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Abstract: Segmenting brain tumors in 3D magnetic resonance imaging (3D-MRI) accurately is
critical for easing the diagnostic and treatment processes. In the field of energy functional theory-
based methods for image segmentation and analysis, level set methods have emerged as a potent
computational approach that has greatly aided in the advancement of the geometric active contour
model. An important factor in reducing segmentation error and the number of required iterations
when using the level set technique is the choice of the initial contour points, both of which are
important when dealing with the wide range of sizes, shapes, and structures that brain tumors may
take. To define the velocity function, conventional methods simply use the image gradient, edge
strength, and region intensity. This article suggests a clustering method influenced by the Quantum
Inspired Dragonfly Algorithm (QDA), a metaheuristic optimizer inspired by the swarming behaviors
of dragonflies, to accurately extract initial contour points. The proposed model employs a quantum-
inspired computing paradigm to stabilize the trade-off between exploitation and exploration, thereby
compensating for any shortcomings of the conventional DA-based clustering method, such as slow
convergence or falling into a local optimum. To begin, the quantum rotation gate concept can be
used to relocate a colony of agents to a location where they can better achieve the optimum value.
The main technique is then given a robust local search capacity by adopting a mutation procedure
to enhance the swarm’s mutation and realize its variety. After a preliminary phase in which the
cranium is disembodied from the brain, tumor contours (edges) are determined with the help of
QDA. An initial contour for the MRI series will be derived from these extracted edges. The final step
is to use a level set segmentation technique to isolate the tumor area across all volume segments.
When applied to 3D-MRI images from the BraTS’ 2019 dataset, the proposed technique outperformed
state-of-the-art approaches to brain tumor segmentation, as shown by the obtained results.

Keywords: brain tumor detection; medical images segmentation; bio-inspired clustering; level set
segmentation; quantum-inspired computing

1. Introduction

Brain tumors account for 85% to 90% of all primary central nervous system (CNS) tu-
mors. Worldwide, an estimated 308,102 people were diagnosed with a primary brain
or spinal cord tumor in 2020. In 2023, an estimated 24,810 adults (14,280 men and
10,530 women) in the United States will be diagnosed with primary cancerous tumors
of the brain and spinal cord [1]. A brain tumor is the result of the development of malignant
cells that have been allowed to continue unchecked either inside the brain or around the
brain. Brain tumors are often divided into the following two broad categories: benign
(noncancerous) and malignant (cancerous). Therefore, knowing the type of tumor that
is present in the patient can be helpful in comprehending the patient’s situation. In the
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field of medicine, the early discovery and accurate classification of brain tumors are both
extremely important skills to have. A correct prognosis made in a prompt manner is benefi-
cial to the therapeutic process [2]. Brain biopsies and imaging techniques are often used to
diagnose tumors. In open biopsies, a tiny hole is drilled in the skull, and a tissue sample is
removed for microscopic examination of the tumor. This method poses serious risks. Med-
ical imaging technologies improved detection by detecting tumors early and improving
prognosis. An MRI is a three-dimensional scan of the brain, as shown in Figure 1. MRI
scans now identify tumor type, size, and location. MRI can also distinguish soft tissue and
spot tiny tissue density changes and tumor-associated metabolism variants [3,4]. Accurate
MRI segmentation needs exact MRI image pixel marking. Segmentation aids brain tumor
surgery and radiation therapy.
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Image segmentation is a key area for development in the field of medical imaging. 
This study investigates automated contouring techniques as an alternative to the time-
consuming process of manual contouring. The segmentation task makes an effort to pin-
point the location of the target by drawing a contour map of it. The complexity of the 
segmentation job increases as the number of visual differences between the objects of in-
terest increases and as the number of irregular borders increases. Compared to 2D images, 
which only show one perspective, 3D images are more useful because they can show an 
object from every angle [5,6]. Direct automated segmentation of objects in 3D medical im-
aging is a challenging task since it often requires effectively identifying a large number of 
separate structures with complicated geometries inside a large volume under examina-
tion. Surface determination, where the boundary between one area and another is pre-
cisely captured, is a crucial notion in 3D image segmentation. The scan’s grayscale data 
are utilized to pinpoint precisely where these boundaries are. The exact procedure is 
highly variable, depending on the 3D image type and quality. 

Figure 1. Voxel and slice in 3D MRI data. A slice is just like a 2D image stored in a matrix of size
M × N. The smallest unit of a slice is a voxel i.e., a volumetric pixel with certain dimensions. MR
data are a stack of 2D images acquired in 3D space while a person walking with a camera along any
one of three spatial dimensions. If a person is lying on an MRI bed, the z-axis then becomes upward.
The axial plane corresponds to XZ Plane, the Coronal plane corresponds to the XY plane and the
Sagittal plane corresponds to the YZ plane.

Image segmentation is a key area for development in the field of medical imaging.
This study investigates automated contouring techniques as an alternative to the time-
consuming process of manual contouring. The segmentation task makes an effort to
pinpoint the location of the target by drawing a contour map of it. The complexity of
the segmentation job increases as the number of visual differences between the objects
of interest increases and as the number of irregular borders increases. Compared to 2D
images, which only show one perspective, 3D images are more useful because they can
show an object from every angle [5,6]. Direct automated segmentation of objects in 3D
medical imaging is a challenging task since it often requires effectively identifying a large
number of separate structures with complicated geometries inside a large volume under
examination. Surface determination, where the boundary between one area and another
is precisely captured, is a crucial notion in 3D image segmentation. The scan’s grayscale
data are utilized to pinpoint precisely where these boundaries are. The exact procedure is
highly variable, depending on the 3D image type and quality.

In response to these difficulties, the majority of modern machine learning strategies
(e.g., deep learning) boost their learning potential by including more trainable parameters
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in their models. Since clinical imaging systems typically have low-end computer hardware
with limited memory, CPU resources only, and a long inference time, increased model
complexity will incur high computational costs and large memory requirements, making
them unsuitable for real-time implementation on standard clinical workstations [1,2,6].
Consequently, due to the remote procedures, high-performance computing hardware such
as high-end graphics processing units (GPUs) is typically required on remote servers to
provide the large memory requirements for model training and to accelerate inference
speed by segmenting MR examinations through parallel computation, which, because of
the distant nature of the operations, are not easily accessible for use in real-time on clinical
workstations. Moreover, trade-off techniques such as patch-wise or slice-wise training are
often employed to fit a 3D dataset within these parameter-heavy models under limited
computer memory, sacrificing fine-scale geometric information from input images and
potentially affecting clinical diagnoses [1–3]. Since the MRI dataset has different spatial
resolutions in the third dimension, 3D-MRI images are flattened into 2D slices.

Due to the overlap in intensity between tumor and normal tissue, the distortion
of adjacent healthy tissues, and the prevalence of false positives, tumor identification
is a challenging task because of the wide range of tumors in shape, location, size, and
appearance features (see Figure 2). Many encouraging advances have been made in 3D
brain tumor segmentation during the last decade, but there are still many pressing issues
and obstacles to overcome. Large data sizes from high-resolution MRI pose a problem for
3D segmentation, necessitating substantial memory and processing resources [7,8]. Active
contour modeling, a traditional segmentation method, can be used to segment MR images.
In order to minimize the energy function as the active contour changed, they specified
an energy function for it and sought out the ideal position [9]. In the literature, many
algorithms employ a level-set approach for active contour image segmentation. While
earlier methods struggled with geometry issues that arose during the evolution of curves,
the level set approach proved to be an efficient solution [10].
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Figure 2. Automatically segmenting brain tumors. The whole tumor (WT) class includes all visible
labels (a union of green, yellow, and red labels), the tumor core (TC) class is a union of red and yellow,
and the enhancing tumor core (ET) class is shown in yellow (a hyperactive tumor part). The predicted
segmentation results match the ground truth well.
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The level set approach seeks to incorporate a curve into a surface. The level set ap-
proach offers a straightforward means of approximating the evolving structure’s geometry
characteristics. Using a level set model has many benefits, including the ability to naturally
and efficiently manage topological changes like joining and dividing and the depiction
of contours in complicated topology. As a successful search strategy within the level set
procedure, gradient descent is used to address this optimization issue. However, gradient
descent techniques have a slow convergence rate and are sensitive to local optima [8–11].
While level sets have demonstrated a great potential for 3D medical image segmentation,
their usefulness has been limited by two problems. First, 3D-level sets are relatively slow
to compute. Second, their formulation usually entails several free parameters, which can
be very difficult to correctly tune for specific applications. Figure 3 displays an example of
level set segmentation of a brain tumor after adjusting the initial contour.
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Figure 3. Demonstration of level set segmentation of white matter in a brain. An adaptive initial
contouring method is performed to obtain an approximate circular contour of the tumor (red lines).
Finally, the deformation-based level set segmentation automatically extracts the precise contours of
tumors from each individual axial 2D MRI slice separately and independently. Temporal ordering
is from left to right, top to bottom, to track the dynamic change of the contour of the tumor over
different iterations (time).

