacturing pro-
cesses, the utilization of various small-batch, irregularly shaped surface workpieces in
fields such as special equipment and fluid machinery is becoming increasingly widespread.
Due to the intricate structures and diverse materials of non-uniformly curved workpieces,
many market applications still rely on manual grinding for tasks like deburring and post-
processing. The working conditions on-site are challenging, with high labor intensity, and
the generation of metal dust during grinding poses health risks to the workers. This mode
of operation is notably inefficient, resulting in varying product quality and high production
costs, which significantly impact enterprise development. In the context of rapid industrial
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automation growth, the use of robots across various sectors is expanding [1,2]. In the
manufacturing industry, robot polishing technology plays a very important role; it can
greatly improve the production efficiency of products and ensure the production quality of
products [3]. However, maintaining precise force control during robotic grinding presents
a significant challenge, particularly when dealing with complex-shaped workpieces. This
challenge stems from their intricate contours, deviations from 3D models, and the inherent
contact nature of workpiece grinding. Even slight tool displacement can lead to a rapid
increase in deviational force or torque, thereby exacerbating grinding errors [4-6].

In recent years, scholars have undertaken research concerning grinding robots, with
a primary focus on investigating critical factors [7], such as grinding force, tool feed rate,
grinding depth, and material removal rate during grinding [8-10]. Notably, Calanca
et al. [11] accomplished the desired force-tracking effect by utilizing an adaptive algorithm
to adjust resistance model parameters in real time based on feedback force errors. Lee
et al. [12] achieved contact force control of robots by actively modifying the stiffness of
impedance models. Lin et al. [13] proposed a force-controlled end effector for the robot
MREF process to maintain the stability of the polishing process. The team led by Haibo [14]
developed a hybrid control approach for grinding and polishing robots that integrates
adaptive impedance control technology. This approach employs active compliance technol-
ogy to enhance the precision of the position and the performance of force control tracking.
Mohammad Mehdi et al. [15] employed adaptive fuzzy control in robotic systems, leading
to adaptive tracking control. Additionally, Sara et al. [16] utilized an adaptive fuzzy con-
troller to achieve asymptotic tracking performance by adaptively compensating for fuzzy
approximation errors. Srinivasan et al. [17] propose an iterative learning controller based
on impedance control that adapts both position and forces simultaneously in each iteration
to regulate the polishing process.

The application domains of deep neural networks (DNNs) have been continuously
expanding, encompassing areas ranging from complex image recognition, signal processing,
automotive applications, texture synthesis, and military surveillance to natural language
processing. The essence of DNNSs lies in their ability to interpret statistical variations in data,
automatically discovering and learning hierarchical feature abstractions from low-level
characteristics to high-level concepts. However, the creation and training of DNNs demand
considerable effort and computational resources, as these networks encompass numerous
parameters that directly impact their performance. To enhance the efficiency of these
networks, recent research has focused on integrating evolutionary algorithms with DNNs.
Young et al. [18] introduced a multi-node evolutionary neural network based on genetic
algorithms (GAs), facilitating the automatic selection of optimal network hyperparameters
across computing clusters. Lamos-Sweeney [19] developed a multi-layered DNN utilizing
a GA to reduce computational complexity and increase the flexibility of DNN algorithms.
Lander [20] implemented an evolutionary technique to identify the optimal abstract features
for each autoencoder, thereby enhancing the overall performance and capabilities of DNNSs.
Furthermore, Shao et al. [21] employed multi-objective genetic programming to devise an
evolutionary learning method that generates domain-adaptive global feature descriptors
for image classification tasks.

Based on the above analysis, this paper endeavors to explore force-tracking technolo-
gies for robotic grinding, employing deep genetic algorithms. It investigates the integration
of impedance control within the robotic grinding control system and analyzes trajectories
generated from three-dimensional workpiece models and estimated environmental param-
eters. Additionally, this paper presents the utilization of deep genetic algorithms, informed
by force sensing data during the grinding process, to rectify contact force errors resulting
from positional disparities. This optimization process aims to improve the robotic grinding
trajectory and enhance the precision of grinding.
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2. Robot Grinding Force Impedance Control Model

In cases where a substantial degree of rigidity exists between the robot and the working
environment, notable contact forces come into play, exposing the limitations of traditional
position-based robot control systems [22]. Working within such a rigid contact environ-
ment mandates the measurement of contact forces between the robot and its surroundings,
necessitating the utilization of force feedback to govern the robot’s operational state. This
approach is crucial for ensuring human safety when the robot operates in human-made en-
vironments. Consequently, it requires the robotic control system to integrate indispensable
real-time feedback and force control functionalities [23].

