Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,367)

Search Parameters:
Keywords = biological profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
52 pages, 7563 KiB  
Article
Design and Evaluation of a Inonotus obliquus–AgNP–Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential
by Ana-Maria Stanoiu, Cornelia Bejenaru, Adina-Elena Segneanu, Gabriela Vlase, Ionela Amalia Bradu, Titus Vlase, George Dan Mogoşanu, Maria Viorica Ciocîlteu, Andrei Biţă, Roxana Kostici, Dumitru-Daniel Herea and Ludovic Everard Bejenaru
Polymers 2025, 17(15), 2163; https://doi.org/10.3390/polym17152163 (registering DOI) - 7 Aug 2025
Abstract
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and [...] Read more.
Inonotus obliquus, a medicinal mushroom valued for its bioactive compounds, has not been previously characterized from Romanian sources. This study presents the first comprehensive chemical and biological screening of I. obliquus, introducing novel polymer-based encapsulation systems to enhance the stability and bioavailability of its bioactive constituents. Two distinct delivery systems were designed to enhance the functionality of I. obliquus extracts: (i) microencapsulation in maltodextrin (MIO) and (ii) a sequential approach involving preparation of silver nanoparticle-loaded I. obliquus (IO–AgNPs), followed by microencapsulation to yield the hybrid MIO–AgNP system. Comprehensive metabolite profiling using GC–MS and ESI–QTOF–MS revealed 142 bioactive constituents, including terpenoids, flavonoids, phenolic acids, amino acids, coumarins, styrylpyrones, fatty acids, and phytosterols. Structural integrity and successful encapsulation were confirmed by XRD, FTIR, and SEM analyses. Both IO–AgNPs and MIO–AgNPs demonstrated potent antioxidant activity, significant acetylcholinesterase inhibition, and robust antimicrobial effects against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Escherichia coli. Cytotoxicity assays revealed pronounced activity against MCF-7, HCT116, and HeLa cell lines, with MIO–AgNPs exhibiting superior efficacy. The synergistic integration of maltodextrin and AgNPs enhanced compound stability and bioactivity. As the first report on Romanian I. obliquus, this study highlights its therapeutic potential and establishes polymer-based nanoencapsulation as an effective strategy for optimizing its applications in combating microbial resistance and cancer. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 1826 KiB  
Article
Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
by Rosanna Guarnieri, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato and Viviana Caputo
Appl. Sci. 2025, 15(15), 8749; https://doi.org/10.3390/app15158749 (registering DOI) - 7 Aug 2025
Abstract
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp [...] Read more.
Tooth development (odontogenesis) is regulated by interactions between epithelial and mesenchymal tissues through signaling pathways such as Bone Morphogenetic Protein (BMP), Wingless-related integration site (Wnt), Sonic Hedgehog (SHH), and Fibroblast Growth Factor (FGF). Mesenchymal stem cells (MSCs) derived from dental tissues—including dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs)—show promise for regenerative dentistry due to their multilineage differentiation potential. Epigenetic regulation, particularly DNA methylation, is hypothesized to underpin their distinct regenerative capacities. This study reanalyzed publicly available DNA methylation data generated with Illumina Infinium HumanMethylation450 BeadChip arrays (450K arrays) from DPSCs, PDLSCs, and DFPCs. High-confidence CpG sites were selected based on detection p-values, probe variance, and genomic annotation. Principal Component Analysis (PCA) and hierarchical clustering identified distinct methylation profiles. Functional enrichment analyses highlighted biological processes and pathways associated with specific methylation clusters. Noncoding RNA analysis was integrated to construct regulatory networks linking DNA methylation patterns with key developmental genes. Distinct epigenetic signatures were identified for DPSCs, PDLSCs, and DFPCs, characterized by differential methylation across specific genomic contexts. Functional enrichment revealed pathways involved in odontogenesis, osteogenesis, and neurodevelopment. Network analysis identified central regulatory nodes—including genes, such as PAX6, FOXC2, NR2F2, SALL1, BMP7, and JAG1—highlighting their roles in tooth development. Several noncoding RNAs were also identified, sharing promoter methylation patterns with developmental genes and being implicated in regulatory networks associated with stem cell differentiation and tissue-specific function. Altogether, DNA methylation profiling revealed that distinct epigenetic landscapes underlie the developmental identity and differentiation potential of dental-derived mesenchymal stem cells. This integrative analysis highlights the relevance of noncoding RNAs and regulatory networks, suggesting novel biomarkers and potential therapeutic targets in regenerative dentistry and orthodontics. Full article
Show Figures