A number of recent articles have advocated for the widespread use of swarm algo-
rithms in medical image segmentation [12–14]. One of the newest swarm optimization
methods is the Dragonfly Algorithm (DA). It has been shown that DA converges to an
optimal solution in many contexts [15]. Dragonflies, as part of their optimization process,
should switch their focus from intensification to diversification to guarantee convergence.
During the optimization process, the neighborhood area is increased to modify the flight
route, and the swarm eventually comes together as a single unit to reach the global optimal.
In comparison to other well-known evolutionary algorithms, such as the genetic algorithm
and the swarm intelligence algorithms, DA has been proven to perform better [16–20]. As
opposed to other swarm algorithms, DA can be relied upon and is easily included in preex-
isting optimization strategies. Convergence at a local optimum may, however, be caused by
a lack of internal memory in DA. One of the issues a user might encounter with DA is the
lack of connection between position updates and the algorithm’s clusters. Due to this trait,
DA might get stuck in local optimums and be unable to find an optimal solution [19,20].
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When applied to various swarm optimization techniques, the quantum computing
mechanism (QCM) provides a revolutionary, intelligent method for quantamizing the
searching behaviors of each individual. This is particularly true for the quantum rotation
gate operation, which enables the user to choose a suitable rotation angle in their search for
the optimal solution. Combining the QCM with soft computing methods has the potential
to produce a new model in the fields of computer science and engineering. In this study,
a quantum computing mechanism is used to quantamize dragonfly (QDA) behaviors in
order to increase the searching effectiveness of the dragonfly algorithm by allowing each
dragonfly to employ a quantum rotation gate to overcome the inertia weight during the
search operations and to achieve the searching quality of Levy flying [21–25].

1.1. Research Motivation

Brain cancer is consistently ranked as one of the worst diseases in the world. So, the
key to successfully treating cancer is an early diagnosis. The structural study of tumors in
this area is challenging due to the complexity of the human brain. Current systems that
make use of a variety of methods, such as threshold-based, model-based, and hybrid-based
segmentation, have a number of drawbacks. These drawbacks include the fact that they
take more time and are more prone to errors. The objective of this effort is to improve the
physician’s perception of tumors in the brain. Level set methods are numerical approaches
that provide extremely effective tools for analyzing and calculating interface motion in a
variety of contexts. When used for medical image analysis and segmentation, the function
labels each pixel or voxel, and optimality is set depending on desired imaging qualities.
The level set approach is an excellent tool for modeling time-varying medical images and
improving numerical calculations [8–11]. The disadvantage of level set methods is that they
require a lot of planning to come up with appropriate velocities for advancing the level set
function. Nonetheless, the payoff is a very versatile method for solving complicated issues
over a broad spectrum [26]. In order to address the limitations of existing level set-based
brain tumor segmentation systems, this paper reports on efforts to develop a model that
combines quantum dragonfly algorithm-based clustering with the level set technique for
segmenting 3D-MRI images of brain tumors.

1.2. Research Contribution and Novelty

In this work, a modified level set segmentation method based on a quantum-inspired
optimization technique is suggested to detect tumors in 3D-MRI scans of the brain. The
initial position is very important in managing topological variations in contours due to the
tumor’s size, shape, and structural variability. To obtain the precise initial contour points for
the level set segmentation method, the proposed approach employs an enhanced clustering
strategy that integrates k-means and the quantum version of the dragonfly algorithm
(QDA), in which the k-means are employed to determine the initial position of the QDAs
population centroid, rather than using a random initial position. The preprocessing stage
involves removing the brain from the cranium, and the two-step QDA is used to extract the
tumor edges. As an initial contour for the MRI scan, these edges will be employed. Using a
level set segmentation technique, the tumor location will then be detected from all volume
slices. In this study, for optimization in the selection of the initial contour points, dragonfly
behaviors are quantimized using quantum computing to improve the DAs search efficiency.
To go from a locally optimal solution to a better solution (escape from the local solution)
and hopefully to the global optimum, each dragonfly may employ a quantum rotation gate
to overcome the inertia weight during the search operations and to conquer the searching
quality of the Levy flight.

The remainder of the paper is organized as follows: Several recent works in this
field are discussed in Section 2. Section 3 provides a detailed description of the proposed
evolutionary level set segmentation technique using quantum dragonfly optimization. In
Section 4, we provide an interpretation of our results using the 2019 BRATS dataset. In
Section 5, the conclusions and future work are presented.
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2. Related Work

Several different methods of brain image segmentation have been developed over the
course of many decades in an effort to solve this optimization challenge. Researchers have
also made significant progress in enhancing the effectiveness of segmentation algorithms.
Complex medical image segmentation remains a challenging topic [1–3,27]. In the literature,
current methods for segmenting brain images can be divided into the following four
categories: intensity, atlas, deep learning, model, and hybrid-based segmentation. The
advantages and disadvantages of these approaches are discussed in further depth in [28,29].

In [30], the authors propose a superior active contour model by fusing the level set
strategy with the split Bregman technique. The energy function of this model, which
includes the data fitting term and the length term, is supplied in a level set framework with
neighbor region information for segmenting medical images. The minimization process
is intended to be optimized by the variations in neighboring regions and local intensity.
In order to minimize the energy function, the split Bregman method was applied, which
resulted in faster convergence. After seeing promising results with their previous segmen-
tation model, the authors decided to upgrade it by adding a multi-phase segmentation
model and a 3D segmentation model specifically tailored to cardiac MR images.

To reliably and independently segment neighboring regions, the authors in [31] in-
troduced a two-level set segmentation approach based on mutual exclusion. To avoid
the creation of junction regions and ensure the independence of neighboring regions, the
model makes use of two level set functions and uses the area of the joint region divided
by the two level set functions to establish the mutual exclusion term of nearby areas. In
order to construct previous constraints in the energy function, the approximate contours of
the target area were manually established as prior knowledge. The authors obtained the
level set formulation of this double-level set energy functional by including the data term,
mutual exclusion term, prior constraint term, length term, and regularization term, and
then minimized the energy using the gradient descent method.

In [10], the authors offered an automated method of sparse constrained level set
segmentation for MR images of brain tumors. By analyzing images of brain tumors, this
approach identifies the common features of the shape of brain tumors and creates a sparse
representation model. An energy function based on the level set technique is produced by
taking this model into account as a prior restriction. Their method outperforms the existing
methods and achieves an average accuracy of 96.20 percent on MR images from the BraTS
2017 dataset.

The weighted level set model (WLSM) is presented in [32] for segmenting MR images
with an inhomogeneous intensity that have been deteriorated by noise and weak bound-
aries. In order to precisely divide the interconnected regions of brain tissue, the authors
first developed a weighted neighborhood information measurement strategy based on local
multi-information and the kernel function. The level set’s sensitivity to initialization is
reduced by using fuzzy c-means clustering’s membership function as the model’s spatial
constraint; the level set’s function’s evolution may then be adaptively altered depending
on input from different tissues. The distance regularization component of the level set
function is replaced with a double potential function to keep the energy function stable
throughout the evolution phase. However, this model does not analyze brain MRI images
with diseases like multiple sclerosis or brain tumors. Furthermore, this study does not
segment 3D MRI images directly but rather only explores the segmentation approach for
2D MRI slice images.