Position—force control operates by treating the controlled object and the environment as
an integrated system. Its fundamental control principle involves establishing a connection
between the robot’s displacement and contact force by modeling the robot’s interaction
with the environment as a spring-mass-damping system. This relationship is adjusted by
tuning the parameters of inertia, damping, and stiffness to modify the correlation between
the robot’s position and contact force [24]. Here, the mass of the target mass block, the target
damping of the damper, and the target stiffness of the spring are represented. Additionally,
x, x, and X and denote the position, velocity, and acceleration of the mass block, while F,
represents the external environmental force. The spring—-mass-damper model is illustrated
in Figure 1.
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Figure 1. The spring-mass—damping model.

By analyzing the forces within the model, we have formulated second-order differen-
tial equations for the mass—spring-damping system, as detailed below.

My x+ Bgx +Kyx = —F, €))

In the desired state, the external environmental forces change from the current forces
to the desired forces F;.
My x;+ Byxy + Kyx; = —F; 2)

If e = x5 — x, then
Mdé+Bdé+Kd€:Fe—Fd (3)

In practical applications, the complex contours of uniquely shaped cast workpieces
often deviate from their three-dimensional models, and even minor positional discrepancies
can result in significant force variations. The quality of the grinding process relies heavily
on the precise control of normal force, which, unfortunately, lacks the necessary parameters
of the external contact environment during grinding. This shortcoming diminishes the
efficiency of the grinding force control. Precise manipulation of contact forces necessitates a
thorough understanding of the external contact conditions. This entails considering factors
such as environmental stiffness, positional variations, and force discrepancies. Therefore,
based on the three-dimensional model of the workpiece, we generate the grinding trajectory.
Simultaneously, we estimate information about the robot’s external contact environment



Machines 2023, 11, 1075

4 0f 21

" )
The impedance > llnvers'e > Controller | Robot > .Forwarld
model kinematics kinematics

3D +|The reference
Model 7| trajectory
Desired

force

Y+

during the grinding process through impedance control. This information is then used
to create an optimized grinding trajectory, which significantly enhances the accuracy of
contact force tracking.

3. Grinding Force-Tracking Compensation Algorithm
3.1. Grinding Trajectory Based on 3D Model and Environmental Parameters

Impedance, in this context, represents the resistance exhibited by the robot upon
exposure to external forces. Impedance control is a force-centric control approach that
acquires force data between the robot and its surroundings through sensors. Subsequently,
it computes the robot’s trajectory and force output by taking into account the robot’s
impedance and the environment’s impedance. This process aims to align the robot’s
impedance with that of the environment, facilitating force interaction between the robot
and its surroundings [25], as shown in Figure 2.

|

+ . -
External — Environment position
<

Al

environment model

Figure 2. Impedance control system framework.

Based on the 3D model of the workpiece, the grinding contour is extracted, and the
robot’s reference grinding trajectory is established. Subsequently, the control of the robot’s
interaction with the environment is achieved through impedance control, enabling the
optimization of the grinding trajectory. This optimization is carried out based on estimated
parameters of the external contact environment and the 3D model of the workpiece [26,27].

Based on the desired state of motion of the system, the actual state of motion (x), and
the actual contact force, the reference force that needs to be outputted to realize the desired
impedance model is calculated [28,29]. With the impedance control model, the governing
control principle is readily ascertainable.

F.— (Myé+ Bge+Kge) = Fy 4)

Upon determining the desired force, the force controller within the internal loop
ensures that the actual exerted force between the robot and the environment follows this
specified contact force, thereby establishing an equivalent model for robot-environment
interaction that mirrors the preferred impedance model. Given that the desired force
remains constant, both first- and second-order derivatives equate to zero, leading to the
conclusion that the steady-state error in force tracking is as follows:

e(Kg+k) = My (x5 — &) + By(xg — ) + Kgxg — Kgk(xg — x) 5)
- de X
ess*Kd_*_k(E‘i‘x_xd) (6)

where k denotes the environmental stiffness.