Figure 1

22 pages, 1682 KiB  
Review
Histone Modifications as Individual-Specific Epigenetic Regulators: Opportunities for Forensic Genetics and Postmortem Analysis
by Sheng Yang, Liqin Chen, Miaofang Lin, Chengwan Shen and Aikebaier Reheman
Genes 2025, 16(8), 940; https://doi.org/10.3390/genes16080940 (registering DOI) - 7 Aug 2025
Abstract
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded [...] Read more.
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded forensic samples. This review highlights recent advances in understanding histone PTMs in forensic contexts, focusing on three key domains: analysis of degraded biological evidence, differentiation of monozygotic (MZ) twins, and postmortem interval (PMI) estimation. We summarize experimental findings from human cadavers, animal models, and typical forensic samples including bone, blood, and muscle, illustrating the stability and diagnostic potential of marks such as H3K4me3, H3K27me3, and γ-H2AX. Emerging technologies including CUT&Tag, MALDI imaging, and nanopore-based sequencing offer novel opportunities to profile histone modifications at high resolution and low input. Despite technical challenges, these findings support the feasibility of histone-based biomarkers as complementary tools for forensic identification and temporal analysis. Future work should prioritize methodological standardization, inter-laboratory validation, and integration into forensic workflows. However, the forensic applicability of these modifications remains largely unvalidated, and further studies are required to assess their reliability in casework contexts. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

31 pages, 984 KiB  
Review
Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
by Guihong Fang, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao and Juncheng Chen
Biomolecules 2025, 15(8), 1140; https://doi.org/10.3390/biom15081140 - 7 Aug 2025
Abstract
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified [...] Read more.
Obesity, a multifactorial metabolic syndrome driven by genetic–epigenetic crosstalk and environmental determinants, manifests through pathological adipocyte hyperplasia and ectopic lipid deposition. With the limitations of conventional anti-obesity therapies, which are characterized by transient efficacy and adverse pharmacological profiles, the scientific community has intensified efforts to develop plant and fungal polysaccharide therapeutic alternatives. These polysaccharide macromolecules have emerged as promising candidates because of their diverse biological activities and often act as natural prebiotics, exerting beneficial effects through multiple pathways. Plant and fungal polysaccharides can reduce blood glucose levels, alleviate inflammation and oxidative stress, modulate metabolic signaling pathways, inhibit nutrient absorption, and reshape gut microbial composition. These effects have been shown in cellular and animal models and are associated with mechanisms underlying obesity and related metabolic disorders. This review discusses the complexity of obesity and multifaceted role of plant and fungal polysaccharides in alleviating its symptoms and complications. Current knowledge on the anti-obesity properties of plant and fungal polysaccharides is also summarized. We highlight their regulatory effects, potential intervention pathways, and structure–function relationships, thereby providing novel insights into polysaccharide-based strategies for obesity management. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

19 pages, 1756 KiB  
Article
Addition of β-Cyclodextrin or Gelatin Ιmproves Organoleptic and Physicochemical Attributes of Aronia Juice
by Kalliopi Gkoutzina, Ioannis Mourtzinos and Dimitrios Gerasopoulos
Beverages 2025, 11(4), 115; https://doi.org/10.3390/beverages11040115 - 6 Aug 2025
Abstract
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the [...] Read more.
Aronia juice is well-known for its high nutritional and biological value, due to its polyphenol content, which has a powerful antioxidant effect. However, the high polyphenol content of aronia juice is associated with an astringent flavor, which diminishes consumer acceptance. To improve the flavor of aronia juice, β-cyclodextrin (0–2% w/v) or gelatin (0–0.4 mg/L) were added before pasteurization. The juice samples were first examined organoleptically, and monitored for total phenolic compounds, antioxidant capacity, total flavonoids, total monomeric anthocyanins, polymeric color, pH, total soluble solids, and color. The organoleptic test demonstrated that both β-cyclodextrin and gelatin juice aroma reduced astringency and increased sweetness, whereas β-cyclodextrin also reduced juice aroma. β-cyclodextrin significantly increased polymeric color and total soluble solids (p < 0.05), whereas antioxidant activity, total flavonoids, and monomeric anthocyanins remained unchanged compared to the unpasteurized control. In contrast, the addition of gelatin dramatically reduced total phenolic compounds, antioxidant capacity, and total flavonoids, while enhancing polymeric color and maintaining monomeric anthocyanins with minor decreases relative to pre-pasteurization levels (p < 0.05). A consumer study was conducted with control juice and juices with 2% w/v β-cyclodextrin or 0.4 mg/L gelatin added. The results confirmed the change in flavor profile by masking or removing astringency and astringent aftertaste, as well as increasing sweetness, which significantly improved overall acceptability (p < 0.05). Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

