Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity
Abstract
1. Introduction
2. Impact of Plant and Fungal Polysaccharides on Energy Metabolism and Appetite Control
3. Plant and Fungal Polysaccharides Improve BA Metabolism
4. Plant and Fungi Regulate and Improve Lipid Metabolism
5. Plant and Fungal Polysaccharides Improve Oxidative Stress and Low-Grade Inflammation
6. Plant and Fungal Polysaccharides Improve Intestinal Flora Regulation to Alleviate Obesity
7. Human Clinical Evidence of Plant- and Fungal-Derived Polysaccharides in Obesity
8. Factors Influencing the Anti-Obesity Activity of Polysaccharide Structures
8.1. Molecular Weight (Mw)
8.2. Monosaccharide Composition
8.3. Glycosidic Bonds
8.4. Modification of Polysaccharides and Enhancement of Their Biological Activity
9. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
T2DM | Type 2 diabetes mellitus |
JNK | Jun N-terminal kinase |
IKK | IκB kinase |
SCFAs | Short-chain fatty acids |
WAT | White adipose tissue |
BAT | Brown adipose tissue |
UCP1 | Uncoupling protein 1 |
AMPK | AMP-activated protein kinase |
PPAR-α | Peroxisome proliferator-activated receptor α |
PPAR-γ | Peroxisome proliferator-activated receptor γ |
SREBP-1c | Sterol regulatory element-binding protein 1c |
FASN | Fatty acid synthase |
ACC | Acetyl-CoA carboxylase |
LEP | Leptin |
CCK | Cholecystokinin |
GLP-1 | Glucagon-like peptide-1 |
PYY3-36 | Peptide YY 3-36 |
α-MSH | Alpha-melanocyte-stimulating hormone |
TNF-α | Tumor necrosis factor α |
IL-1 | Interleukin-1 |
IL-6 | Interleukin-6 |
iNOS | Inducible nitric oxide synthase |
MCP-1 | Monocyte chemoattractant protein-1 |
TGR5 | G protein-coupled bile acid receptor 1 |
FXR | Farnesoid X receptor |
F/B | Firmicutes/bacteroidetes ratio |
GPR43 | G protein-coupled receptor 43 |
GPR41 | G protein-coupled receptor 41 |
BAs | Bile acids |
CYP7A1 | Cholesterol 7α-hydroxylase |
CYP27A1 | Cholesterol 27-ydroxylase |
CYP7B1 | Cholesterol 7β-hydroxylase |
SHP | Small heterodimer partner |
FGF15 | Fibroblast growth factor 15 |
POMC | Pro-opiomelanocortin |
MC4Rs | Melanocortin 4 receptor |
LPBN | Lateral parabrachial nucleus |
References
- Ng, M.; Gakidou, E.; Lo, J.; Abate, Y.H.; Abbafati, C.; Abbas, N.; Abbasian, M.; Abd ElHafeez, S.; Abdel-Rahman, W.M.; Abd-Elsalam, S.; et al. Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: A forecasting study for the Global Burden of Disease Study 2021. Lancet 2025, 405, 813–838. [Google Scholar] [CrossRef]
- Marcus, C.; Danielsson, P.; Hagman, E. Pediatric obesity-Long-term consequences and effect of weight loss. J. Intern. Med. 2022, 292, 870–891. [Google Scholar] [CrossRef]
- Akter, R.; Afrose, A.; Sharmin, S.; Rezwan, R.; Rahman, M.R.; Neelotpol, S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed. Pharmacother. 2022, 153, 113285. [Google Scholar] [CrossRef] [PubMed]
- Ades, P.A.; Savage, P.D. Obesity in coronary heart disease: An unaddressed behavioral risk factor. Prev. Med. 2017, 104, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef]
- Dent, R.; McPherson, R.; Harper, M.-E. Factors affecting weight loss variability in obesity. Metabolism 2020, 113, 154388. [Google Scholar] [CrossRef]
- Greenway, F.L.; Whitehouse, M.J.; Guttadauria, M.; Anderson, J.W.; Atkinson, R.L.; Fujioka, K.; Gadde, K.M.; Gupta, A.K.; O’Neil, P.; Schumacher, D.; et al. Rational Design of a Combination Medication for the Treatment of Obesity. Obesity 2009, 17, 30–39. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, J.; Yan, L.; Cheng, Y.; Li, Q.; Wu, S.; Chen, L.; Thring, R.W.; Yang, Y.; Gao, Y.; et al. Sargassum fusiforme Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. J. Agric. Food Chem. 2020, 68, 10626–10638. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.-Y.; Zhao, C.-N.; Xu, X.-Y.; Tang, G.-Y.; Corke, H.; Gan, R.-Y.; Li, H.-B. Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends Food Sci. Technol. 2019, 92, 194–204. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Khalil, M.; Garruti, G.; Portincasa, P. Contribution of the microbiome for better phenotyping of people living with obesity. Rev. Endocr. Metab. Disord. 2023, 24, 839–870. [Google Scholar] [CrossRef]
- Liu, X.; Su, S.; Yao, J.; Zhang, X.; Wu, Z.; Jia, L.; Liu, L.; Hou, R.; Farag, M.A.; Liu, L. Research advance about plant polysaccharide prebiotics, benefit for probiotics on gut homeostasis modulation. Food Biosci. 2024, 59, 103831. [Google Scholar] [CrossRef]
- Wardman, J.F.; Bains, R.K.; Rahfeld, P.; Withers, S.G. Carbohydrate-active enzymes (CAZymes) in the gut microbiome. Nat. Rev. Microbiol. 2022, 20, 542–556. [Google Scholar] [CrossRef]
- Zhu, F. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr. Polym. 2020, 248, 116819. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.W., Jr. The immune cells in adipose tissue. Diabetes Obes. Metab. 2013, 15 (Suppl. 3), 34–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Jayawardena, T.U.; Song, K.M.; Choi, Y.S.; Jeon, Y.J.; Kang, M.C. Dietary fucoidan from a brown marine algae (Ecklonia cava) attenuates lipid accumulation in differentiated 3T3-L1 cells and alleviates high-fat diet-induced obesity in mice. Food Chem. Toxicol. 2022, 162, 112862. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, Y.; Tian, G.; Zheng, Y.; Sang, Y.; Gao, J. Pear pomace soluble dietary fiber suppresses fat deposition in high fat diet-fed mice by regulating the ADPN-AMPK/PPAR-α signaling pathway. J. Funct. Foods 2024, 122, 106483. [Google Scholar] [CrossRef]
- Sharma, P.P.; Baskaran, V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Res. 2021, 54, 102187. [Google Scholar] [CrossRef]
- Yue, X.; Zhong, L.; Ye, M.; Luan, Y.; Zhang, Q.; Wang, Q. Taraxacum mongolicum polysaccharide promotes white adipocyte browning by regulating miR-134-3p via Akt/GSK-3β signalling. Int. J. Biol. Macromol. 2024, 257, 128296. [Google Scholar] [CrossRef]
- Wang, T.; Han, J.; Dai, H.; Sun, J.; Ren, J.; Wang, W.; Qiao, S.; Liu, C.; Sun, L.; Liu, S.; et al. Polysaccharides from Lyophyllum decastes reduce obesity by altering gut microbiota and increasing energy expenditure. Carbohydr. Polym. 2022, 295, 119862. [Google Scholar] [CrossRef]