Assuming that the measured environmental position value is x, the distance is really
an error Ax. Assuming that the measured environmental stiffness value is k, the true
error of distance Ak, the actual steady-state error reflected in the robot’s force feedback

amounts to K (k Ak)
alk+ x x
= -+ A 7

bos I<d+k+Ak(k+Ak+k+ x) @
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Considering the context of force-controlled machining applications, it can be observed
that the ratio of the error in environmental stiffness to the environmental stiffness itself is
quite small and can be expressed as

e — deAx
ss — Kd+k

®)

In the design of a position-compensated quantity for reducing the dependence on
environmental position information, xy, is the initial reference trajectory preplanned by the
robot, Ax, is the position compensation quantity for the reference trajectory, and x, is the
modified reference trajectory; then,

Xo = Xto + AXo )

In this equation, Ax, = g(t) + h(t) e(t) +i(t) e(t); e(t) is the force feedback error; g(#),

h(t), and i(t) are the time-varying coefficients to be determined. By substituting (8) and

(9) into (5) and (6), the dynamic equation of the force feedback tracking error with error
compensation is obtained.

iy (Bd + deg(t))€+ Ky + k + Kykh(t) _ Kyxy + Kgkx — Kgkxy, — Kyki(t) (10)

M, M, M,
If
alt) = Bd"*‘ﬁ:g(f)
b(t) = Kd+k;11<dkh(t) (1)

d
) _ ded+deX7dexto 7de1‘(t)

ot M

Then the dynamic equation of force feedback tracking error is
e+a(t)e+b(t) =c(t) (12)

IfFE=[e ¢ T, the above equation is expressed in state-space form:

- 0 1 0 0
E= (ot —a)E*[an] =20+ [ 1
The ideal force feedback error dynamics model is set.
em + amem + by = (14)

IfE,=[e ¢ T, the above equation is expressed in state-space form.

: 0 1
Ew = [_bm _am] Em = AmEm (15)

The error equation of the actual force feedback error dynamic equation and the ideal
force feedback error dynamic model is as follows:

(&= ém) + am (e — em) + bu(e — em) = c(t) + (am — a(t))e + (b — b(t))e  (16)

IfEn = [em ém) T, the above equation is expressed in state-space form.

o= [ B L a) )+ et 17
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The Liapunov function is constructed.
1 1 1 1
V= EEwTREw + (b~ b ) + Sha(a— am)? + 5113c3 (18)

. . . . . rpor .
where R is a second-order positive definite real symmetric matrix, R = [ ! 2} , which

satisfies Q = (ATP + PAm) Q is a symmetric positive definite matrix; i1, hy, and h3 are
positive constants; and A = rp (e — €) + r3(ép — €).

Combined with the above analysis, the expression is as follows:

§(t) = g(to) +h1jy<t>dt

h(t) = h(to) —hzjya)e(t)dt

i(t) = h(to) +h3fy x(t dt (19)
y(t) = Agx(t) — )\pe(t)

Ax(t) = g(t) h(t)e(t) — i(t)x(t)
x(t) = xy, + Dx(t)

Based on the derived Equation (19), which describes the force feedback error model
estimated from environmental parameters, this expression was subsequently applied to the
actual constant-force control of the robot.

This article presents the results of a constant-force-tracking experiment employing
the aforementioned method, enabling the robot to operate under both impedance control
and genetic algorithm conditions. The objective was to subject the robot to a constant-
force grinding test with a normal force set at 20 N. The robot initially tracked and ground
based on the pre-programmed trajectory and subsequently engaged in grinding based
on the estimated grinding trajectory derived from the 3D model of the workpiece and
environmental parameters. The alterations in the normal force during the grinding process
were observed in both conditions, as shown in Figures 3 and 4.

30

28

N I\ N N
o N S o
1 1 1 1

Contact forces/N

T T T T
0 100 200 300 400
Time /100ms

Figure 3. Variations in normal force during the teach—track polishing process.
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Figure 4. Variation in normal force during grinding based on 3D model and estimation of environ-

mental parameters.

The tracking test of the normal force during the grinding process, as described above,
revealed that the grinding trajectory estimated based on the 3D model of the workpiece
and environmental parameters had a notable impact on reducing the normal force during
motion. It effectively brought the normal force closer to 20 N, with the normal force
decreasing from 20 & 8 N to 20 &+ 5 N, marking a reduction of 37.5%. To assess the impact of
this process on the workpiece, the surface quality before and after grinding was evaluated
using a white light interferometer, as illustrated in Table 1 below.