26 pages, 3940 KiB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Figure 1

51 pages, 2489 KiB  
Review
Immunomodulatory Effects of Gold Nanoparticles: Impacts on Immune Cells and Mechanisms of Action
by Khadijeh Koushki, Prapannajeet Biswal, Geraldine Vidhya Vijay, Mahvash Sadeghi, Sajad Dehnavi, Ngoc Tuyet Tra, Sai Kumar Samala, Mahdieh Yousefi Taba, Arjun Balaji Vasan, Emily Han, Yuri Mackeyev and Sunil Krishnan
Nanomaterials 2025, 15(15), 1201; https://doi.org/10.3390/nano15151201 - 6 Aug 2025
Abstract
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect [...] Read more.
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect profiles. The long history of use of gold salts as anti-inflammatory agents and the more recent exploration of gold nanoparticle (AuNP) formulations for clinical indications suggest that the targeted delivery of nanoparticles to inflammatory sites may be a promising approach worth investigating. Coupled with peptides that specifically target immune cells, AuNPs could potently counteract inflammation. Here, we provide an overview of the selective infiltration of AuNPs into immune cells and summarize their interactions with and impact on these cells. Additionally, we provide a comprehensive mechanistic summary of how AuNPs exert their anti-inflammatory effects. Full article
(This article belongs to the Special Issue Roadmaps for Nanomaterials in Radiation Therapy)
Show Figures

Figure 1

14 pages, 1384 KiB  
Article
Volatile Essential Oils from Different Tree Species Influence Scent Impression and Physiological Response
by Eri Matsubara and Naoyuki Matsui
Molecules 2025, 30(15), 3288; https://doi.org/10.3390/molecules30153288 - 6 Aug 2025
Abstract
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. [...] Read more.
The large number of underutilized tree residues in Japan is a matter of concern, and their appropriate application needs to be promoted. Trees are very diverse, and there are differences in the volatile essential oil compounds and biological activities among different tree species. However, the effects of these tree species’ characteristics on human sensitivity and mental and physical functionality remain underexplored. This study investigated the effects of essential oils from multiple tree species on subjective and physiological responses. The essential oils from nine tree species were tested, subjective scent assessments were conducted, and their effect on autonomic nervous activity was measured. The volatile profiles of the oils were analyzed using gas chromatography–mass spectrometry. Our findings revealed clear differences in the composition of volatile essential oils among species, which influenced the scent evaluation and individual preferences. We suggest that scent preferences have the potential to influence physiological responses. The findings indicate that volatile essential oils could play a potential role in making use of tree resources effectively, and they may also be beneficial for maintaining human health. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

23 pages, 4445 KiB  
Article
Fumiquinazolines F and G from the Fungus Penicillium thymicola Demonstrates Anticancer Efficacy Against Triple-Negative Breast Cancer MDA-MB-231 Cells by Inhibiting Epithelial–Mesenchymal Transition
by Gleb K. Rystsov, Tatiana V. Antipova, Zhanna V. Renfeld, Lidiya S. Pilguy, Michael G. Shlyapnikov, Mikhail B. Vainshtein, Igor E. Granovsky and Marina Y. Zemskova
Int. J. Mol. Sci. 2025, 26(15), 7582; https://doi.org/10.3390/ijms26157582 - 5 Aug 2025
Abstract
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F [...] Read more.
The secondary metabolites of the fungus Penicillium thymicola, fumiquinazolines F and G, have antibacterial and antifungal characteristics; however, their potential anti-tumor action against human cancer cells remains unknown. The goal of our study was to determine the biological efficacy of fumiquinazolines F and G on breast and prostate cancer cells. Cancer cell proliferation and migration were monitored in real time using xCELLigence technology and flow cytometry. Alterations in mRNA and protein expression were assessed by RT-qPCR, ELISA, and Western blotting. Our data indicate that fumiquinazolines F and G are more effective in inhibiting breast cancer cell proliferation than prostate cancer cells. Fumiquinazoline F is active against both hormone-dependent epithelial MCF-7 (IC50 48 μM) and hormone-resistant triple-negative mesenchymal MDA-MB-231 breast cancer cells (IC50 54.1 μM). The metabolite has low cytotoxicity but slows cell cycle progression. In fumiquinazoline F-treated MDA-MB-231 cells, the levels of proteins implicated in epithelial–mesenchymal transition (EMT) (such as E-cadherin, vimentin, and CD44) fluctuate, resulting in a decrease in cell migratory rate and adhesion to a hyaluronic acid-coated substrate. Thus, fumiquinazolines F and G exhibit anticancer activity by inhibiting EMT, cell proliferation, and migration, hence reverting malignant cells to a less pathogenic phenotype. The compound’s multi-target anticancer profile underscores its potential for further exploration of novel EMT-regulating pathways. Full article
(This article belongs to the Special Issue Molecular Research in Natural Products)
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