Restricted by clustering characteristics and the absence of a penalty term, segmentation
accuracy quickly decreases as the number of tissues and the level of noise grow. In order
to more effectively deal with these problems, the research presented in [33] suggested a
level set technique that included a constraint term. First, the difference image is composed
of T1- and T2-weighted magnetic resonance images, from which the cerebrospinal fluid
atlas representing pre-segmented tissue and the white matter atlas utilized in the constraint
term are derived. The T1-weighted image is, therefore, a representation of the real image
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multiplied by the bias field. A novel membership function under level set control is
presented for the real image. Finally, energy minimization is used to simultaneously
optimize components for bias field correction and contour evolution in tissue segmentation.

To combat individual anatomical diversity, intensity non-uniformity, and noise, which
all have a negative impact on brain tumor segmentation, the work presented in [34] suggests
an automated region-based strategy that combines fuzzy shape prior term with deep learn-
ing. By using an adaptively regularized kernel-based fuzzy C-Means clustering method,
the authors of this study were able to create a unique energy function that incorporates
tumor shape into the level set approach. This solves problems with standard level set
techniques, including contour leakage and shrinkage. By utilizing U-Net to obtain the first
contour, the method’s sensitivity to the initial contour selection can be reduced, making it
totally automated.

An adaptive local variance-based level set (ALVLS) model was developed by the
authors in [35] with the aim of segmenting MR images of the heart, MR images of the brain,
and breast ultrasound images with intensity inhomogeneity and noise. The influence of
the area term is adaptively modified by the ALVLS model based on the variance difference
information. In order to increase the accuracy of medical image segmentation, the local
intensity variances are optimized to maximize resistance to noise. For simultaneous seg-
mentation of the left ventricles and left epicardium, they suggested using a two-layer level
set model. The accuracy, efficiency, and noise resilience of the ALVLS model are all shown
favorably in experimental results for both real-world medical images and synthetic images.

In [36], a brain tumor identification method for MRI images is recommended using
an adaptive neuro-fuzzy inference system (ANFIS) classifier. The supplied RGB is first
converted into a grayscale image. Using the skull stripping algorithm, non-brain tissues
are removed during preprocessing. The resulting image is then segmented into tumor
and edema using modified region growing and Otsu’s thresholding. Next, the wavelet
coefficients, edge, and color histogram characteristics are recovered from the segmented
“tumor portion” image. The grey wolf optimizer method is then used to choose the
necessary characteristics from among the retrieved features. The adaptive-ANFIS then
uses those characteristics to classify the tumor as either benign or malignant. The K-means
clustering algorithm performs the adaptive process.

In [37], the authors introduced an active contour model based on adaptive weighted
curvature, which combines heat kernel convolution with adaptively weighted high-order
total variation to improve the efficiency of medical image segmentation for diagnosis. When
approximating the boundary of a segmentation curve, the kernel convolution operation is
used to reduce the computation complexity. To further emphasize local patterns and en-
hance segmentation precision, the weighted parameter in the high-order total variation term
may be assessed automatically based on an adaptive input image. Two deep learning-based
models for medical image segmentation were given by the authors in [38]. By combining
transformer-based encoders with convolution-based encoders, their models made use of
local and global features to accurately segment medical images. These models showed
promise, outperforming the prior state-of-the-art in a number of different segmentation
tasks, including brain tumors, lung nodules, skin lesions, and nucleus segmentation.

In order to include high-level organ shape information, the authors in [39] devised a
contour-based annotation via an iterative deep learning technique that employs boundary
representation rather than voxel labels. In order to enhance the precision of boundary
identification, they implemented a contour segmentation network based on the extraction
of features at several scales. They also created a human intervention technique based on
contours to make it simple to change organ borders. Their system provides quick, few-shot
learning and effective human checking by integrating the contour-based segmentation
network with the contour-adjustment intervention technique.

Using a saliency map and deep learning feature optimization, the authors in [40]
presented a computational strategy for brain tumor identification and classification. In
the first stage, a contrast enhancement method based on fusion is presented. The next
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step is the presentation of a tumor segmentation method based on saliency maps, which
is subsequently applied to the source images using active contour. The next step is to
fine-tune and train a pre-trained CNN model in the following two ways: on improved
images and on images of tumor localization. Features from the average pooling layer are
used in the training of both models, which are trained through deep transfer learning. An
enhanced fusion method called entropy serial fusion is then utilized to combine the deep
learning features. The best features are chosen in the end using an improved dragonfly
optimization method. The best features are then categorized using an extreme learning
machine. The comparison to other neural networks demonstrates their framework’s ad-
vancement. Table 1 summarizes the discussed related work in terms of utilized techniques,
advantages, and disadvantages.

Table 1. Comparison between level set-based MRI brain tumor segmentation approaches.

Algorithm-Based Advantages Disadvantages

Shu, X. et al. [30] Level set with split
Bregman technique 3D segmentation model Low accuracy when dealing

with heterogeneous tumors

Yang, Y. et al. [31] Two-level set segmentation
based on mutual exclusion

Ensure the independence of
neighboring regions

Require prior knowledge for
parameter initialization

Lei, X. et al. [10] Sparse constrained level
set segmentation

Accurate to identify common
features of the shape of

brain tumors

Inaccurate segmentation
results when dealing with

noisy images

Song, J., Zhang, Z. [32] Weighted level set model Segmenting MR images with
inhomogeneous intensity

Not segment 3D MRI
images directly

Jin, R. et al. [33] Level set with a constraint term
High accuracy when the

number of tissues and the level
of noise grow

The setting of the optimal
threshold is very subjective

Khosravanian, A. et al. [34] Fuzzy shape prior term with
deep learning

Handling contour leakage
and shrinkage

Need complex network
architecture

Shu, X. et al. [35] Adaptive local variance-based
level set Accurate and noise resilience Require prior knowledge for

parameter initialization

Kalam, R. et al. [36] Modified region growing with
neuro-fuzzy classifier

Segmenting MR images with
inhomogeneous intensity

Require prior knowledge for
parameter initialization and

the post-processing step

Pang, Z. et al. [37] Adaptive weighted curvature,
with heat kernel convolution

Reduce the computation
complexity

The setting of the optimal
threshold is very subjective

Dhamija, T. et al. [38] Level set with two deep
learning models

Handling different
segmentation tasks

Require high computational
resources

Zhuang, M. et al. [39]
Iterative deep learning

technique with boundary
representation

Enhance the precision of
boundary identification

Need complex network
architecture

Khan, M., et al. [40] Active contour and deep
learning feature optimization

Segmenting MR images with
inhomogeneous intensity

Need complex network
architecture

Several different areas, including medical image analysis, password cracking, and pat-
tern recognition, have taken an interest in quantum machine learning due to the impressive
superposition and entanglement capabilities of quantum computing. While extensively
utilized and showing promising results in medical image analysis, traditional machine
learning still faces challenges, such as a lack of labeled data and inefficient processing. To
address these issues, extensive research has integrated quantum computing and machine
learning to investigate more sophisticated algorithms, which have shown notable gains in
parameter optimization, execution efficiency, and error rate reduction. Understanding how
quantum technology and medical image analysis interact is made possible by quantum
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machine learning, which also advances the field’s potential. Throughout the past decade,
quantum machine learning has been increasingly put to use in the field of medical image
analysis, and many studies have provided overviews of the field’s definition and catego-
rization as well as an overview of the various quantum machine learning techniques and
their applications [41,42].

The Need to Extend the Related Work

According to the conducted survey, there are many problems with current 3D-MRI
brain tumor detection methods [43–50]. These methods showed low accuracy when deal-
ing with heterogeneous tumors and inaccurate segmentation results when dealing with
noisy images. For thresholding-based segmentation approaches, the setting of the opti-
mal threshold is very subjective. In cases of region-based segmentation, these methods
require prior knowledge for parameter initialization and the post-processing step. The
metaheuristics-based segmentation approaches are trapped in a local minimum due to an
imbalance between exploration and exploitation. Furthermore, optimum representation fea-
ture determination is very subjective, just like parameter initialization. Deep learning-based
segmentation approaches require high computational resources and high computation
times, and in general, these models need complex network architecture. This review re-
veals that deep learning-based and hybrid-based metaheuristic techniques perform better
than alternatives for accurate brain tumor segmentation. However, these approaches are
inadequate because of their high computational and memory requirements.