Table 1. Surface quality of the workpiece before and after grinding.

Working Condition Contour Analysis Image Surface Roughness Trend Graph
g
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The table above clearly demonstrates that after the workpiece undergoes the polishing
process, there is a significant enhancement in its surface quality. The workpiece is placed
under a white light interferometer for measurement. The interferometer emits a beam of
white light, which is projected onto the surface of the workpiece through an optical system.
The detector captures the reflected light and records the resulting interference patterns.
These patterns are generated due to the phase changes of light waves at different heights
on the workpiece surface. Utilizing these height data, the software can calculate the surface
roughness parameter, the Ra value. Hereinafter, the measured roughness is denoted by the
Ra value. When the teaching trajectory is polished, the roughness is reduced from 8.5 um
to approximately 4.2 um. Furthermore, the polishing trajectory estimated based on the
3D model of the workpiece and environmental parameters reduces the roughness from
8.5 um to around 3.2 um, signifying a substantial improvement in the surface quality of the
polished workpiece. However, upon inspecting the 3D surface image of the workpiece, it
becomes evident that the quality of the polished surface is not optimal. Scratches and other
defects are still visible on the surface, indicating that further optimization is necessary to
achieve the desired level of surface quality.

3.2. Optimizing Grinding Trajectory Based on Deep Genetic Algorithm

To enhance contact force tracking and compensation in the robot grinding process,
a trajectory adaptive generation method is employed based on the three-dimensional
model of the workpiece and the estimation of environmental parameters. This approach
enhances the system’s adaptability to the external environment during the grinding process.
Nevertheless, in the actual grinding process, due to the intricate nature of the workpiece
contours, machining trajectory tracking errors are present and inevitable. In the realm of
precision contact operations, even a minuscule displacement can lead to a rapid increase in
force or torque, potentially resulting in under- or over-grinding issues.

The genetic algorithm (GA) emulates the biological evolutionary process found in
nature, and it is one of many evolutionary processes utilized in various algorithms. This
algorithm is grounded in the concepts of “the survival of the fittest” and “natural selection”,
which means that it keeps valuable solutions and discards the less effective ones during
the quest for the optimal solution [30]. As a heuristic optimization method, GA can
explore a larger solution space to find solutions. It employs mechanisms such as selection,
crossover, and mutation from the natural evolution process to identify the optimal solution
among multiple possibilities. Although GAs possess robust optimization capabilities, their
convergence speed is insufficient, particularly in complex spaces or under ambiguous
evaluation criteria [31,32]. Consequently, this study proposes integrating deep neural
networks with a deep genetic algorithm to compensate for contact force errors caused by
displacement deviations.

Deep neural networks (DNNSs), serving as a potent and efficient predictive tool, offer
an accurate initial solution for optimizing polishing trajectories [33,34]. Utilizing advanced
data analysis capabilities, a DNN can precisely predict the initial polishing paths, setting
an effective starting point for the initial population of the genetic algorithm (GA). This
initial prediction, grounded not only in historical data and pattern recognition but also in
the specific parameters and requirements of the current task, ensures the relevance and
practicality of the solution [35-38]. Following this, the genetic algorithm operates on the
foundation provided by the DNN. Through its unique mechanisms of natural selection
and evolution, the GA iteratively refines and optimizes the polishing path [39,40]. In this
process, the GA emulates the selection, crossover, and mutation processes found in nature,
effectively searching for and identifying the best solution among multiple possibilities [41].
This iterative process continues until a global optimum is reached, ensuring the optimized
path’s efficacy and adaptability [42,43]. The integration of DNNs and GAs not only real-
izes an effective fusion of data-driven and heuristic search methods but also significantly
enhances the accuracy of the polishing trajectory optimization process [44—46]. This syner-
gistic effect not only makes path optimization more precise but also dramatically speeds
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up the optimization process, achieving a speed increase of 300 to 2000 times compared to
using a GA alone [47]. This significant performance enhancement is reflected not just in
the expedited optimization process but also in the improved efficiency and quality of the
polishing tasks, thus providing a more effective and reliable solution for complex industrial
applications. The flowchart of the deep genetic algorithm is shown in Figure 5.