16 pages, 4074 KiB  
Article
Exploring 6-aza-2-Thiothymine as a MALDI-MSI Matrix for Spatial Lipidomics of Formalin-Fixed Paraffin-Embedded Clinical Samples
by Natalia Shelly Porto, Simone Serrao, Greta Bindi, Nicole Monza, Claudia Fumagalli, Vanna Denti, Isabella Piga and Andrew Smith
Metabolites 2025, 15(8), 531; https://doi.org/10.3390/metabo15080531 - 5 Aug 2025
Abstract
Background/Objectives: In recent years, lipids have emerged as critical regulators of different disease processes, being involved in cancer pathogenesis, progression, and outcome. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) has significantly expanded the technology’s reach, enabling spatially resolved profiling of lipids directly [...] Read more.
Background/Objectives: In recent years, lipids have emerged as critical regulators of different disease processes, being involved in cancer pathogenesis, progression, and outcome. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) has significantly expanded the technology’s reach, enabling spatially resolved profiling of lipids directly from tissue, including formalin-fixed paraffin-embedded (FFPE) specimens. In this context, MALDI matrix selection is crucial for lipid extraction and ionization, influencing key aspects such as molecular coverage and sensitivity, especially in such specimens with already depleted lipid content. Thus, in this work, we aim to explore the feasibility of mapping lipid species in FFPE clinical samples with MALDI-MSI using 6-aza-2-thiothymine (ATT) as a matrix of choice. Methods: To do so, ATT performances were first compared to those two other matrices commonly used for lipidomic analyses, 2′,5′-dihydroxybenzoic acid (DHB) and Norharmane (NOR), on lipid standards. Results: As a proof-of-concept, we then assessed ATT’s performance for the MALDI-MSI analysis of lipids in FFPE brain sections, both in positive and negative ion modes, comparing results with those obtained from other commonly used dual-polarity matrices. In this context, ATT enabled the putative annotation of 98 lipids while maintaining a well-balanced detection of glycerophospholipids (60.2%) and sphingolipids (32.7%) in positive ion mode. It outperformed both DHB and NOR in the identification of glycolipids (3%) and fatty acids (4%). Additionally, ATT exceeded DHB in terms of total lipid count (62 vs. 21) and class diversity and demonstrated performance comparable to NOR in negative ion mode. Moreover, ATT was applied to a FFPE glioblastoma tissue microarray (TMA) evaluating the ability of this matrix to reveal biologically relevant lipid features capable of distinguishing normal brain tissue from glioblastoma regions. Conclusions: Altogether, the results presented in this work suggest that ATT is a suitable matrix for pathology imaging applications, even at higher lateral resolutions of 20 μm, not only for proteomic but also for lipidomic analysis. This could enable the use of the same matrix type for the analysis of both lipids and peptides on the same tissue section, offering a unique strategic advantage for multi-omics studies, while also supporting acquisition in both positive and negative ionization modes. Full article
Show Figures

Graphical abstract

19 pages, 913 KiB  
Article
Understanding Diversity: The Cultural Knowledge Profile of Nurses Prior to Transcultural Education in Light of a Triangulated Study Based on the Giger and Davidhizar Model
by Małgorzata Lesińska-Sawicka and Alina Roszak
Healthcare 2025, 13(15), 1907; https://doi.org/10.3390/healthcare13151907 - 5 Aug 2025
Abstract
Introduction: The increasing cultural diversity of patients poses new challenges for nurses. Cultural competence, especially knowledge of the cultural determinants of health and illness, is an important element of professionalism in nursing care. The aim of this study was to analyse nurses’ self-assessment [...] Read more.
Introduction: The increasing cultural diversity of patients poses new challenges for nurses. Cultural competence, especially knowledge of the cultural determinants of health and illness, is an important element of professionalism in nursing care. The aim of this study was to analyse nurses’ self-assessment of cultural knowledge, with a focus on the six dimensions of the Giger and Davidhizar model, prior to formal training in this area. Methods: A triangulation method combining qualitative and quantitative analysis was used. The analysis included 353 statements from 36 master’s student nurses. Data were coded according to six cultural phenomena: biological factors, communication, space, time, social structure, and environmental control. Content analysis, ANOVA, Spearman’s rank correlation, and cluster analysis (k-means) were conducted. Results: The most frequently identified that categories were environmental control (34%), communication (20%), and social structure (16%). Significant knowledge gaps were identified in the areas of non-verbal communication, biological differences, and understanding space in a cultural context. Three cultural knowledge profiles of the female participants were distinguished: pragmatic, socio-reflective, and critical–experiential. Conclusions: The cultural knowledge of the participants was fragmented and simplified. The results indicate the need to personalise cultural learning and to take into account nurses’ level of readiness and experience profile. The study highlights the importance of the systematic development of reflective and contextual cultural knowledge as a foundation for competent care. Full article
Show Figures

Figure 1

15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 - 5 Aug 2025
Viewed by 39
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

24 pages, 6550 KiB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Viewed by 101
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

Back to TopTop