- Field, B.C.T.; Chaudhri, O.B.; Bloom, S.R. Bowels control brain: Gut hormones and obesity. Nat. Rev. Endocrinol. 2010, 6, 444–453. [Google Scholar] [CrossRef]
- Baugh, M.E.; DiFeliceantonio, A.G. Obesity impairs brain responses to nutrients. Nat. Metab. 2023, 5, 920–921. [Google Scholar] [CrossRef]
- Crooks, B.; Stamataki, N.S.; McLaughlin, J.T. Appetite, the enteroendocrine system, gastrointestinal disease and obesity. Proc. Nutr. Soc. 2021, 80, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Steuernagel, L.; Lam, B.Y.H.; Klemm, P.; Dowsett, G.K.C.; Bauder, C.A.; Tadross, J.A.; Hitschfeld, T.S.; Del Rio Martin, A.; Chen, W.; de Solis, A.J.; et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 2022, 4, 1402–1419. [Google Scholar] [CrossRef]
- Su, Z.; Alhadeff, A.L.; Betley, J.N. Nutritive, Post-ingestive Signals Are the Primary Regulators of AgRP Neuron Activity. Cell Rep. 2017, 21, 2724–2736. [Google Scholar] [CrossRef] [PubMed]
- Andermann, M.L.; Lowell, B.B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017, 95, 757–778. [Google Scholar] [CrossRef]
- Barkholt, P.; Rigbolt, K.T.G.; Falkenhahn, M.; Hübschle, T.; Schwahn, U.; Fernandez-Cachon, M.L.; Schmidt, T.; Theis, S.; Hansen, H.H.; Hay-Schmidt, A.; et al. Global transcriptome analysis of rat hypothalamic arcuate nucleus demonstrates reversal of hypothalamic gliosis following surgically and diet induced weight loss. Sci. Rep. 2019, 9, 16161. [Google Scholar] [CrossRef] [PubMed]
- Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci. Rep. 2018, 8, 74. [Google Scholar] [CrossRef]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Lowell Bradford, B. New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. N. Engl. J. Med. 2019, 380, 459–471. [Google Scholar] [CrossRef]
- You, L.; Wang, T.; Li, W.; Zhang, J.; Zheng, C.; Zheng, Y.; Li, S.; Shang, Z.; Lin, J.; Wang, F.; et al. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. J. Ethnopharmacol. 2024, 329, 118165. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Y.; Zhang, R.; Zhang, Y.; Zheng, J.; Wang, D.; Wang, X.; Yan, J.; Hu, C. GPSM1 in POMC neurons impairs brown adipose tissue thermogenesis and provokes diet-induced obesity. Mol. Metab. 2024, 79, 101839. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, S.; Liang, Y.; Wang, Y.; Wei, X. Sequential extraction and characterization of tea cell wall polysaccharides: Exploring the synergistic hypoglycemic potential with tea polyphenols via TGR5/GLP-1 pathway. Food Biosci. 2025, 63, 105627. [Google Scholar] [CrossRef]
- Zhi, N.; Chang, X.; Zha, L.; Zhang, K.; Wang, J.; Gui, S. Platycodonis Radix Polysaccharides Suppress Progression of High-Fat-induced Obesity Through Modulation of Intestinal Microbiota and Metabolites. Phytomedicine 2025, 142, 156653. [Google Scholar] [CrossRef]
- Kang, N.; Oh, S.; Kim, S.-Y.; Ahn, H.; Son, M.; Heo, S.-J.; Byun, K.; Jeon, Y.-J. Anti-obesity effects of Ishophloroglucin A from the brown seaweed Ishige okamurae (Yendo) via regulation of leptin signal in ob/ob mice. Algal Res. 2022, 61, 102533. [Google Scholar] [CrossRef]
- Lu, T.-J.; Chiou, W.-C.; Huang, H.-C.; Pan, H.-C.; Sun, C.-Y.; Way, T.-D.; Huang, C. Modulation of gut microbiota by crude gac aril polysaccharides ameliorates diet-induced obesity and metabolic disorders. Int. J. Biol. Macromol. 2024, 273, 133164. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Allende, J.; Milagro, F.I.; Aranaz, P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024, 16, 2935. [Google Scholar] [CrossRef]
- He, G.; Chen, T.; Huang, L.; Zhang, Y.; Feng, Y.; Qu, S.; Yin, X.; Liang, L.; Yan, J.; Liu, W. Tremella fuciformis polysaccharide reduces obesity in high-fat diet-fed mice by modulation of gut microbiota. Front. Microbiol. 2022, 13, 1073350. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, J.; Zheng, S.; Liang, F.; Luo, Y.; Huang, K.; Xu, W.; He, X. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food Funct. 2019, 10, 4771–4781. [Google Scholar] [CrossRef]
- Hua, H.; Liu, L.; Zhu, T.; Cheng, F.; Qian, H.; Shen, F.; Liu, Y. Healthy regulation of Tibetan Brassica rapa L. polysaccharides on alleviating hyperlipidemia: A rodent study. Food Chem. Mol. Sci. 2023, 6, 100171. [Google Scholar] [CrossRef]
- Zeng, X.; Ren, D.; Li, D.; Du, H.; Yang, X. Artemisia sphaerocephala Krasch polysaccharide promotes adipose thermogenesis and decreases obesity by shaping the gut microbiota. Food Funct. 2022, 13, 10651–10664. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Zhang, Y.; Wu, Y.; Liu, J.; Wu, Q.; Shen, Y.; Jin, L.; Wu, M.; Ma, Z.; Tong, H. Sargassum fusiforme fucoidan ameliorates diet-induced obesity through enhancing thermogenesis of adipose tissues and modulating gut microbiota. Int. J. Biol. Macromol. 2022, 216, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Distrutti, E.; Carino, A.; Zampella, A.; Biagioli, M. Bile acids and their receptors in metabolic disorders. Progress. Lipid Res. 2021, 82, 101094. [Google Scholar] [CrossRef]
- Chiang, J.Y.L. Bile acids: Regulation of synthesis: Thematic Review Series: Bile Acids. J. Lipid Res. 2009, 50, 1955–1966. [Google Scholar] [CrossRef]
- Islam, M.S.; Sharif, A.; Kwan, N.; Tam, K.C. Bile Acid Sequestrants for Hypercholesterolemia Treatment Using Sustainable Biopolymers: Recent Advances and Future Perspectives. Mol. Pharm. 2022, 19, 1248–1272. [Google Scholar] [CrossRef]
- Schmid, A.; Karrasch, T.; Schäffler, A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol. Metab. 2023, 34, 718–734. [Google Scholar] [CrossRef]
- Chiang, J.Y.L.; Ferrell, J.M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell. Endocrinol. 2022, 548, 111618. [Google Scholar] [CrossRef]
- Xi, Y.; Li, H. Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease. Biomed. Pharmacother. 2020, 121, 109609. [Google Scholar] [CrossRef]
- Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; et al. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Anakk, S. Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Mol. Cell. Endocrinol. 2022, 549, 111616. [Google Scholar] [CrossRef] [PubMed]
- Xiu, W.; Wang, X.; Na, Z.; Yu, S.; Li, C.; Wang, J.; Yang, M.; Yang, C.; Ma, Y. Degraded sweet corn cob polysaccharides modulate T2DM-induced abnormalities in hepatic lipid metabolism via the bile acid-related FXR-SHP and FXR-FGF15-FGFR4 pathways. Food Biosci. 2024, 62, 105085. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, G.; Chen, S.; He, Y.; Peng, F.; Yuan, C. Kaempferol ameliorated alcoholic liver disease through inhibiting hepatic bile acid synthesis by targeting intestinal FXR-FGF15 signaling. Phytomedicine 2023, 120, 155055. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef]
- da-Silva, W.S.; Ribich, S.; e Drigo, R.A.; Castillo, M.; Patti, M.E.; Bianco, A.C. The chemical chaperones tauroursodeoxycholic and 4-phenylbutyric acid accelerate thyroid hormone activation and energy expenditure. FEBS Lett. 2011, 585, 539–544. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, H.; Wang, X.; Huang, Y.; Li, Y.; Pan, G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. J. Ethnopharmacol. 2025, 337, 118968. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. Comparison Study on Polysaccharide Fractions from Laminaria japonica: Structural Characterization and Bile Acid Binding Capacity. J. Agric. Food Chem. 2017, 65, 9790–9798. [Google Scholar] [CrossRef]
- Carey, M.C. Bile Acids and Bile Salts: Ionization and Solubility Properties. Hepatology 1984, 4, 66S–71S. [Google Scholar] [CrossRef]
- Matern, S.; Gerok, W. Pathophysiology of the enterohepatic circulation of bile acids. Rev. Physiol. Biochem. Pharmacol. 1979, 85, 125–204. [Google Scholar]
- Rao, Y.; Wen, Q.; Liu, R.; He, M.; Jiang, Z.; Qian, K.; Zhou, C.; Li, J.; Du, H.; Ouyang, H.; et al. PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism. Int. J. Biol. Macromol. 2020, 165, 1694–1705. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Ye, X.; Shen, S.; Cheng, J.; Shi, Y.; Wu, S.; Xia, J.; Ning, M.; Dong, Z.; Wan, X. Astragalus Polysaccharides Ameliorate Diet-Induced Gallstone Formation by Modulating Synthesis of Bile Acids and the Gut Microbiota. Front. Pharmacol. 2021, 12, 701003. [Google Scholar] [CrossRef]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Vaughan, M.; Berger, J.E.; Steinberg, D. Hormone-Sensitive Lipase and Monoglyceride Lipase Activities in Adipose Tissue. J. Biol. Chem. 1964, 239, 401–409. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 2011, 1812, 1007–1022. [Google Scholar] [CrossRef]
- Mayoral, R.; Osborn, O.; McNelis, J.; Johnson, A.M.; Oh, D.Y.; Izquierdo, C.L.; Chung, H.; Li, P.; Traves, P.G.; Bandyopadhyay, G.; et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab. 2015, 4, 378–391. [Google Scholar] [CrossRef]
- Choi, W.I.; Yoon, J.H.; Choi, S.H.; Jeon, B.N.; Kim, H.; Hur, M.W. Proto-oncoprotein Zbtb7c and SIRT1 repression: Implications in high-fat diet-induced and age-dependent obesity. Exp. Mol. Med. 2021, 53, 917–932. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Li, M.; Gao, Z.; Zhang, S. Identification, expression and regulation of amphioxus G6Pase gene with an emphasis on origin of liver. General. Comp. Endocrinol. 2015, 214, 9–16. [Google Scholar] [CrossRef]
- Shao, C.; Zhong, J.; Liu, J.; Yang, Y.; Li, M.; Yang, Y.; Xu, Y.; Wang, L. Preparation, characterization and bioactivities of selenized polysaccharides from Lonicera caerulea L. fruits. Int. J. Biol. Macromol. 2023, 225, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Donadio, J.L.S.; Fabi, J.P. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct. 2024, 15, 6825–6846. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Cao, J.; Wei, C.; Chen, Y.; Liu, Q.; Li, C.; Zhang, Y.; Zhu, K.; Wu, G.; Tan, L. Polysaccharides from Artocarpus heterophyllus Lam. (jackfruit) pulp alleviate obesity by modulating gut microbiota in high fat diet-induced rats. Food Hydrocoll. 2023, 139, 108521. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, Y.; Wei, C.; Tan, L.; Li, C.; Zhang, Y.; Xu, F.; Zhu, K.; Wu, G.; Cao, J. Protective effects of polysaccharide from Artocarpus heterophyllus Lam. (jackfruit) pulp on non-alcoholic fatty liver disease in high-fat diet rats via PPAR and AMPK signaling pathways. J. Funct. Foods 2022, 95, 105195. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Huang, S.; Xie, W.; Huang, G.; Zou, Y.; Ye, Z.; Wei, T.; Lin, J.; Zheng, Q. Anti-obesity effects of the high molecular weight Cordyceps militaris polysaccharide CMP40 in high-fat diet mice. Food Biosci. 2024, 60, 104467. [Google Scholar] [CrossRef]
- Lan, Y.; Sun, Q.; Ma, Z.; Peng, J.; Zhang, M.; Wang, C.; Zhang, X.; Yan, X.; Chang, L.; Hou, X.; et al. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct. 2022, 13, 2925–2937. [Google Scholar] [CrossRef]
- Feng, X.; Guo, M.; Li, J.; Shen, Z.; Mo, F.; Tian, Y.; Wang, B.; Wang, C. The structural characterization of a novel Chinese yam polysaccharide and its hypolipidemic activity in HFD-induced obese C57BL/6J mice. Int. J. Biol. Macromol. 2024, 265, 130521. [Google Scholar] [CrossRef]
- Tao, W.; Cao, W.; Yu, B.; Chen, H.; Gong, R.; Luorong, Q.; Luo, J.; Yao, L.; Zhang, D. Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota. Food Funct. 2022, 13, 6056–6071. [Google Scholar] [CrossRef]
- Iroegbu, J.D.; Ijomone, O.K.; Femi-Akinlosotu, O.M.; Ijomone, O.M. ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci. Biobehav. Rev. 2021, 131, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Lad, N.; Murphy, A.M.; Parenti, C.; Nelson, C.P.; Williams, N.C.; Sharpe, G.R.; McTernan, P.G. Asthma and obesity: Endotoxin another insult to add to injury? Clin. Sci. 2021, 135, 2729–2748. [Google Scholar] [CrossRef]
- Hamjane, N.; Benyahya, F.; Nourouti, N.G.; Mechita, M.B.; Barakat, A. Cardiovascular diseases and metabolic abnormalities associated with obesity: What is the role of inflammatory responses? A systematic review. Microvasc. Res. 2020, 131, 104023. [Google Scholar] [CrossRef]
