Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control
Abstract
:1. Introduction
2. Modeling and Identification of Friction
2.1. LuGre Friction Modeling
2.2. Multi-Parameter Identification of Friction Model
2.3. Tracking Error Modeling
3. Friction Compensation and Control Strategy
3.1. Friction Feedforward Control Design
3.2. Experiment of Friction Compensation Control
4. Contour Error Modeling and Controlling
4.1. Contour Error Modeling
4.2. Influence of the Dynamic Parameter on Contour Error
- (1)
- When the motion time and dynamic gains of each axis are equal, the second and third terms of equation (26) become zero. Consequently, the error er is solely influenced by the first servo dynamic characteristics. In this scenario, the error is dependent on both the frequency of the servo bandwidth and the size of the design path.
- (2)
- When the motion time constants Tx and Ty of each axis are different, but the motion gains Kcx and Kcy are the same, the Equation (26) can be rewritten as follows:
- (3)
- Except for the first item, error er is affected by two parts based on (27). One part is constant and independent of time. The other part consists of elliptic trajectories that vary with time. These trajectories have a major axis distributed in the direction of 45° or 135°, and their radius is related to the system dynamic parameter ωt.
- (4)
- When the motion time constants Tx and Ty are equal, but the motion gains Kcx and Kcy are different, Equation (26) can be rewritten as follows:
- (5)
- When Tx, Ty and Kcx, Kcy are all different, Equation (27) can be rewritten as follows:
4.3. Design of Cross-Coupled Control Strategy
5. Machining Experiment Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, S.L.; Sun, Y.W. Stability analysis for a milling system considering multi-point-contact cross-axis mode coupling and cutter run-out effects. Mech. Syst. Signal Process. 2020, 141, 106452. [Google Scholar] [CrossRef]
- Sun, Y.W.; Jia, J.; Xu, J.T.; Chen, M.; Niu, J. Path, feedrate and trajectory planning for free-form surface machining: A state-of-the-art review. Chin. J. Aeronaut. 2022, 35, 12–29. [Google Scholar] [CrossRef]
- Yan, S.C.; Sui, L.; Wang, S.Q.; Sun, Y.W. On-line tool wear monitoring under variable milling conditions based on a condition-adaptive hidden semi-Markov model (CAHSMM). Mech. Syst. Signal Process. 2023, 200, 110644. [Google Scholar] [CrossRef]
- Liu, W.; Bai, X.; Yang, H.; Bao, R.; Liu, J. Tendon driven bistable origami flexible gripper for high-speed adaptive grasping. IEEE Robot. Autom. Lett. 2024, 9, 5417–5424. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Z.L.; Yang, Z.; Jiang, Y. Development, challenges and future trends on the fabrication of micro-textured surfaces using milling technology. J. Manuf. Process. 2024, 126, 285–331. [Google Scholar] [CrossRef]
- Armstrong-Hélouvry, B.; Dupont, P.; Wit, C.C.D. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 1994, 30, 1083–1138. [Google Scholar] [CrossRef]
- Simba, K.R.; Bui, B.D.; Msukwa, M.R.; Uchiyama, N. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives. ISA Trans. 2018, 75, 207–215. [Google Scholar] [CrossRef]
- Li, C.B.; Pavelescu, D. The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 1982, 82, 277–289. [Google Scholar]
- Dahl, P.R. Solid friction damping of mechanical vibrations. AIAA J. 1976, 14, 1675–1682. [Google Scholar] [CrossRef]
- de Wit, C.C.; Olsson, H.; Astrom, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425. [Google Scholar] [CrossRef]
- Freidovich, L.; Robertsson, A.; Shiriaev, A.; Johansson, R. Friction compensation based on LuGre model. In Proceedings of the IEEE Conference on Decision & Control, San Diego, CA, USA, 13–15 December 2006. [Google Scholar]
- Bicakci, S.; Akdas, D.; Karaoglan, A.D. Optimizing Karnopp friction model parameters of a pendulum using RSM. Eur. J. Control 2014, 20, 180–187. [Google Scholar] [CrossRef]
- Swevers, J.; Al-Bender, F.; Ganseman, C.; Projogo, T. An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 2000, 45, 675–686. [Google Scholar] [CrossRef]
- Chu, H.; Gao, B.; Gu, W.; Chen, H. Low-speed control for permanent-magnet DC torque motor using observer-based nonlinear triple-step controller. IEEE Trans. Ind. Electron. 2017, 64, 3286–3296. [Google Scholar] [CrossRef]
- Cui, P.; Zhang, D.; Yang, S.; Li, H. Friction compensation based on time-delay control and internal model control for a gimbal System in magnetically suspended CMG. IEEE Trans. Ind. Electron. 2017, 64, 3798–3807. [Google Scholar] [CrossRef]
- Liu, D.; Tao, T.; Mei, C.S. Study on the decoupling identification method of linear dynamic and nonlinear friction for servo driver system. Chin. J. Sci. Instrum. 2010, 31, 782–788. [Google Scholar]