Tumor detection in 3D MR images is complicated by issues including corner point
generation, curve breaking, and combing; the level set approach, owing to its stability
and irrelevancy with topology, offers a significant benefit in addressing these issues. This
strategy does, however, have a number of drawbacks. Only objects whose edges are
determined by the gradient may be segmented since the edge-stopping function is gradient-
dependent. The curve may ultimately cross through object boundaries because, in reality,
the edge-stopping function is never absolutely zero at the borders. It is mathematically
required to maintain the evolving level set function near a signed distance function when
using the level set approach. The development of a novel evolutionary quantum-inspired
level set segmentation approach for a brain tumor detection system based on a 3D-MRI has,
however, received little attention, as far as we are aware. The potential benefits of quantum
machine learning include increased speed and accuracy, improved scalability, and a more
efficient use of resources. Additionally, quantum algorithms can provide insights into data
that would be difficult to uncover with classical algorithms [41,42].

3. The Proposed Evolutionary Quantum Brain Tumor Detection Method

Computer-assisted brain tumor diagnosis relies heavily on MR imaging-based tu-
mor segmentation. Nevertheless, when using traditional segmentation techniques on MR
images of the brain, unacceptable results are often produced due to factors such as inhomo-
geneous intensity, complicated physiological structure, and fuzzy tissue boundaries. To
solve these problems, the proposed method employs the evolutionary quantum-inspired
level set methodology to precisely define the tumor contour. The suggested approach
does this by semantically fusing k-means with QDA-based clustering; that is, rather than
employing a random center of the mass of the neighborhood (cluster centers), the k-means
govern them appropriately. The cluster boundary points will be used to create an initial
contour for the MRI series. The tumor region is then isolated across all volume segments
using a level set segmentation approach. The primary model’s components and their
interconnections are shown in Figure 4. The three primary phases of the model we propose
for segmenting brain tumors are pre-processing, clustering using the QDA, and level set
segmentation. The next sections elaborate on these phases.
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Figure 4. The suggested QDA-based methodology for detecting brain tumors: (Left) flowchart,
(Right) graphical representation.

3.1. Step 1 Preprocessing Phase

Due to the presence of noise in MRI scans, it is sometimes impossible to obtain
reliable data for subsequent brain tumor detection and segmentation [51]. Enhancing
image edges and, concurrently, removing or reducing noise incurred during acquisition
and eliminating any inhomogeneous parts of the image that can lead to poor segmentation
are two of the most important pre-processing activities for improving MRI quality. The
suggested model used the following four procedures: 3D-MRI to 2D-slice conversion,
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skull-stripping, anisotropic diffusion, and contrast enhancement [52–54]. Open-source
software platform 3D Slicer (https://www.slicer.org, accessed on 1 October 2022) is utilized
for the conversion. It is used for medical image informatics, image processing, and 3D
visualization. The following three morphological procedures are performed during the
skull-stripping process: Otsu’s thresholding is used to transform the input 2D-MRI slices
to binary images in the first step. Step 2 involves creating a mask from 2D MRI scans of
the brain by diluting and eroding the slices. The brain becomes a connected, complete
component by filling up the holes. As a third superimposed step, the final skull-strip image
is generated by superimposing the mask over the original image (see Figure 5).
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Figure 5. A consequence of skull-stripping MRI on the brain. (a) Tissue from the initial MRI image of
the brain, and (b) brain without the skull.

Noise may be reduced in images using a technique called anisotropic diffusion, which
preserves important details like edges and lines without distorting the rest of the image
(see Figure 6). Similar to the process that results in a scale space, anisotropic diffusion uses
a diffusion algorithm to produce a parameterized family of gradually blurrier versions
of an input image. The convolution of the input image with a progressively larger 2D
isotropic Gaussian filter represents each of the output images in this series. The image is
transformed into a linear and space-invariant form by the diffusion process. In anisotropic
diffusion, the original image is combined with a filter that is itself dependent on the local
content of the original image to obtain a family of parameterized images [53].

In the final step, contrast enhancement is applied by making use of the histogram
equalization technique. This technique improves the visibility of tumors by rearranging
the grayscale of the images in a non-linear fashion. Taking advantage of the physiological
characteristics of human vision, this aids in the separation of subtle or obscured fluctuations
in pixel intensity into a distribution that is more visually identifiable (see Figure 7). T1-
and T2-weighted scans are the most typical MRI sequences. Time to echo (TE), the interval
between the radio frequency (RF) pulse and the echo signal, and repetition time (TR), the
interval between consecutive pulse sequences applied to the same slice, are both kept
relatively short in order to generate T1-weighted images. The T1 characteristics of tissue
are primarily responsible for the image’s contrast and brightness. T2-weighted images, on
the other hand, are created with longer TE and TR periods. The T2 characteristics of the
tissue are the primary determinants of contrast and brightness in these images. Figure 8 is
a sample of 2D slice noise removal from a single patient.

https://www.slicer.org
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Figure 6. (a) Synthetic MR brain image, axial section, maximum intensity noise (5%); (b) image
filtered with fixed Gaussian window size; (c) image filtered with decreasing window size at the same
number of iterations. A Gaussian Filter is a low-pass filter used for reducing noise (high-frequency
components). The kernel is not hard on drastic color changes (edges) due to the pixels towards the
center of the kernel having more weightage towards the final value than the periphery.
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3.2. Step 2 Quantum Dragonfly-Based Clustering Phase

Clustering is a data analysis method used to identify groups of data items within a
dataset according to some measure of similarity [8,55–57]. The ultimate goal is to enhance
detection performance by making it possible for the clustering model to accommodate
a broad variety of brain tumor sizes, shapes, and structures (heterogeneous). Tumor
boundaries are often unclear or irregular, with discontinuities. The identification of brain
tumors has been a major focus of study in recent years, with a lot of attention paid to hybrid
models [40]. The hybridization of artificial intelligence (AI) models with each other, with
statistical models, and with meta-heuristic algorithms are just a few examples of the many
AI applications that have received significant attention.
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to control the variation around its mean value. So as the Sigma becomes larger the more variance
allowed around mean and as the Sigma becomes smaller the less variance allowed around mean.

The third kind of hybridization, in particular, is very efficient [58]. Choosing the best
algorithm to address a specific optimization problem is challenging since no one optimiza-
tion method can be applied to all such issues. As a result, it is crucial to combine them
with meta-heuristic algorithms in order to compensate for their shortcomings and choose
appropriate combinations of clustering model parameters. The dragonfly algorithm (DA)
is a newly suggested metaheuristic optimization algorithm that takes its cues from the
complex behaviors of dragonfly swarms [20,21]. DAs main benefits lie in its relatively few
control parameters and its simple, adaptable, and easily applied structure [40]. Many opti-
mization problems in medical image analysis have been solved by employing DA [59–64].
Convergence is slow, and the algorithm gets stuck in local optima because the DAs con-
strained design hinders monitoring the best searching experience of dragonflies in earlier
generations throughout the local searching phase [65]. This study quantamize dragonfly be-
haviors using a quantum computing technique, creating a new algorithm called Quantum
Dragonfly (QDA) that improves the dragonfly algorithm’s search efficiency, as illustrated
in Figure 9 [21,22]. Since the QDA has never been hybridized with the clustering model,
this study focuses on combining the DA and the QCM with a clustering model in order to
address its limitations.



Bioengineering 2023, 10, 819 14 of 32Bioengineering 2023, 10, x FOR PEER REVIEW 14 of 32 
 

 
Figure 9. QDA with various quantum rotation angles θ, to reach to best solutions eventually, to global 
optimal. During the searching journey, a dragonfly individual has several directions to move to locally 
optimal solutions (Local optimal 1, 2, and 3) based on their inertia search directions or Lévy flight limita-
tions; QDA is utilized to replace these two searching behaviors and escape from the local solution. 

In our model, the AD technique for clustering issues is enhanced by applying the k-
means algorithm and quantum computing to speed the convergence rate while preserving 
the balance between exploration and exploitation. Here, K-means is utilized to construct 
the correct centers to deal with the randomization to determine the center of mass of the 
neighborhood inside the traditional DA algorithm. In addition, the concept of a quantum 
rotation gate is used to increase the DA swarm’s variety and optimize the swarms’ fitness 
by sending them to more productive areas. The combined effects of these factors provide 
a more stable balance between the QDA-based clustering method’s diversification and 
intensification capabilities. 