Polishing Path Optimization Strategy Based on the Fusion of Genetic
Algorithms and Deep Neural Networks

Population
size

Crossover

Determining - -
Data collection RESlig) G evaluation Initial genetic
processmg metrics parameters

v

Tralnlng Designing : rate
- am[ﬂ?tiit'fferﬂgﬁ of | parameter || evaaton || CERCERG R .
Polishing 9 configuration functions pop Mutation
intensity rate
Pretraining deep Validation set Weighted sum Defining the fitness
learning models evaluat|on function

Initial prediction of Model Dynam|c gelecnom
olishing path adjustment adjustment RO |
P Genetic, Mutation

[ Meeting fitness requirements J

|

Result extraction and validation ]

|

Feedback loop for adjusting deep
model and genetic parameters

Feedback adjustment
[ Feedback adjustment

Figure 5. Flowchart of the deep genetic algorithm.

Optimizing the polishing trajectory through the integration of DNN and GA is a
multi-stage, iterative process. The detailed steps are as follows:

(1) Data Collection: Initially, it is necessary to gather extensive data on polishing tasks
(polishing forces).

(2) Deep Learning Model Design and Training: Considering the time dynamics during
the polishing process, such as factors related to changes in polishing force over time,
recurrent neural networks and DNNs are chosen as the core architecture.

(3) Initial Prediction of the Polishing Path: Utilizing the trained deep learning model,
input the current polishing task parameters and the polishing trajectory estimated
based on the workpiece’s three-dimensional model and environmental parameters to
obtain an initial prediction of the polishing path. This prediction takes into account
the workpiece’s shape, physical characteristics, and the expected quality of polishing.

(4) Initial Setting of Genetic Algorithm Parameters: Determine the initial parameters for
the genetic algorithm, which include the scale of the population, the rate of crossover,
the rate of mutation, and the upper limit of iterations.

(5) Construction of the Initial Population: Based on the initial polishing path provided by
the deep learning model, construct the initial population for the genetic algorithm.
Each individual represents a potential solution for the polishing path, with the initial
population containing the paths predicted by the deep model and random variations
introduced on this basis.

(6) Definition of Fitness Function: The fitness function serves as the standard for eval-
uating the quality of each individual and should reflect the actual requirements of
the polishing task. It can be based on several factors, including the stability of the
polishing process, the quality of polishing, and the time taken to complete the task.
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(7) Genetic Algorithm Iteration:

Selection: Based on the fitness function, select the best-performing individuals from
the current population for breeding.

Crossover: Chosen individuals produce offspring through genetic exchange, mimick-
ing reproduction in nature.

Mutation: Randomly alter parts of certain offspring’s genes to increase population
diversity.

Evaluation: After the new-generation population emerges, reassess it using the fitness
function.

(8) Termination Condition Assessment: The algorithm concludes if it reaches the preset
maximum number of iterations, or if the best individual in the population achieves
a fitness level that meets task requirements. If the maximum iterations are reached
without attaining a satisfactory result, the algorithm will return the best solution
found thus far. Additionally, an alert or error message will be generated to inform
the user of the suboptimal conclusion. The user can then consider adjusting the
algorithm’s parameters or adopting alternative strategies for improved outcomes in
subsequent runs.

(9) Result Extraction and Verification: Identify the individual with the highest fitness
from the final population as the optimal polishing path. Then, implement this path in
actual polishing tasks, gather feedback data, and verify the path’s effectiveness.

(10) Feedback Loop: Adjust the parameters of the deep learning model and genetic algo-
rithm based on feedback from actual polishing results. Through continuous feedback
loops, the model will constantly learn and improve, enhancing its adaptability and
predictive accuracy for future polishing tasks.

Through the above feedback loops, the advanced genetic algorithm continuously
refines the polishing path, ultimately identifying an optimal global trajectory for robotic
path planning.

In this paper, a control method is adopted that combines adaptive reference trajec-
tory generation based on the estimation of environmental parameters and deep genetic
algorithms. This approach not only provides the control system with robust stability but
also enables the precise control of force by the robot without requiring exact environmental
information. The method was subjected to constant-force-tracking experiments, and, under
identical experimental conditions as depicted in Figures 4 and 5, with an expected grinding
normal force of 20 N, force-tracking tests were carried out using the grinding trajectory
optimized by the genetic algorithm. The variation in normal force during the grinding
process was closely observed.