- Reilly, S.M.; Saltiel, A.R. Adapting to obesity with adipose tissue inflammation. Nat. Rev. Endocrinol. 2017, 13, 633–643. [Google Scholar] [CrossRef]
- Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72, 219–246. [Google Scholar] [CrossRef]
- Fuentes, G.C.; Castañer, O.; Warnberg, J.; Subirana, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Corella, D.; Serra-Majem, L.; Romaguera, D.; Estruch, R.; et al. Prospective association of physical activity and inflammatory biomarkers in older adults from the PREDIMED-Plus study with overweight or obesity and metabolic syndrome. Clin. Nutr. 2020, 39, 3092–3098. [Google Scholar] [CrossRef]
- Lingvay, I.; Sumithran, P.; Cohen, R.V.; le Roux, C.W. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation. Lancet 2022, 399, 394–405. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Yan, X.-H.; Zhang, J.-L.; Wang, L.-Y.; Xue, H.; Jiang, G.-C.; Ma, X.-T.; Liu, X.-J. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2019, 135, 706–716. [Google Scholar] [CrossRef]
- Wu, W.L.; Gan, W.H.; Tong, M.L.; Li, X.L.; Dai, J.Z.; Zhang, C.M.; Guo, X.R. Over-expression of NYGGF4 (PID1) inhibits glucose transport in skeletal myotubes by blocking the IRS1/PI3K/AKT insulin pathway. Mol. Genet. Metab. 2011, 102, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hu, J.; Xia, Q.; Tang, M.; Wang, Y.; Wang, G.; Shao, X.; Yuan, H.; Li, S.; Huang, P.; et al. Amelioration of obesity and inflammation by polysaccharide from unripe fruits of raspberry via gut microbiota regulation. Int. J. Biol. Macromol. 2024, 261, 129825. [Google Scholar] [CrossRef]
- Bai, Y.; Huang, F.; Zhang, R.; Dong, L.; Jia, X.; Liu, L.; Yi, Y.; Zhang, M. Longan pulp polysaccharides relieve intestinal injury in vivo and in vitro by promoting tight junction expression. Carbohydr. Polym. 2020, 229, 115475. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Sasaki, G.Y.; Wei, P.; Li, J.; Wang, L.; Zhu, J.; McTigue, D.; Yu, Z.; Bruno, R.S. Green tea extract prevents obesity in male mice by alleviating gut dysbiosis in association with improved intestinal barrier function that limits endotoxin translocation and adipose inflammation. J. Nutr. Biochem. 2019, 67, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Al Bander, Z.; Nitert, M.D.; Mousa, A.; Naderpoor, N. The Gut Microbiota and Inflammation: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 7618. [Google Scholar] [CrossRef]
- Cheng, H.; Guan, X.; Chen, D.; Ma, W. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms 2019, 7, 583. [Google Scholar] [CrossRef]
- Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. Chapter Three—The Role of Short-Chain Fatty Acids in Health and Disease. In Advances in Immunology; Alt, F.W., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 121, pp. 91–119. [Google Scholar]
- Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Karačić, A.; Renko, I.; Krznarić, Ž.; Klobučar, S.; Liberati Pršo, A.M. The Association between the Firmicutes/Bacteroidetes Ratio and Body Mass among European Population with the Highest Proportion of Adults with Obesity: An Observational Follow-Up Study from Croatia. Biomedicines 2024, 12, 2263. [Google Scholar] [CrossRef]
- Maioli, T.U.; Borras-Nogues, E.; Torres, L.; Barbosa, S.C.; Martins, V.D.; Langella, P.; Azevedo, V.A.; Chatel, J.M. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front. Pharmacol. 2021, 12, 740636. [Google Scholar] [CrossRef] [PubMed]
- Huber-Ruano, I.; Calvo, E.; Mayneris-Perxachs, J.; Rodríguez-Peña, M.M.; Ceperuelo-Mallafré, V.; Cedó, L.; Núñez-Roa, C.; Miro-Blanch, J.; Arnoriaga-Rodríguez, M.; Balvay, A.; et al. Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate. Microbiome 2022, 10, 135. [Google Scholar] [CrossRef]
- Hong, J.; Fu, T.; Liu, W.; Du, Y.; Bu, J.; Wei, G.; Yu, M.; Lin, Y.; Min, C.; Lin, D. An Update on the Role and Potential Molecules in Relation to Ruminococcus gnavus in Inflammatory Bowel Disease, Obesity and Diabetes Mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 2024, 17, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Ao, T.; Zhao, X.; Chen, Y.; Xie, J.; Gao, X.; Liu, L.; Hu, X.; Yu, Q. Comprehensive assessment of the anti-obesity effects of highland barley total, insoluble, and soluble dietary fiber through multi-omics analysis. Food Res. Int. 2024, 189, 114535. [Google Scholar] [CrossRef]
- Huang, W.; Zhu, W.; Lin, Y.; Chan, F.K.L.; Xu, Z.; Ng, S.C. Roseburia hominis improves host metabolism in diet-induced obesity. Gut Microbes 2025, 17, 2467193. [Google Scholar] [CrossRef]
- McNelis, J.C.; Lee, Y.S.; Mayoral, R.; van der Kant, R.; Johnson, A.M.F.; Wollam, J.; Olefsky, J.M. GPR43 Potentiates β-Cell Function in Obesity. Diabetes 2015, 64, 3203–3217. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Golubeva, A.V.; Zhdanov, A.V.; Wallace, S.; Arboleya, S.; Papkovsky, D.B.; Aidy, S.E.; Ross, P.; Roy, B.L.; Stanton, C.; et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 13546–13559. [Google Scholar] [CrossRef]
- den Besten, G.; Lange, K.; Havinga, R.; van Dijk, T.H.; Gerding, A.; van Eunen, K.; Müller, M.; Groen, A.K.; Hooiveld, G.J.; Bakker, B.M.; et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G900–G910. [Google Scholar] [CrossRef]
- De Silva, A.; Bloom, S.R. Gut Hormones and Appetite Control: A Focus on PYY and GLP-1 as Therapeutic Targets in Obesity. Gut Liver 2012, 6, 10–20. [Google Scholar] [CrossRef]
- Byrne, C.S.; Chambers, E.S.; Alhabeeb, H.; Chhina, N.; Morrison, D.J.; Preston, T.; Tedford, C.; Fitzpatrick, J.; Irani, C.; Busza, A.; et al. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am. J. Clin. Nutr. 2016, 104, 5–14. [Google Scholar] [CrossRef]
- Bouter, K.E.; van Raalte, D.H.; Groen, A.K.; Nieuwdorp, M. Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction. Gastroenterology 2017, 152, 1671–1678. [Google Scholar] [CrossRef]
- Broeders, E.P.; Nascimento, E.B.; Havekes, B.; Brans, B.; Roumans, K.H.; Tailleux, A.; Schaart, G.; Kouach, M.; Charton, J.; Deprez, B.; et al. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab. 2015, 22, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhu, S.; Li, S.; Feng, Y.; Wu, H.; Zeng, M. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice. Int. J. Biol. Macromol. 2021, 182, 1371–1383. [Google Scholar] [CrossRef]