3.2.1. Initial DA’ Food Sources Extraction Using K-Mean Algorithm 
In this step, the DA’ initial food sources (the neighborhoods’ mass centers) are located 

using the K-means method. In our case, four clusters are recognized here that stand in for the 
cerebrospinal fluid or background, grey matter, white matter, and tumor (see Figures 10 and 
11) [66,67]. Then, the closest centroid is selected for each point. Assigning data points to the 
centers of the closest clusters requires some kind of proximity measure. In this study, we adopt 
the standard Euclidean distance as our proximity metric. After the clusters have been formed 
and all the points assigned to them, the centroids are recalculated using the cluster’s mean. 
Assigning points to clusters is performed again and again until there is no movement across 
clusters [57]. Figure 12 shows the main steps of the k-mean clustering procedure. 

Figure 9. QDA with various quantum rotation angles θ, to reach to best solutions eventually, to
global optimal. During the searching journey, a dragonfly individual has several directions to move
to locally optimal solutions (Local optimal 1, 2, and 3) based on their inertia search directions or
Lévy flight limitations; QDA is utilized to replace these two searching behaviors and escape from the
local solution.

In our model, the AD technique for clustering issues is enhanced by applying the k-
means algorithm and quantum computing to speed the convergence rate while preserving
the balance between exploration and exploitation. Here, K-means is utilized to construct
the correct centers to deal with the randomization to determine the center of mass of the
neighborhood inside the traditional DA algorithm. In addition, the concept of a quantum
rotation gate is used to increase the DA swarm’s variety and optimize the swarms’ fitness
by sending them to more productive areas. The combined effects of these factors provide
a more stable balance between the QDA-based clustering method’s diversification and
intensification capabilities.

3.2.1. Initial DA’ Food Sources Extraction Using K-Mean Algorithm

In this step, the DA’ initial food sources (the neighborhoods’ mass centers) are lo-
cated using the K-means method. In our case, four clusters are recognized here that
stand in for the cerebrospinal fluid or background, grey matter, white matter, and tumor
(see Figures 10 and 11) [66,67]. Then, the closest centroid is selected for each point. As-
signing data points to the centers of the closest clusters requires some kind of proximity
measure. In this study, we adopt the standard Euclidean distance as our proximity metric.
After the clusters have been formed and all the points assigned to them, the centroids are
recalculated using the cluster’s mean. Assigning points to clusters is performed again and
again until there is no movement across clusters [57]. Figure 12 shows the main steps of the
k-mean clustering procedure.



Bioengineering 2023, 10, 819 15 of 32Bioengineering 2023, 10, x FOR PEER REVIEW 15 of 32 
 

 
Figure 10. Brain axial section gray matter and white matter. Micrograph showing normal white 
matter (left of image-lighter shade of pink) and normal grey matter (right of image-dark shade of 
pink). Gray matter is made up of neuronal cell bodies, while white matter primarily consists of my-
elinated axons. In the brain, white matter is found closer to the center of the brain, whereas the outer 
cortex is mainly grey matter. 

 
(a) (b) (c) 
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Figure 10. Brain axial section gray matter and white matter. Micrograph showing normal white
matter (left of image-lighter shade of pink) and normal grey matter (right of image-dark shade of
pink). Gray matter is made up of neuronal cell bodies, while white matter primarily consists of
myelinated axons. In the brain, white matter is found closer to the center of the brain, whereas the
outer cortex is mainly grey matter.

Bioengineering 2023, 10, x FOR PEER REVIEW 15 of 32 
 

 
Figure 10. Brain axial section gray matter and white matter. Micrograph showing normal white 
matter (left of image-lighter shade of pink) and normal grey matter (right of image-dark shade of 
pink). Gray matter is made up of neuronal cell bodies, while white matter primarily consists of my-
elinated axons. In the brain, white matter is found closer to the center of the brain, whereas the outer 
cortex is mainly grey matter. 

 
(a) (b) (c) 

Figure 11. (a) Segmented cerebrospinal fluid (CSF), (b) segmented gray matter, and (c) segmented 
white matter. The three-dimensional MRI T1 brain image was considered with the following five 
layers: scalp, skull, cerebral spinal fluid (CSF), gray matter, and white matter. 

Figure 11. (a) Segmented cerebrospinal fluid (CSF), (b) segmented gray matter, and (c) segmented
white matter. The three-dimensional MRI T1 brain image was considered with the following five
layers: scalp, skull, cerebral spinal fluid (CSF), gray matter, and white matter.

3.2.2. Determine Initial Contour Points Using Quantum Dragonfly Algorithm

In this step, an effective clustering technique is implemented after the k-means algo-
rithm is used to regulate the clusters’ centers (cluster head selection). The clustering that
is utilized to group and establish the initial tumor contour points is optimized using, in
our case, the quantum-inspired dragonfly algorithm to boost accuracy. The DA method
is based on both dynamic (migration) and static (hunting) swarming particles. When it
comes to optimization, these two swarming techniques rely on the usage of metaheuris-
tics for both exploitation and exploration [68]. Figure 13 illustrates the flowchart of the
Dragonfly algorithm [21,69,70]. Separation (Si), alignment (Ai), cohesion (Ci) attraction to
food sources (Fi), and distraction from enemies (Ei), are the five operators of dragonfly
swarms [21]. First, the Si operator distinguishes the ith dragonfly’s static condition from
that of its neighbors. The Ai operator makes sure that the speed of the ith dragonfly is the
same as the speed of all the other dragonflies in the area. When the ith dragonfly does a
search, Ci operator directs its attention to the spatial center of the immediate area (neigh-
borhood). The ith dragonfly’s primary survival goal is to collect food, but it is diverted
from this goal by enemies, as reflected by the final two operators, Fi and Ei. To show the
survival behaviors of dragonfly swarms, each operator is weighted appropriately [70].
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Figure 13. Flowchart of Dragonfly algorithm. Dragonflies form sub-swarms and fly over different
areas in a static swarm. This is similar to exploration, and it aids the algorithm in locating appropriate
search space locations. On the other hand, dragonflies in a dynamic swarm fly in a larger swarm and
in the same direction. In addition, this type of swarming is the same as using an algorithm to assist it
converges to the global best solution.
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The Lévy flight, a kind of random walk in which the step lengths form a Lévy dis-
tribution that is heavy-tailed, is used to update a dragonfly’s location if it is unable to
find a neighbor within its searching radius after multiple rounds. If you think of it as
walking across a place with more than one dimension, you will notice that your steps
go in completely random, isotropic directions. Position and velocity updates are used to
determine fitness values (segmentation error). Up until the stopping criterion is met, the
position is updated. The smallest fitness value (segmentation error) and its corresponding
location represent the optimal solutions [71]. Both the inertia weight and the Lévy flight
equation have their origins in Newtonian mechanical concepts, which place limits on the
kinds of searching that may be performed by an individual. Any given dragonfly has
a high degree of difficulty altering its preexisting searching direction in response to DA
because of the so-called inertia constraint; any dragonfly without an adjacent neighbor
must use the Lévy flight equation and may not modify the fly rules while in Lévy flight
due to the Lévy flight constraint [69–71].

In order to overcome the dilemma of the dragonfly individual, the QCM (especially for
different quantum rotation angles, θi, as illustrated in Figure 9) might be used to substitute
these two searching behaviors (inertia behavior and Lévy flying behavior). Therefore, a
dragonfly may escape from a local optimal solution and, with any chance, arrive at the
global optimum. Local optimal solutions (Local optimal 1, 2, and 3) may be reached by a
dragonfly at any given time throughout its searching trip in any of numerous directions,
depending on the flyer’s inertia search directions or Lévy flying constraints. To overcome
the dragonfly’s dilemma, QCM with a range of quantum rotation angles (θi) is used to find
the best solutions (1, 2, 3, etc.) and, ultimately, the global optimal solution. The details of
the utilized QDA are as follows [21–25,72,73]:

Step 1 Initialization: randomize the dragonfly population Xi =
(

x1
i , x2

i , . . . ., xd
i

)
,

i = 1, 2, . . . ., N of size N and d represents the dimension of the ith dragonfly (d = 1 in our
case) for the variable of our clustering model (one parameter represents the image pixel Xp

i ).
Each dragonfly individual’s fitness value is calculated with their initial position, which is
often created at random between the minimum and maximum values of the MRI image
pixel. In this study, we define fitness as the standard deviation of the clustering errors
produced by a model trained using the identified tumor pixel. The following equations
are used to determine a dragonfly individual’s weights for the five operators listed above
based on their initial values, which are determined at random.