As depicted in Figure 6, the grinding normal force, optimized using the deep genetic
algorithm, demonstrates stable control at approximately 20 &= 2.5 N. This control is notably
concentrated around the desired force, resulting in a 68% reduction in grinding normal
force compared to the demonstration teaching and a 50% reduction compared to the
method based on the three-dimensional model of the workpiece and the estimation of
environmental parameters. The grinding process is considerably more stable and exhibits
significant improvements in optimization in comparison to the demonstration teaching
and the method based on the estimation of the three-dimensional model of the workpiece
and environmental parameters. The grinding trajectory is evidently optimized, and the
genetic algorithm showcases enhanced adaptability, enabling more effective completion of
the grinding task and improving the quality of the ground surface. Details regarding the
post-grinding surface conditions of the workpiece are provided in the following Table 2.
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Figure 6. Variations in normal force during grinding process based on deep genetic algorithm.

Table 2. Surface quality of workpiece after optimization based on deep genetic algorithm.

Working Condition

Contour Analysis Image Surface Roughness Trend Graph

Workpiece surface
after optimization by
deep genetic algorithm

‘IJ.‘ || i"‘-}',‘lllh'- Y il 'l \ M IJ“.I
i, M P Y )

Following optimization through deep genetic algorithms, it is evident that the surface
quality and uniformity of the workpiece have been significantly enhanced. The roughness
is now reduced to approximately 2.2 um, marking a remarkable 47% improvement in rough-
ness accuracy compared to the teaching-based grinding method and a 31% enhancement
compared to the grinding method based on the estimation of the three-dimensional work-
piece model and environmental parameters. Additionally, the surface quality across the
entire part is notably consistent, with occasional protrusions that may result from excessive
grinding. These protrusions can be mitigated by reducing the amount of grinding.

4. Flexible Grinding Experiment

To assess the effectiveness of the proposed method outlined above, for this paper, an
experimental platform for conducting research on the grinding of complex-shaped casting
workpieces was established. After the machining of the complex-shaped casting workpiece,
it is apparent that the surface at point A is uneven, and there are noticeable burrs at points
C and B, as depicted in Figure 7.

Based on the analysis of the previous workpiece, an experimental platform was set
up to automate the deburring and surface grinding processes, ultimately improving the
surface finish quality of the workpieces. This platform features a FANUC six-axis industrial
robot as the motion platform, fitted with a six-axis force sensor at its end effector, a floating
grinding spindle, and the necessary tooling. The force sensor is strategically placed between
the robot’s flange and the floating grinding spindle, as illustrated in Figure 8.
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Figure 8. Experimental device.

Upon scrutinizing the surface of the complex-shaped workpiece, the initial trajectory
planning process is initiated. This involves leveraging RoboGuide for offline programming,
where the CAD data of the irregular sphere are imported into the system. Subsequently,
workpiece features are extracted, initially establishing a positioning point. Three angular
points on the irregular sphere are then obtained using the MoveTo feature in RoboGuide
V8.3 simulation software, and the program responsible for creating these positioning points
is recorded within the teaching unit. Following the extraction of workpiece features, a
grinding trajectory is generated, and its teaching points are retained in the teaching unit.
Ultimately, the designated positioning points and the grinding trajectory program are
exported to the actual robot controller. They are then integrated with the robot’s user and
tool coordinates within the simulated workstation, effectively completing the programming
of the preliminary trajectory, as shown in Figures 9 and 10.

Building on the initial trajectory, this study utilizes a control method that combines
adaptive reference trajectory generation based on the estimation of environmental pa-
rameters and the deep genetic algorithm. This method enables the adaptive adjustment
of the robot’s end position for flexible grinding control. The algorithm’s reliability was
validated through the collection and analysis of the robot’s end force sensing data before
and after the implementation of the control algorithm for comparative purposes. To meet
the requirements of the grinding process, experimental studies on force tracking were
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conducted under different conditions, with expected normal vector forces of 15N, 10 N,
and 5 N, as shown in Figure 11.

Figure 9. Positioning point acquisition.

Figure 10. Generation of grinding trajectory.