- Ba, D.B.; Simba, K.R.; Uchiyama, N. Contouring control for three-axis machine tools based on nonlinear friction compensation for lead screws. Int. J. Mach. Tools Manuf. 2016, 108, 95–105. [Google Scholar]
- Kim, S.J.; Ha, I.J. A frequency-domain approach to identification of mechanical systems with friction. IEEE Trans. Autom. Control 2001, 46, 888–893. [Google Scholar]
- Du, F.; Li, P.; Wang, Z.; Yue, M.; Feng, X. Modeling, identification and analysis of a novel two-axis differential micro-feed system. Precis. Eng. 2017, 50, 320–327. [Google Scholar] [CrossRef]
- Sanxiu, W.; Yunbo, Z.; Guang, C. LuGre friction compensation control of servo manipulator based on neural network. J. Beijing Univ. Technol. 2016, 42, 679–683. [Google Scholar]
- Zhu, H.; Fujimoto, H. Mechanical deformation analysis and high-precision control for ball-screw-driven stages. IEEE Trans. Mechatron. 2015, 20, 956–966. [Google Scholar] [CrossRef]
- Lin, C.J.; Yau, H.T.; Tian, Y.C. Identification and compensation of nonlinear friction characteristics and precision control for a linear motor stage. IEEE Trans. Mechatron. 2012, 18, 1385–1396. [Google Scholar] [CrossRef]
- Iwasaki, M.; Shibata, T.; Matsui, N. Disturbance-observer-based nonlinear friction compensation in table drive system. IEEE/ASME Trans. Mechatron. 1999, 4, 3–8. [Google Scholar] [CrossRef]
- Rafan, N.; Jamaludin, Z.; Chiew, T.; Abdullah, L.; Maslan, M. Contour error Analysis of precise positioning for ball screw driven stage using friction model feedforward. Procedia CIRP 2015, 26, 712–717. [Google Scholar] [CrossRef]
- Koren, Y. Cross-coupled biaxial computer control for manufacturing systems. J. Dyn. Syst. Meas. Control. 1980, 102, 265–272. [Google Scholar] [CrossRef]
- Koren, Y.; Lo, C.C. Variable-gain cross-coupling controller for contouring. CIRP Ann.-Manuf. Technol. 1991, 40, 371–374. [Google Scholar] [CrossRef]
- Su, K.H.; Cheng, M.Y. Contouring accuracy improvement using cross-coupled control and position error compensator. Int. J. Mach. Tools Manuf. 2008, 48, 1444–1453. [Google Scholar] [CrossRef]
- Huo, F.; Poo, A.N. Improving contouring accuracy by using generalized cross-coupled control. Int. J. Mach. Tools Manuf. 2012, 63, 49–57. [Google Scholar] [CrossRef]
- Marques, F.; Woliński, Ł.; Wojtyra, M.; Flores, P.; Lankarani, H.M. An investigation of a novel LuGre-based friction force model. Mech. Mach. Theory 2021, 166, 104493. [Google Scholar] [CrossRef]
- Liang, K.; Tu, Q.Z.; Shen, X.M.; Fang, Z.H.; Yang, X.; Zhang, Y.; Xiang, H.Y. An improved LuGre model for calculating static steering torque of rubber tracked chassis. Def. Technol. 2022, 18, 797–810. [Google Scholar] [CrossRef]
- Ghodsi, M.; Mohammadzaheri, M.; Soltani, P.; Ziaifar, H. A new active anti-vibration system using a magnetostrictive bimetal actuator. J. Magn. Magn. Mater. 2022, 557, 169463. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Li, J. Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Soft Mechatron. 2015, 50, 2691–2707. [Google Scholar] [CrossRef]
- Wan, M.; Dai, J.; Zhang, W.-H.; Xiao, Q.-B.; Qin, X.-B. Adaptive feed-forward friction compensation through developing an asymmetrical dynamic friction model. Mech. Mach. Theory 2022, 170, 104691. [Google Scholar] [CrossRef]
Design Values | Least Square Algorithm | Genetic Algorithm | Ant Colony Algorithm | Proposed Algorithm | |
---|---|---|---|---|---|
(N) | 30.00 | 30.51 | 30.63 | 30.21 | 30.12 |
(rad/s) | 0.500 | 0.479 | 0.485 | 0.490 | 0.498 |
(N/m) | 560.0 | 549.4 | 554.1 | 556.7 | 550.6 |
(N/(m/s)) | 300.0 | 291.0 | 294.2 | 303 | 299.8 |
Least Square Algorithm | Genetic Algorithm | Ant Colony Algorithm | Proposed Algorithm | |
---|---|---|---|---|
(N) | 0.279 | 0.229 | 0.251 | 0.119 |
(rad/s) | 0.0292 | 0.0166 | 0.0112 | 0.0052 |
(N/m) | 26.92 | 19.98 | 21.97 | 14.34 |
(N/(m/s)) | 23.45 | 16.19 | 20.74 | 11.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhu, Y.; Xu, H.; Liu, W.; Yang, H.; Gao, X. Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control. Machines 2024, 12, 593. https://doi.org/10.3390/machines12090593
Liu M, Zhu Y, Xu H, Liu W, Yang H, Gao X. Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control. Machines. 2024; 12(9):593. https://doi.org/10.3390/machines12090593
Chicago/Turabian StyleLiu, Minghao, Yongmin Zhu, Hongliang Xu, Weirui Liu, Hui Yang, and Xingjun Gao. 2024. "Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control" Machines 12, no. 9: 593. https://doi.org/10.3390/machines12090593
APA StyleLiu, M., Zhu, Y., Xu, H., Liu, W., Yang, H., & Gao, X. (2024). Pre-Compensation Strategy for Tracking Error and Contour Error by Using Friction and Cross-Coupled Control. Machines, 12(9), 593. https://doi.org/10.3390/machines12090593