- Zhu, Z.; Huang, R.; Huang, A.; Wang, J.; Liu, W.; Wu, S.; Chen, M.; Chen, M.; Xie, Y.; Jiao, C.; et al. Polysaccharide from Agrocybe cylindracea prevents diet-induced obesity through inhibiting inflammation mediated by gut microbiota and associated metabolites. Int. J. Biol. Macromol. 2022, 209, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, Z.; Yu, L.; Zeng, W.; Sun, B.; Fan, H.; Bai, Y. Bacteroides dorei BDX-01 alleviates DSS-induced experimental colitis in mice by regulating intestinal bile salt hydrolase activity and the FXR-NLRP3 signaling pathway. Front. Pharmacol. 2023, 14, 1205323. [Google Scholar] [CrossRef] [PubMed]
- Neyrinck, A.M.; Hiel, S.; Bouzin, C.; Campayo, V.G.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by western diet in mice. Nutr. Diabetes 2018, 8, 15. [Google Scholar] [CrossRef]
- Luo, S.; He, L.; Zhang, H.; Li, Z.; Liu, C.; Chen, T. Arabinoxylan from rice bran protects mice against high-fat diet-induced obesity and metabolic inflammation by modulating gut microbiota and short-chain fatty acids. Food Funct. 2022, 13, 7707–7719. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Che, Y.; He, L.; Luo, S.; Yang, C.S.; Chen, T. Interactive Effects of Arabinoxylan Oligosaccharides and Green Tea Polyphenols on Obesity Management and Gut Microbiota Modulation in High-Fat Diet-Fed Mice. J. Agric. Food Chem. 2024, 72, 16237–16249. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Dong, S.; Lin, L.; Ma, Q.; Xu, M.; Ni, L.; Fan, Q. Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion. Front. Pharmacol. 2023, 14, 1226448. [Google Scholar] [CrossRef] [PubMed]
- Ariaee, A.; Wardill, H.R.; Wignall, A.; Prestidge, C.A.; Joyce, P. The Degree of Inulin Polymerization Is Important for Short-Term Amelioration of High-Fat Diet (HFD)-Induced Metabolic Dysfunction and Gut Microbiota Dysbiosis in Rats. Foods 2024, 13, 1039. [Google Scholar] [CrossRef]
- Hong, J.; Shi, Y.; Chen, J.; Mi, M.; Ren, Q.; Zhang, Y.; Shen, M.; Bu, J.; Kang, Y. Konjac glucomannan attenuate high-fat diet-fed obesity through enhancing β-adrenergic-mediated thermogenesis in inguinal white adipose tissue in mice. Glycoconj. J. 2023, 40, 575–586. [Google Scholar] [CrossRef]
- Zhu, C.H.; Li, Y.X.; Xu, Y.C.; Wang, N.N.; Yan, Q.J.; Jiang, Z.Q. Tamarind Xyloglucan Oligosaccharides Attenuate Metabolic Disorders via the Gut-Liver Axis in Mice with High-Fat-Diet-Induced Obesity. Foods 2023, 12, 1382. [Google Scholar] [CrossRef]
- Eraniappan, S.; Balasubramaniyan, P.; Uddandrao, V.V.S.; Roy, A.; Singaravel, S. Beta-glucan suppresses high-fat-diet-induced obesity by attenuating dyslipidemia and modulating obesogenic marker expressions in rats. Fundam. Clin. Pharmacol. 2023, 37, 629–638. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Li, C.; Xu, F.; Chen, J. A polysaccharide from Rosa roxburghii Tratt fruit attenuates high-fat diet-induced intestinal barrier dysfunction and inflammation in mice by modulating the gut microbiota. Food Funct. 2022, 13, 530–547. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Li, C. Structural characterization of a novel acidic polysaccharide from Rosa roxburghii Tratt fruit and its α-glucosidase inhibitory activity. Food Funct. 2018, 9, 3974–3985. [Google Scholar] [CrossRef]
- Xie, X.; Song, Y.; Bi, X.; Liu, X.; Xing, Y.; Che, Z. Characterization of sea buckthorn polysaccharides and the analysis of its regulatory effect on the gut microbiota imbalance induced by cefixime in mice. J. Funct. Foods 2023, 104, 105511. [Google Scholar] [CrossRef]
- Liu, B.; Yu, L.; Zhai, Q.; Li, M.; Li, L.; Tian, F.; Chen, W. Effect of water-soluble polysaccharides from Morchella esculenta on high-fat diet-induced obese mice: Changes in gut microbiota and metabolic functions. Food Funct. 2023, 14, 5217–5231. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.N.; Li, W.; Mehmood, S.; Pan, W.J.; Wang, Y.; Meng, F.J.; Wang, X.F.; Lu, Y.M.; Chen, Y. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydr. Polym. 2018, 195, 29–38. [Google Scholar] [CrossRef]
- Yuan, D.; Huang, Q.; Li, C.; Fu, X. A polysaccharide from Sargassum pallidum reduces obesity in high-fat diet-induced obese mice by modulating glycolipid metabolism. Food Funct. 2022, 13, 7181–7191. [Google Scholar] [CrossRef]
- Ye, H.; Zhou, C.; Li, W.; Hu, B.; Wang, X.; Zeng, X. Structural elucidation of polysaccharide fractions from brown seaweed Sargassum pallidum. Carbohydr. Polym. 2013, 97, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-Y.; Zhao, X.; Liu, T.-J.; Liang, X.; Zhao, M.-Z.; Tian, X.-Y.; Yi, H.-X.; Gong, P.-M.; Lin, K.; Zhang, Z.; et al. Anti-obesity effect of fucoidan from Laminaria japonica and its hydrothermal degradation product. Food Biosci. 2024, 58, 103749. [Google Scholar] [CrossRef]
- Yan, J.-K.; Chen, T.-T.; Li, L.-Q.; Liu, F.; Liu, X.; Li, L. The anti-hyperlipidemic effect and underlying mechanisms of barley (Hordeum vulgare L.) grass polysaccharides in mice induced by a high-fat diet. Food Funct. 2023, 14, 7066–7081. [Google Scholar] [CrossRef] [PubMed]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ye, H.; Cui, J.; Chi, Y.; Liu, R.; Wang, P. Hypolipidemic effect of chromium-modified enzymatic product of sulfated rhamnose polysaccharide from Enteromorpha prolifera in type 2 diabetic mice. Mar. Life Sci. Technol. 2022, 4, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Yu, P.; Li, D.; Li, Y.; Wang, X.; Yang, X.; Ren, D. Structural characterization and alleviative effects of novel polysaccharides from Artemisia sphaerocephala Krasch seed on obese mice by regulating gut microbiota. Int. J. Biol. Macromol. 2025, 310, 143407. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Z.; Ji, P.; Liu, J.; Chen, B.; Qi, H.; Hou, T.; Huang, Q.; Ding, L.; Guo, C.; et al. Ginseng polysaccharide components attenuate obesity and liver lipid accumulation by regulating fecal microbiota and hepatic lysine degradation. Int. J. Biol. Macromol. 2024, 269, 131872. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, Y.; Xu, N.; Tang, L.; Chang, Y. Auricularia auricula-judae (Bull.) polysaccharides improve obesity in mice by regulating gut microbiota and TLR4/JNK signaling pathway. Int. J. Biol. Macromol. 2023, 250, 126172. [Google Scholar] [CrossRef]