To evaluate the impact of force-controlled grinding, this paper presents an analysis
of the workpiece’s surface condition before and after grinding conducted by observing
its shaped surface. Prior to the polishing of the workpiece, as illustrated in Figure 12a,
noticeable protrusions, significant spurs, and edge burrs are present. After the workpiece
is subjected to grinding using the demonstration trajectory and the optimized trajectory, as
shown in Figure 12b,c, a comparison reveals that the pronounced burrs that existed before
grinding during the demonstration trajectory grinding, particularly at the part’s rounded
corners, indicate instances of over-grinding and under-grinding (as seen in Figure 12b).
However, after undergoing grinding with the optimized trajectory, the workpiece surface
shows no discernible traces of machining.
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Figure 11. Robot grinding process. (1) grinding for the acquisition of positioning point contours;
(2) the process of grinding down contours; (3) the process of grinding upper contours; (4) Robot

; v
?f

¥

returns to zero point.

Figure 12. Comparison of effect before and after grinding: (a) workpiece before grinding; (b) demon-
stration track after grinding; (c) optimized trajectory after grinding.

The state of the grinding force before and after optimization was analyzed by collecting
information on the state of the grinding normal force during robotic grinding with a desired
force of 15 N, as shown in Figure 13.

Under the desired force setting of 15 N, the grinding normal force, after optimization
based on the estimation of environmental parameters and the deep genetic algorithm,
demonstrates stable control at approximately 15 £ 2 N, maintaining its proximity to the
target force throughout the entire grinding process. This remarkable stability represents
a 71.4% reduction in the normal grinding force compared to the pre-optimization levels,
which were around 15 & 7 N. This substantial decrease significantly enhances the stability of
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the grinding process. A comparison of the workpiece surfaces before and after optimization
is provided in Table 3.
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Figure 13. Variations in normal force during the polishing process with a desired force of 15 N:
(a) variations in normal force during grinding process based on teaching trajectory; (b) variations in
normal force during grinding process based on optimized trajectory.
Table 3. Surface quality of ground workpieces before and after optimization with a desired force of
15N.
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The table above, depicting the surface quality of the workpiece, highlights the sig-
nificant improvement achieved after grinding. When the workpiece undergoes grinding
following the teaching trajectory, the roughness is reduced from the initial 17.5 um to
approximately 6.3 um. However, the surface quality of the polished workpiece after this
grinding is less than satisfactory, featuring scratches and bumps. However, after grind-
ing with the optimized trajectory, the surface roughness of the workpiece significantly is
reduced from the initial 17.5 um to approximately 1.5 um. This represents a remarkable
76% improvement in roughness accuracy compared to the teaching trajectory grinding.
The flatness and surface quality of the sanded plane are notably enhanced, with the raised
portions of the workpiece being largely eliminated.

The analysis of the grinding force state before and after optimization involved col-
lecting data on the condition of the grinding normal force during robotic grinding with a
target force of 10 N. This analysis aims to assess the impact of the optimization process on
the grinding force, as shown in Figure 14.

Contact forces/N
o
1

16
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z
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o
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Figure 14. Variations in normal force during the polishing process with a desired force of 10 N:
(a) variations in normal force during grinding process based on teaching trajectory; (b) variations in
normal force during grinding process based on optimized trajectory.

Under the desired force setting of 10 N, the grinding normal force, after optimization
based on the estimation of environmental parameters and the deep genetic algorithm,
demonstrates stable control at approximately 10 & 1.5 N. The control method closely
surrounds the target force and achieves exceptional stability throughout the entire grinding
operation. The normal force during grinding has been reduced by 70% compared to the
pre-optimization force of approximately 10 £ 5 N, indicating a significant improvement
in grinding stability. The impact of this optimization on the workpiece’s surface quality
before and after grinding is presented in Table 4 below.

The data in the table above clearly demonstrate a substantial improvement in the
workpiece’s surface quality after the grinding process. When the workpiece undergoes
grinding following the teaching trajectory, the roughness is reduced from the initial 17.1 pm
to approximately 6.0 um. However, the post-grinding surface quality remains subpar,
with issues like scratches and protrusions still evident. In contrast, after the optimized
trajectory grinding, the roughness experiences a more significant reduction, decreasing
from 17.1 um to approximately 1.6 pm. This represents a notable 73% improvement in
roughness accuracy compared to manual trajectory grinding. The enhancement is further
reflected in the significantly improved flatness and overall surface quality, with nearly all
protruding elements effectively eliminated.
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Table 4. Surface quality of ground workpieces before and after optimization with a desired force of
10 N.