Si = −∑M
J=1 Xi − Xj (1)

Ai =
1
M ∑M

J=1 Vj (2)

Ci =
1
M ∑M

J=1 Xi − Xj (3)

Fi = X f ood − Xi (4)

Ei = Xenemy + Xi (5)

Dij =

√
∑d

k=1

(
xk

i − xk
j

)2
(6)

In these equations, Xj and Vj denote the position and velocity of the j-th neighboring
individual; Xi denotes the position of the current individual; M denotes the number of
neighboring individuals; X f ood and Xenemy denote the locations of the food and enemy
sources, respectively; Dij is the Euclidean distances between all pairs of dragonflies used to
verify the individual neighbors with size M.
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Step 2 Fitness evaluation: From the quantimized positions of the proposed model’s
parameter, evaluate the fitness values (in this work, clustering accuracy indices are utilized
as fitness values). Clustering accuracy is measured using a metric called the mean absolute
percentage error (MAPE).

MAPE =
1
N ∑N

i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (7)

N is the total number of clustering results; yi is the actual class of the instance i; fi is
the predicated class of the same instance.

Step 3: Dragonfly operators updated: For each parameter population, calculate the
five operators, Si, Ai, Ci, Fi, and Ei. Then, update the value of each operator according to.

Xt+1 = Xt + ∆Xt+1 (8)

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + ξ∆Xt (9)

s, a, and c represent the weights of separation, alignment, and cohesion, respectively;
f and e represent the factors of food and enemy, respectively; ξ represents the inertia weight,
and t is the number of the current iteration.

Step 4: Inertia motion replaced by QCM: Quantamize ∆Xt into the qubit format qk
using the following equation in order to update ξ∆Xt:

qk =
2∆Xt − (max + min)

max−min
, k = Xp

i (10)

max and min represent the upper and lower bound on parameter Xp
i , respectively. In

this case, qk can be reorganized in qubit format, Q. The smallest unit in a quantum system
is called a quantum bit, or qubit, and it may be in either the “0” or “1” state, or in any
superposition of the two [41,42]. Therefore, the state of a qubit is given by the following:

|ψ〉 = β1|0〉+β2|1〉 (11)

[β1]
2 + [β2]

2 = 1 (12)

where |0〉 and |1〉 are the values of traditional bits 0 and 1, respectively; β1 and β2 are the
probabilities associated with their corresponding states. The linear superposition of all
possible states in a system with k qubits and 2k states may be written as a generalization of
this formula.

|ψi〉 = ∑2k

i=1 pi|Si〉 (13)

In which the probability associated with state Si, denoted by pi, is normalized to 1.

[p1]
2 + [p2]

2 + . . . + [p2k ]
2 = 1 (14)

One qubit out of k qubits has probability

q =

[
α1
β1

∣∣∣∣ α2
β2

∣∣∣∣ . . . .
∣∣∣∣αK
βk

]
, [αi]

2 + [βi]
2 = 1 , i = 1, 2, . . . k (15)

One helpful operator for modifying qubits is the quantum rotation gate. Using matri-
ces, the procedure may be implemented. The quantum rotation gate with phase angle θ is
used to improve the current state’s solution.

Ṕ =

[
cos θ − sin θ
sin θ cos θ

]
P (16)
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Ṕ is the updated position, and θ is the given angle of the quantum rotation gate
(see Figure 14)
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Figure 14. The updating of a quantum bit state vector, where (αi, βi)
T and

(
άi, β́i

)T show the quantum
bit state vector before and after the rotation gate updating of the ith quantum bit of chromosome;
θi shows the ith rotation angle to control the convergence rate. The update strategy of the quantum
chromosome in the quantum rotation gate is to compare the fitness of the current individual with
that of the optimal individual, select the better one, and then rotate to it.

Step 5 New solution generated by quantum rotation gate: To obtain a different value of
Q, Q’, depending on a particular phase angle, use the quantum rotation gate (Equation (16)).
Then, carry out the dequantization process to produce a real number format for each
corresponding new q in accordance with the following:

∆X′t =
1
2
[
max ∗

(
1 + q′

)
+ min ∗

(
1− q′

)]
(17)

Step 6 Position updated: Plug the new value of ∆X′t into Equation (9) to obtain the
value of ∆X′t+1. Finally, to reflect the current distribution of dragonflies, we may plug
∆X′t+1 into Equation (8). It is therefore necessary to return to Step 2 and calculate the fitness
values (clustering errors) based on the quantified value of Xp

i .
Step 7 Lévy flight replaced by QCM: To update the Lévy flight behavior, use the QCM

to compute

q =
2Xt − (max + min)

max−min
(18)

Furthermore, use quantum rotation gate operation to obtain X′t in order to update the
positions of dragonfly populations.

X′t+1 = X′t + levy(d)Xt (19)

t is the number of the current iteration, and d represents the number of dimensions in
which the dragonfly’s position is specified (d = 1). This improves the probability of jumping
out of local optimum and finding a globally optimum solution, i.e., to expand its search space.
Go back to Step 2 to evaluate the fitness values from the quantamized positions of Xp

i .
Step 8: Gaussian mutation-based DA: DA is not efficient enough in both the explo-

ration and the exploitation phases. Therefore, it needs to be more diffused to search for
more spaces to achieve the diversity of the population. In our case, the Gaussian mutation
mechanism is employed to increase its diversity.

X′t = Xi + (1 + k× randn(1)) (20)
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Xi is the ith individual of the current population, X′t is the new individual obtained
after Gaussian mutation, k is the weight parameter (k = 1, as stated in [22]), and randn (1)
produces 1 × 1 matrix; that is, a data from 0 to 1.

Step 9 Stop criteria: The optimal solution is the optimal set of clustering model
parameters if the number of iterations approaches the threshold; otherwise, the procedure
loops back to Step 2 and continues searching.

3.3. Step 3 Level Set Segmentation

Partial differential equations (PDE), which involve progressively evaluating the dif-
ferences between neighboring pixels to determine object boundaries, provide the basis
of a large class of contemporary image segmentation algorithms, among which level sets
are an important subclass [74]. The method should ideally converge to the object’s edge,
as that is where the differences are greatest. Level sets advance a contour like a rubber
band until the contour hits an object boundary. If there are any gaps in the border, the
contour is prevented by its rubber band-like shape (=curvature). A grayscale difference and
the rubber band’s strength may be pre-selected [75]. Up until it reaches a predetermined
difference in the intensities of the pixels, the rapid marching algorithm expands from a seed
point extracted from the previous step to the object boundary, as illustrated in Figure 15.
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Figure 15. Level set function—An overview. The level set approach takes the original curve (the red
one on the left) and builds it into a surface. That cone-shaped surface, which is shown in blue on the
right below, has a great property; it intersects the XY plane exactly where the curve sits. The blue
surface is called the level set function because it accepts as input any point in the plane and hands
back its height as output. The red front is called the zero level set because it is the collection of all
points that are at height zero.