- Li, Y.; Bai, D.; Lu, Y.; Chen, J.; Yang, H.; Mu, Y.; Xu, J.; Huang, X.; Li, L. The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota. Int. J. Biol. Macromol. 2022, 213, 234–246. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, H.B.; Oh, M.J.; Jhun, H.; Choi, S.Y.; Park, H.Y. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem. 2021, 343, 128395. [Google Scholar] [CrossRef]
- Ms Wolever, T.; Rahn, M.; Dioum, E.; Spruill, S.E.; Ezatagha, A.; Campbell, J.E.; Jenkins, A.L.; Chu, Y. An Oat β-Glucan Beverage Reduces LDL Cholesterol and Cardiovascular Disease Risk in Men and Women with Borderline High Cholesterol: A Double-Blind, Randomized, Controlled Clinical Trial. J. Nutr. 2021, 151, 2655–2666. [Google Scholar] [CrossRef]
- Noronha, J.C.; Zurbau, A.; Wolever, T.M.S. The importance of molecular weight in determining the minimum dose of oat β-glucan required to reduce the glycaemic response in healthy subjects without diabetes: A systematic review and meta-regression analysis. Eur. J. Clin. Nutr. 2023, 77, 308–315. [Google Scholar] [CrossRef]
- Mathews, R.; Shete, V.; Chu, Y. The effect of cereal Β-glucan on body weight and adiposity: A review of efficacy and mechanism of action. Crit. Rev. Food Sci. Nutr. 2023, 63, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.B.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.-P.; et al. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 2013, 62, 1112. [Google Scholar] [CrossRef]
- Lu, Z.X.; Walker, K.Z.; Muir, J.G.; Mascara, T.; O’Dea, K. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects123. Am. J. Clin. Nutr. 2000, 71, 1123–1128. [Google Scholar] [CrossRef]
- Gholami, Z.; Clark, C.C.T.; Paknahad, Z. The effect of psyllium on fasting blood sugar, HbA1c, HOMA IR, and insulin control: A GRADE-assessed systematic review and meta-analysis of randomized controlled trials. BMC Endocr. Disord. 2024, 24, 82. [Google Scholar] [CrossRef]
- Keithley, J.K.; Swanson, B.; Mikolaitis, S.L.; DeMeo, M.; Zeller, J.M.; Fogg, L.; Adamji, J. Safety and efficacy of glucomannan for weight loss in overweight and moderately obese adults. J. Obes. 2013, 2013, 610908. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Williams, C.M.; Hajnal, F.; Valenzuela, J.E. Pectin delays gastric emptying and increases satiety in obese subjects. Gastroenterology 1988, 95, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Yan, J.; Liang, L.; Liu, W.; Chen, S.; Chen, P. Characterization and biological activities of polysaccharides extracted from Auricularia auricula with different extraction methods. Prep. Biochem. Biotechnol. 2024, 54, 859–871. [Google Scholar] [CrossRef]
- Sun, X.; Wang, H.; Han, X.; Chen, S.; Zhu, S.; Dai, J. Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydr. Polym. 2014, 114, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Aipire, A.; Yuan, P.; Aimaier, A.; Cai, S.; Mahabati, M.; Lu, J.; Ying, T.; Zhang, B.; Li, J. Preparation, Characterization, and Immuno-Enhancing Activity of Polysaccharides from Glycyrrhiza uralensis. Biomolecules 2020, 10, 159. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lin, S.; Lu, M.; Gong, J.D.B.; Wang, L.; Zhang, Q.; Lin, D.R.; Qin, W.; Wu, D.T. Characterization, in vitro binding properties, and inhibitory activity on pancreatic lipase of β-glucans from different Qingke (Tibetan hulless barley) cultivars. Int. J. Biol. Macromol. 2018, 120, 2517–2522. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Li, C.; Huang, Q.; You, L.-J.; Chen, C.; Fu, X.; Liu, R.H. Comparative study on the physicochemical properties and bioactivities of polysaccharide fractions extracted from Fructus Mori at different temperatures. Food Funct. 2019, 10, 410–421. [Google Scholar] [CrossRef]
- Błaszczyk, K.; Wilczak, J.; Harasym, J.; Gudej, S.; Suchecka, D.; Królikowski, T.; Lange, E.; Gromadzka-Ostrowska, J. Impact of low and high molecular weight oat beta-glucan on oxidative stress and antioxidant defense in spleen of rats with LPS induced enteritis. Food Hydrocoll. 2015, 51, 272–280. [Google Scholar] [CrossRef]
- Liu, Q.; Fang, J.; Huang, W.; Liu, S.; Zhang, X.; Gong, G.; Huang, L.; Lin, X.; Wang, Z. The intervention effects of konjac glucomannan with different molecular weights on high-fat and high-fructose diet-fed obese mice based on the regulation of gut microbiota. Food Res. Int. 2023, 165, 112498. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Chen, Z.; Gao, X.; Yuan, G.; Pan, Y.; Chen, H. Effects of simulated gastrointestinal digestion in vitro on the chemical properties, antioxidant activity, α-amylase and α-glucosidase inhibitory activity of polysaccharides from Inonotus obliquus. Food Res. Int. 2018, 103, 280–288. [Google Scholar] [CrossRef]
- Qiu, S.; Huang, L.; Xia, N.; Teng, J.; Wei, B.; Lin, X.; Khan, M.R. Two Polysaccharides from Liupao Tea Exert Beneficial Effects in Simulated Digestion and Fermentation Model In Vitro. Foods 2022, 11, 2958. [Google Scholar] [CrossRef]
- Lv, Q.-Q.; Cao, J.-J.; Liu, R.; Chen, H.-Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chem. 2021, 341, 128218. [Google Scholar] [CrossRef]
- Yin, J.-Y.; Ma, L.-Y.; Xie, M.-Y.; Nie, S.-P.; Wu, J.-Y. Molecular properties and gut health benefits of enzyme-hydrolyzed konjac glucomannans. Carbohydr. Polym. 2020, 237, 116117. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Jia, X.; Huang, F.; Zhang, R.; Dong, L.; Liu, L.; Zhang, M. Structural elucidation, anti-inflammatory activity and intestinal barrier protection of longan pulp polysaccharide LPIIa. Carbohydr. Polym. 2020, 246, 116532. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wu, D.T.; Li, W.Z.; Ning, C.G.; Tang, Y.P.; Zhao, J.; Li, S.P. Effects of Polysaccharides in Lycium barbarum Berries from Different Regions of China on Macrophages Function and their Correlation to the Glycosidic Linkages. J. Food Sci. 2017, 82, 2411–2420. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.R.; Wang, K.; Fu, X.; Xu, J.; Gao, X.; Jeon, Y.-J. Anti-inflammatory effect of fucoidan isolated from fermented Sargassum fusiforme in in vitro and in vivo models. Int. J. Biol. Macromol. 2022, 222, 2065–2071. [Google Scholar] [CrossRef]