Working Condition Contour Analysis Image Surface Roughness Trend Graph
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The analysis of the grinding force state before and after optimization continued with
the collection of data on the grinding normal force during robotic grinding with a target
force of 5 N, providing further insight into the impact of optimization on the grinding force,
as shown in Figure 15.
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Figure 15. Variations in normal force during the polishing process with a desired force of 5 N:
(a) variations in normal force during grinding process based on teaching trajectory; (b) variations in
normal force during grinding process based on optimized trajectory.
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Under the desired force setting of 5 N, the grinding normal force, after optimization
based on the estimation of environmental parameters and the deep genetic algorithm, is
consistently controlled at approximately 5 &= 1 N. This control remains concentrated near
the desired force and maintains stability throughout the entire grinding process. Compared
to the pre-optimization levels of approximately 5 &= 4 N, the grinding normal force is
reduced by 75%, indicating a notable improvement in grinding stability. The impact of this

optimization on the workpiece’s surface quality before and after grinding is presented in
Table 5 below.

Table 5. Surface quality of polished workpieces before and after optimization with a desired force of

5N.
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An analysis of the workpiece surface quality from the table above underscores a
considerable improvement following the grinding process. When the teaching trajectory
was employed for grinding, the surface roughness decreased from an unsanded state of
18.7 um to approximately 6.6 um. Nevertheless, the quality of the result was unimpressive,
marred by scratches and protrusions. Conversely, with the application of an optimized
grinding trajectory, the surface roughness experienced a substantial reduction, dropping
from 18.7 pm to an estimated 1.4 um. This represents a notable 78% enhancement in rough-
ness accuracy compared to the manual grinding approach. This improvement significantly
bolstered the planar uniformity and overall surface quality, effectively eliminating almost
all surface irregularities.

Combining the experimental data and results presented above, it is evident that the
effect of force control tracking is superior after optimization based on the estimation of
environmental parameters and the deep genetic algorithm. The roughness is reduced
from 18.7 pm to approximately 1.6 um, meeting the requirements for surface roughness
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on complex-shaped workpieces. Additionally, the surface exhibits uniformity and good
consistency after grinding.

5. Conclusions

(1) Addressing the challenge of under-grinding and over-grinding in the grinding process
of complex-shaped casting workpieces, this paper presents research on optimizing the
grinding trajectory using force-sensing information. It also introduces a novel force-
tracking control strategy aimed at enhancing the accuracy of contact force tracking
during the grinding process.

(2) This paper commences with an analytical study of the impedance control model.
Building upon this impedance control framework, it presents research on a grinding
trajectory adaptive generation method that combines the three-dimensional model
of the workpiece, impedance control, and environmental parameter estimation. This
paper then introduces the use of a deep genetic algorithm to compensate for contact
force errors resulting from positional discrepancies. This optimization of the grinding
trajectory is followed by the presentation of experimental research that led to the
achievement of stable control of the grinding normal force at the expected contact
force of 20 N, maintaining a level of around 20 + 2.5 N. This marks a significant 68%
reduction in grinding normal force compared to the teaching trajectory grinding. The
entire grinding process demonstrates relative stability, with roughness reduced to
approximately 2.2 um, representing a 47% improvement in roughness accuracy over
the teaching trajectory grinding. Furthermore, surface quality across various parts
exhibits uniformity, contributing to enhanced accuracy of contact force tracking.

(8) This paper presents a comprehensive analytical study of the technological characteris-
tics of irregularly shaped castings and establishes a dedicated experimental platform
for validation. In the experiments, conducted under expected normal forces of 5 N,
10 N, and 15 N, the normal force during grinding was consistently stabilized at
5+ 1N,10=£ 15N, and 15 & 2 N, respectively. These results represent reductions of
71.4%, 70%, and 75% compared to the teaching trajectory grinding, thereby ensuring
process stability. Following the grinding process, the workpiece surfaces exhibit
remarkable smoothness, with roughness values under the three different conditions
decreasing significantly from 17.5 um, 17.1 pm, and 18.7 pm to 1.5 pm, 1.6 um, and
1.4 pum, respectively. These improvements represent substantial enhancements of
76%, 73%, and 78% compared to the teaching trajectory grinding roughness values
of 6.3 um, 6.0 um, and 6.6 um. The uniformity and consistency of the post-grinding
surfaces not only fully meet the roughness criteria for complex curved workpieces
but also underscore the efficacy of the method in precisely controlling contact forces
in robotic contact-oriented tasks.
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