Using a variety of inherent geometric measurements of the image, active contours
develop an initial contour over time. The steps used by the plugin implementation include
an edge-based constraint, a grey-value penalty, and a curvature constraint, all of which
serve to avoid leakage of the object boundary in poorly edged regions. Due to the imple-
mentation’s active contours’ ability to split and merge during curve evolution, it may be
utilized to identify several objects. The method used in the plugin is state-of-the-art; it is
memory-efficient, runs quickly, and can be simply adapted to accommodate different level
set algorithms [76]. This implementation is based on the following PDE updates [77,78]:

Φ(i) = ∆Tg(i)(WaFa|∇Φ|+ WcFc|∇Φ|) (21)

g(I) =
1

1 + (∇I∗ + g)·2 (22)

∆T =
1

6·Wa·Wc
(23)
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Φ(i) is the ISO surface at the current iteration i,∇I∗ is the difference in the smoothened
image. An ISO surface is a three-dimensional analog of an ISO line. It is a surface that
represents points of a constant value within a volume of space; in other words, it is a level
set of a continuous function whose domain is 3-space. Wa and Wc represent advection
and curvature weight, respectively, while Fa and Fc represent advection and curvature
force, respectively. A more detailed explanation of the algorithm can be found in [79–81].
Figure 16 illustrates the level set steps in medical image segmentation [82]. According to
the moment, the contour’s acceleration and velocity change throughout segmentation. The
velocity and acceleration rise as the contour Φ(x, t) gets farther away from the solution.
The acceleration and velocity drop as the contour gets closer to the target region. Figure 17
shows the result of applying the level set segmentation to a set of images.
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Figure 16. General image segmentation algorithm using the level set function. Given a certain area
Ω with an edge Γ. The velocity of the edge ν between steps depends on the position, shape, time,
and external conditions. The function ϕ(x, t) where x is the position in the Cartesian space and t
is the time, describing the moving contour. E(ϕ) is the energy, Rp(ϕ) is the level set regularization
term, Lp(ϕ) is minimized when the zero level contour is located at the object boundaries and Sg(ϕ)

is introduced to speed up the motion of the zero level contour in the level set evolution process.

In conclusion, the level set method makes it very easy to follow shapes that change
topology, i.e., it is a great tool for modeling time-varying objects. However, the standard
level set algorithm requires a significant amount of computation and a large number of
iterations if the initial contour deviates much from the actual contour. In our case, two-step
quantum behavior DA clustering brings the initial contour set closer to the actual tumor
contour, allowing for excellent convergence in fewer iterations. The main argument in
favor of this approach is that it may construct a more trustworthy tradeoff between the
exploration of all search regions and the exploitation of the proximity of solutions. It begins
each cycle with a rapid increase in the rate at which it generates exploratory trends and
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then gradually shifts to a smooth transition between exploration and exploitation. As
a consequence of the smooth transition and consistent performance, the quality of the
outcomes has increased, and the risk of stagnation has decreased. Mutation operations
may assist individuals who are escaping poor-quality solutions in a situation of immature
convergence. In QDA, a wave function expresses the particle’s motion state, and the
Schrodinger equation in quantum mechanics yields the corresponding probability. All the
particles have a chance of showing up in the search space, and the population’s capacity
for worldwide exploitation is greatly enhanced as a result.
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4. Experimental Results

The performance of the proposed model is validated in this section using MRI volumes
from 285 patients who have brain tumors, each of which represents a distinct tumor type,
location, size, and intensity. The 3D-MRI images of brain tumors are available in the BraTS
2019 (Brain Tumor Segmentation) test and challenge dataset [83,84]. The experiment was
run in MATLAB R2018a on a computer with an Intel (R), Core (TM) i3 CPU, and 8.00 GB
of RAM. Specifically, this context makes use of accuracy, recall (sensitivity), precision,
dice score, Hausdorff 95, and specificity as evaluation metrics. To verify the effectiveness
of the proposed model, we conducted the first set of experiments using the BraTS 2019
dataset and compared it to the state-of-the-art brain tumor segmentation techniques given
in Table 2. A brain symmetry analysis technique and a combination of region-based and
boundary-based segmentation approaches form the basis of the model presented in [85].
The limitation of region segmentation is that it can only be used with closed boundaries.
In [86], the authors use a combination of region-based K-means clustering and variational
level sets to fix the issue of poor convergence towards the concavities of the tumor border.
The K-value is notoriously unpredictable, and various starting partitions might provide
wildly varied clustering results.

Table 2. Analysis of the proposed model vs. related level set-based brain segmentation techniques
(average across 285 participants in the BraTS 2019 dataset).

Accuracy
(%)

Recall
(%)

Precision
(%) Dice Score Specificity

Symmetry Analysis, Level Set [85] 93.43 89.15 90.60 0.911 0.931
K-means, Level Set [86] 89.45 92.87 75.97 0.902 0.945

ANN, Level Set [87] 96.80 95.30 94.16 0.940 0.923
Local edge features, Weighted level set [88] 95.62 94.19 93.57 0.920 0.965

Dragonfly, Level Set [59] 96.21 95.15 93.85 0.923 0.987
Proposed Model 98.95 97.36 95.14 0.947 0.993
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Moreover, models from [59,87,88] were selected to compare the proposed model to
other well-known methods for segmentation. In [87], MRI scans are prepared for tumor
segmentation using a level set technique with certain modifications. It is also crucial to
extract informative characteristics in order to make reliable predictions about the image’s
class. An artificial neural network that can learn from its errors is used to make the
classifications. The adaptive ANN uses the whale optimization method to fine-tune the
performance of the layer neurons. However, neural networks are complex and require
a lot of data to train them. The method suggested in [88] uses a level set evolution
based on the minimization of an objective energy functional, the components of which
are weighted according to their relative importance in boundary detection. Local edge
characteristics gathered from neighboring areas within and outside the evolving contour
are used to calculate this relative relevance. Forcing the level set function to be near distance
function using a variational formulation, however, requires more extracted information
and, therefore, a higher computational cost. The proposed model is an expansion of the
model given in [59], which uses a quantum-inspired dragonfly algorithm rather than a
conventional dragonfly method to reliably extract initial con-tour points prior to using a
level set segmentation technique.

The proposed model is validated by the results, which show a 2.5% improvement
in accuracy compared to the Dragonfly, Level set-based brain segmentation technique.
The value of the Dice score can exceed 0.95 for whole tumor segmentation, showing good
overlap with manual segmentations. In terms of specificity, the ratio is equal to 0.993 for
the tumor region. So, it means that the segmentation results are reliable enough. One
potential reason for this result is that a two-step QAD identifies a more accurate initial
contour than the comparison approaches do, thereby increasing the segmentation accuracy.
Information gathered from k-means is used to support the QDAs search engine. By using
a quantum-inspired computing paradigm, the suggested model is able to stabilize the
exploitation/exploration trade-off and make up for any weaknesses of the conventional
DA-based clustering approach, such as delayed convergence or being stuck in a local
optimum. Furthermore, the suggested model has a robust local search capacity by adopting
a mutation procedure to enhance the swarm’s mutating and realizing its variety. Figure 18
shows a sample of segmentation results.

Another set of experiments was carried out to compare the proposed model with
recent works [89–91], as shown in Table 3, to validate the proposed model against existing
approaches that use deep neural networks (DNNs), one of the most well-known techniques
for segmenting brain tumors. The first approach uses variational level sets (VLS) in
combination with deep learning to deal with the level set’s sensitivity to initial settings; it
depends on the number of iterations. In the second approach, a unique symmetric deep
convolutional neural network is suggested for autonomous brain tumor segmentation.
By adding symmetrical masks at many layers, it enriches segmentation networks based
on deep convolutional neural networks (DCNN). The third strategy is based on a fusion
support vector machine technique for deep convolutional neural networks. The results in
terms of accuracy, recall, and precision reveal the segmentation power of the suggested
model compared with other DNN-based methods. This indication has been verified
through other evaluation metrics such as dice score (The dice metric measures volumetric
overlap between segmentation results and annotations) and specificity (evaluates a model’s
ability to predict true negatives of each available category), even if the results are more or
less in agreement with these approaches. Overfitting is the primary issue with CNN, and
the need for a large training set makes it computationally costly.
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shows a sample of segmentation results. 
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Table 3. Analysis of the proposed model vs. DNN-based brain segmentation techniques (average
across 285 participants in the BraTS 2019 dataset).