- Li, S.; Xia, H.; Xie, A.; Wang, Z.; Ling, K.; Zhang, Q.; Zou, X. Structure of a fucose-rich polysaccharide derived from EPS produced by Kosakonia sp. CCTCC M2018092 and its application in antibacterial film. Int. J. Biol. Macromol. 2020, 159, 295–303. [Google Scholar] [CrossRef]
- Fu, X.; Song, M.; Lu, M.; Xie, M.; Shi, L. Hypoglycemic and hypolipidemic effects of polysaccharide isolated from Sphacelotheca sorghi in diet-streptozotocin-induced T2D mice. J. Food Sci. 2022, 87, 1882–1894. [Google Scholar] [CrossRef]
- Ge, Q.; Mao, J.-W.; Guo, X.-Q.; Zhou, Y.-F.; Gong, J.-Y.; Mao, S.-R. Composition and antioxidant activities of four polysaccharides extracted from Herba lophatheri. Int. J. Biol. Macromol. 2013, 60, 437–441. [Google Scholar] [CrossRef]
- Sharma, V.; Smolin, J.; Nayak, J.; Ayala, J.E.; Scott, D.A.; Peterson, S.N.; Freeze, H.H. Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Rep. 2018, 24, 3087–3098. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Ahmadi, S.; Shen, S.; Wu, D.; Xiao, H.; Ding, T.; Liu, D.; Ye, X.; Chen, S. Structure and fermentation characteristics of five polysaccharides sequentially extracted from sugar beet pulp by different methods. Food Hydrocoll. 2022, 126, 107462. [Google Scholar] [CrossRef]
- Bosek, M.; Ziomkowska, B.; Pyskir, J.; Wybranowski, T.; Pyskir, M.; Cyrankiewicz, M.; Napiórkowska, M.; Durmowicz, M.; Kruszewski, S. Relationship between red blood cell aggregation and dextran molecular mass. Sci. Rep. 2022, 12, 19751. [Google Scholar] [CrossRef]
- Rao, Z.; Dong, Y.; Zheng, X.; Tang, K.; Liu, J. Extraction, purification, bioactivities and prospect of lentinan: A review. Biocatal. Agric. Biotechnol. 2021, 37, 102163. [Google Scholar] [CrossRef]
- Lu, X.; Jing, Y.; Zhang, N.; Chen, L.; Tai, J.; Cao, Y. Structural characterization and anti-obesity effect of a novel water-soluble galactomannan isolated from Eurotium cristatum. Carbohydr. Polym. 2025, 348, 122870. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Chen, B.; Hou, Y.; Wen, Y.; Gan, L.; Jin, J.; Li, C.; Wu, P.; Li, D.; et al. Ultrasonic assisted extraction, characterization and gut microbiota-dependent anti-obesity effect of polysaccharide from Pericarpium Citri Reticulatae ‘Chachiensis’. Ultrason. Sonochem. 2023, 95, 106383. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Si, Z.; Jiang, Y.; Ye, M.; Wang, F.; Yang, X.; Yu, J.; Gao, X.; Liu, W. Structure-activity relationship of low molecular weight Astragalus membranaceus polysaccharides produced by Bacteroides. Carbohydr. Polym. 2023, 316, 121036. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhang, X.; Zhao, S.; Zou, K.; Xie, J.; Wang, X.; Liu, C.; Wang, J.; Wang, Y. Seabuckthorn berry polysaccharide extracts protect against acetaminophen induced hepatotoxicity in mice via activating the Nrf-2/HO-1-SOD-2 signaling pathway. Phytomedicine 2018, 38, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, J.; Shen, M.; Nie, S.; Xie, M. Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci. Technol. 2018, 74, 147–157. [Google Scholar] [CrossRef]
- Li, Z.; Sang, R.; Feng, G.; Feng, Y.; Zhang, R.; Yan, X. Microbiological and metabolic pathways analysing the mechanisms of alfalfa polysaccharide and sulfated alfalfa polysaccharide in alleviating obesity. Int. J. Biol. Macromol. 2024, 263, 130334. [Google Scholar] [CrossRef]
- Shen, X.; Xie, S.; Zhang, H.; Wang, T.; Zhang, B.; Zhao, H. Effects of Persimmon (Diospyros kaki L. cv. Mopan) Polysaccharide and Their Carboxymethylated Derivatives on Lactobacillus Strains Proliferation and Gut Microbiota: A Comparative Study. Int. J. Mol. Sci. 2023, 24, 15730. [Google Scholar] [CrossRef]
- An, Y.; Liu, H.; Li, X.; Liu, J.; Chen, L.; Jin, X.; Chen, T.; Wang, W.; Liu, Z.; Zhang, M.; et al. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide. Carbohydr. Res. 2022, 515, 108555. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, G.; Li, J.; Surhio, M.M.; Ye, M. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp. Process Biochem. Process Biochem. 2018, 72, 177–187. [Google Scholar] [CrossRef]
- Wu, W.; Chen, R.; Gao, M.; Cai, Y.; Bai, H.; Yang, C.; Li, D.; Wang, Y.; Gong, M. Effects of extraction and modifications on physicochemical characteristics and bioactivities of lemon (Citrus limon L.) polysaccharides. Food Biosci. 2025, 65, 105943. [Google Scholar] [CrossRef]
- Xie, L.; Huang, Z.; Qin, L.; Yu, Q.; Chen, Y.; Zhu, H.; Xie, J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int. J. Biol. Macromol. 2022, 204, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiao, Y.; Shen, S.; Zhao, W.; Zhang, Q.; Zhang, S. Chaenomeles sinensis polysaccharide and its carboxymethylated derivative alleviate dextran sulfate sodium-induced ulcerative colitis via suppression of inflammation and oxidative stress. Biomed. Pharmacother. 2023, 169, 115941. [Google Scholar] [CrossRef]
- Zhao, F.; Gao, J.; Li, H.; Huang, S.; Wang, S.; Liu, X. Identification of Peptides from Edible Pleurotus eryngii Mushroom Feet and the Effect of Delaying D-Galactose-Induced Senescence of PC12 Cells Through TLR4/NF-κB/MAPK Signaling Pathways. Foods 2024, 13, 3668. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Chen, Y.; Li, Y.; Lin, D.; Yang, Z.; Wang, Q.; Chen, H.; Xu, Q.; Chen, J.; Zhu, P.; et al. Sulfated Polysaccharides from Enteromorpha prolifera Attenuate Lipid Metabolism Disorders in Mice with Obesity Induced by a High-Fat Diet via a Pathway Dependent on AMP-Activated Protein Kinase. J. Nutr. 2022, 152, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Mayulu, N.; Gunawan, W.B.; Park, M.N.; Chung, S.; Suh, J.Y.; Song, H.; Kusuma, R.J.; Taslim, N.A.; Kurniawan, R.; Kartawidjajaputra, F.; et al. Sulfated Polysaccharide from Caulerpa racemosa Attenuates the Obesity-Induced Cardiometabolic Syndrome via Regulating the PRMT1-DDAH-ADMA with mTOR-SIRT1-AMPK Pathways and Gut Microbiota Modulation. Antioxidants 2023, 12, 1555. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Yu, L.; Xia, X.; Zhu, Z.; Liu, X. Selenium-containing polysaccharide from Spirulina platensis alleviates Cd-induced toxicity in mice by inhibiting liver inflammation mediated by gut microbiota. Front. Nutr. 2022, 9, 950062. [Google Scholar] [CrossRef]