Models Accuracy
(%)

Recall
(%)

Precision
(%)

Dice
Score Specificity

DCNN, level set [89] 93.43 89.15 90.60 0.913 0.991
DCNN, symmetric mask [90] 89.45 92.87 75.97 0.828 0.891

DCNN, SVM [87] 96.80 95.30 94.36 0.932 0.989
Proposed Model 98.95 97.36 95.14 0.948 0.995

Despite the fact that quantum clustering and the level set technique are not particularly
novel to the area of brain tumor segmentation, an additional series of experiments were
performed to validate their effectiveness when combined. The suggested model’s QDA
component has been swapped out with a set of well-known quantum-inspired metaheuris-
tic modules running in black box mode with their initial settings preserved. Quantum
Particle swarm optimization (QPSO), Quantum artificial bee colony (QABC) algorithm, and
Quantum clown fish (QCF) method are all examples of employed quantum-inspired meta-
heuristic algorithms [92–94]. The results shown in Table 4 support the study’s hypothesized
improvement in segmentation accuracy when utilizing the QDA classifier based on correct
center points (initial contour seeds) retrieved using k-means. When compared to the closest
combination between the QCF and the level set segmentation, the proposed combination
improved accuracy by at least 1%. Whether a QPSO, QABC, or QCF algorithm is more
exploratory or exploitative depends on the convergence rate, which is, in turn, determined
by the major factors that affect the individual’s movement toward the best position found
so far. The convergence rate in QDA is parameter-free. The suggested model has a robust
local search capacity by adopting a mutation procedure to enhance the swarm’s mutating
and realizing its variety.
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Table 4. Analysis of the proposed model vs. quantum-inspired metaheuristic brain segmentation
techniques (average across 285 participants in the BraTS 2019 dataset).

Models Accuracy
(%)

Recall
(%)

Precision
(%) Dice Score Specificity

QDA, Level Set, mutation procedure (Proposed) 98.97 97.40 95.20 0.947 0.992
PSO, Level Set [92] 97.30 95.13 94.90 0.941 0.987
ABC, Level Set [93] 97.68 95.67 94.86 0.945 0.989
CF, Level Set [94] 97.87 95.95 94.35 0.939 0.990

The next set of experiments is being conducted to prove that k-means has a significant
impact on improving segmentation precision. Table 4 demonstrates the efficacy of the
proposed model whereby k-means is used to calculate the initial DA population; compared
to the model with random initialization of QDA, it improves accuracy by 11%. Instead of
using random initialization, the k-means algorithm is employed in this study to establish
the appropriate locations in a random search space for food sources; therefore, the results
of the DA clustering algorithm are enhanced with this method. In this scenario, the initial
food source placements in the DA algorithm are determined by the centers of the clusters
produced by k-means. Table 5 shows that the computed standard deviation is small, which
means that the data points cluster tightly around the mean, and there are no extreme outliers.
This indicates that the model’s accuracy metrics are robust over a wide range of MRI images.
Figure 19 shows a sample of the segmentation process using the quantum DA-based level
set segmentation procedure. It can be deduced that the QDA method significantly decreases
the required number of level set iterations. The contour was calculated very closely to the
tumor region using the best-configured two-step QDA parameters.

Table 5. Analysis of the proposed model accuracy with and without k-means (average over
285 participants in the BraTS 2019 dataset).

Models Accuracy
(%) Mean Standard Deviation Median 25 Quartile 75 Quartile

k-means, QDA, and level set 98.95 0.976 0.032 0.975 0.972 0.979
QDA, and level set 87.63 0.845 0.064 0.839 0.837 0.840

To confirm the efficiency of the suggested model to segment different types of tumors
with multiple tumor lumps per slice in different planes, the last set of experiments was
conducted using a benchmark brain tumor dataset from the website https://figshare.
com/articles/dataset/brain_tumor_dataset/1512427/5 (accessed on 1 October 2022). In
this dataset, there are the following three types of tumors: meningioma (708 images),
glioma (1426 images), and pituitary tumor (930 images). All images were acquired from
233 patients in the following three planes: sagittal (1025 images), axial (994 images), and
coronal (1045 images) plane. Examples of different types of tumors, as well as different
planes, are shown in Figure 20. The tumors are marked with a red outline. The number of
images is different for each patient. Herein, each 3D volume includes 155 2D slices/images
of brain MRIs collected at various locations across the brain. Every slice is 240 × 240 pixels
in size in NIfTI format and is made up of single-channel grayscale pixels. With NIfTI files,
images, and other data are stored in a 3D format. It is specifically designed this way to
overcome the spatial orientation challenges of other medical image file formats. The results
of the developed model are shown in Table 6 in terms of dice scores. The results reveal that
the dice score can exceed 0.93 (on average) for different types of tumors in different MR1
scan planes, showing a good overlap with manual segmentations. The execution speed
was quite good, with an average of less than 7 s per volume to test, i.e., 45 ms per image.
Figure 21 confirms the ability of the suggested model to segment multiple tumor lumps

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5
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per slice. Scholars recommend routinely taking axial images. In selected cases, coronal or
sagittal planes may be added.
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Table 6. Analysis the efficiency of the suggested model in terms of dice scores to segment different
types of tumors in different planes.

Tumor Type/Plane Axial Coronal Sagittal

Meningioma 0.913 0.923 0.985
Glioma 0.939 0.940 0.986

Pituitary 0.947 0.943 0.909
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Figure 20. MRI scans of different tumor types in different planes—the red circles highlight the tumor
in the images. The example is shown for each tumor type in each plane. The first row is for the
meningioma, which is a tumor that arises from the meninges. The second row is for glioma, which is
the growth of cells. That third row is for pituitary tumors, which are unusual growths that develop in
the pituitary gland. The columns from left to right represent the MRI image scans from axial, coronal,
and sagittal planes.
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Convergence Issue of the Proposed Model

Alignment, separation, cohesion, attraction to food sources, and distraction from
enemy sources are the primary factors influencing the QDA algorithm’s exploration and
exploitation. Dragonflies should adjust their weights in an adaptable manner as they go
from exploitation to exploration. During the optimization phase, this ensures the con-
vergence of dragonflies. The convergence of QDA was expected after a small number of
iterations. However, the position updating rule of traditional QDA has a lower correlation
with the centroid of the preceding generation’s population. As a consequence, this may
cause problems in locating the global optimum, leading to a solution with poor precision
and a tendency to converge too quickly to local minima [24,25,68,69]. Therefore, investi-
gations are urged to discover new methods to update dragonfly locations. By utilizing
the K-mean algorithm to determine the initial centroid of the generation’s population,
the suggested method strengthened the algorithm’s capacity for exploration and led to a
greater variety of solutions. In terms of convergence speed, the results shown in Table 7
proved that compared to the QDA without the k-mean algorithm, the proposed technique
provided better performance with a 60% reduction in the number of required iterations
for convergence to the optimal solution. Herein, Hausdorff 95 (95% HD) as an evaluation
metric was used to measure the 95th percentile of the distances between boundary points in
X (predicted segmentation results) and Y (ground truth). The purpose of using this metric
is to eliminate the impact of a very small subset of the outliers.

Table 7. Analysis of the proposed model convergence speed with and without k-means (average over
285 participants in the BraTS 2019 dataset).

Models Hausdorff 95 Convergence Speed

k-means, QDA, and level set 4.41 30 independent runs
QDA, and level set 6.92 75 independent runs

5. Conclusions

This research proposes a reliable approach for extracting tumors from 3D MRI scans.
The level set segmentation method, in its modified form, is used in the suggested model.
In this updated version, clustering based on quantum-inspired DA is used to control
the initial contour precisely rather than randomly through employing k-means for initial
source food selection over randomly applied QDA. To make up for the shortcomings of the
traditional DA-based clustering technique, such as delayed convergence or being stuck in
a local optimum, the suggested model uses a quantum-inspired computing paradigm to
stabilize the trade-off between exploitation and exploration. First, the quantum rotation
gate concept may move a colony of agents to a location where they can better reach the
optimal value. The mutation process enhances the swarm’s mutating and diversity, giving
the primary approach substantial local search capability. QDA determines tumor shapes
after disassembling the skull from the brain. These extracted edges will form the first
MRI series contour. Finally, level set segmentation isolates the tumor across all volume
segments. Results reveal that the proposed approach’s accuracy outperforms traditional
dragonfly-based level set brain segmentation approaches by 2.5%. The limitations of the
suggested model are that it focuses only on complete tumor segmentation and has not
been tested on volumes including more than one tumor per slice. In order to further
simplify the proposed model, future work may use the parallel segmentation technique.
Additionally, the influence of variables (parameters) for level set segmentation and the
dragonfly method on the model’s accuracy was investigated, and the proposed model was
expanded to account for the various tumor components. Finally, the proposed approach
may be employed in conjunction with a deep neural network to extract highly informative
features for further segmentation.
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