- Górska, S.; Maksymiuk, A.; Turło, J. Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. Appl. Sci. 2021, 11, 3717. [Google Scholar] [CrossRef]
- Lv, X.C.; Wu, Q.; Yuan, Y.J.; Li, L.; Guo, W.L.; Lin, X.B.; Huang, Z.R.; Rao, P.F.; Ai, L.Z.; Ni, L. Organic chromium derived from the chelation of Ganoderma lucidum polysaccharide and chromium (III) alleviates metabolic syndromes and intestinal microbiota dysbiosis induced by high-fat and high-fructose diet. Int. J. Biol. Macromol. 2022, 219, 964–979. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Ma, Y.; Chen, X.; Lan, T.; Chen, L.; Zheng, Z. Structural Characterization and Hypoglycemic Activity of a Novel Pumpkin Peel Polysaccharide-Chromium(III) Complex. Foods 2022, 11, 1821. [Google Scholar] [CrossRef]
- Guo, W.L.; Chen, M.; Pan, W.L.; Zhang, Q.; Xu, J.X.; Lin, Y.C.; Li, L.; Liu, B.; Bai, W.D.; Zhang, Y.Y.; et al. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice. Int. J. Biol. Macromol. 2020, 145, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gani, A.; Shah, A.; Masoodi, F.A.; Hussain, P.R.; Wani, I.A.; Khanday, F.A. Effect of γ-irradiation on structural, functional and antioxidant properties of β-glucan extracted from button mushroom (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2015, 31, 123–130. [Google Scholar] [CrossRef]
- Li, P.; Xiong, C.; Huang, W. Gamma-Irradiation-Induced Degradation of the Water-Soluble Polysaccharide from Auricularia polytricha and Its Anti-Hypercholesterolemic Activity. Molecules 2022, 27, 1110. [Google Scholar] [CrossRef]
- Chi, Y.H.; Lee, H.; Paik, S.H.; Lee, J.H.; Yoo, B.W.; Kim, J.H.; Tan, H.K.; Kim, S.L. Safety, tolerability, pharmacokinetics, and pharmacodynamics of fimasartan following single and repeated oral administration in the fasted and fed states in healthy subjects. Am. J. Cardiovasc. Drugs Drugs Devices Other Interv. 2011, 11, 335–346. [Google Scholar] [CrossRef]
Polysaccharide Source | Mechanism | Target Pathway | Physiological Effect | Reference |
---|---|---|---|---|
Tea polysaccharides | Stimulate GLP-1 and TGR5 secretion | Incretin pathway | Improve glucose and lipid metabolism | [33] |
Platycodonis Radix polysaccharides | Activate FFAR2/FFAR3 in L-cells | PYY and GLP-1 release, gut–brain axis | Reduce food intake and increase energy expenditure | [34] |
Yendo polysaccharides | Activate JAK2/STAT3 signaling | Upregulate LEP (leptin) | Suppress appetite and control weight gain | [35] |
Gac aril crude polysaccharides | Increase GLP-1 and GIP secretion | Enhance incretin signaling | Improve insulin sensitivity and energy metabolism | [36] |
Inulin-type fructans | Fermentable fiber increases SCFAs; enhances GLP-1 and PYY secretion | FFAR2/FFAR3–incretin pathway | Enhanced satiety; improved insulin sensitivity | [37] |
Tremella fuciformis polysaccharides | Modulate gut microbiota composition; increase SCFAs; enhance GLP-1/PYY secretion; reduce inflammation and adiposity by microbe–gut–brain axis | Firmicutes/Bacteroidetes ratio; SCFA–FFAR2 axis | Reduced weight gain; improved glucose and lipid metabolism; decreased inflammation | [38] |
Mulberry leaf polysaccharides | Modulate gut microbiota; induce browning of iWAT; activate BAT thermogenesis | Microbiota remodeling and thermogenic activation | Reduction (20–50%) in weight gain; improved lipid profile | [39] |
Pear pomace soluble dietary fiber | Activates adiponectin (ADPN); stimulates AMPK and PPAR-α signaling; reduces inflammation | ADPN-AMPK/PPAR-α pathway | Suppressed fat deposition; reduced adipose inflammation in HFD-fed mice | [17] |
Platycodonis radix polysaccharides | Modulate gut microbiota and metabolites; increase SCFAs; enhance PYY secretion | Microbiota–SCFA–PYY– gut–brain axis | Suppressed weight gain; improved glucose lipid metabolism; enhanced satiety and energy balance | [34] |
Tibetan Brassica rapa L. polysaccharides | Modulate lipid synthesis enzymes (HMGCR, CYP7A1, PPARγ, ACC, FAS, SREBP-1c); restore gut barrier; increase SCFAs through microbiota modulation | Lipid metabolism signaling | Reduced TC, TG, LDL-C; improved lipid profile and hepatic adipose tissue morphology | [40] |
Artemisia sphaerocephala Krasch polysaccharides | Shape gut microbiota; elevate SCFAs and succinate | Induce UCP1-mediated adipose thermogenesis | Promote fat browning and reduce obesity | [41] |
Fucoidan | Modulates gut microbiota and increases SCFA levels | Activates thermogenic genes in adipose tissue (such as UCP1) | Enhances energy expenditure and reduces adiposity | [42] |
Polysaccharide Source | Mouse Model | Dose | Mechanism | Key Effects | Reference |
---|---|---|---|---|---|
Arabinoxylan (Wheat) | C57BL/6J | 7.5% diet (~15 g/day), 8 weeks | ↑ SCFA (propionate); ↑ Bacteroidetes/Roseburia; ↑ tight junction proteins | ↓ fat mass, ↓ inflammation; improved glucose and lipid profile | [109] |
Arabinoxylan (Rice bran) | HFD-fed C57BL/6J mice | 5–10 g/kg·d, 8 weeks | Restored α-diversity; ↑ Akkermansia/Bifidobacterium; ↓ TNFα & IL-6 | ↓ body weight gain; ↓ lipid accumulation | [110] |
Arabinoxylan+ Green tea | HFD-fed mice | 8 weeks | modulated microbiota differently; increased SCFA | ↓ fat mass; improved lipid/glucose parameters | [111] |
Inulin | HFD-fed C57BL | 16 weeks | ↑ SCFAs; ↑ bile acid excretion; ↓ SREBP-1c; ↓ hepatic TG synthesis | ↓ BW gain; ↓ TG/LDL; ↑ insulin sensitivity | [112] |
Inulin (chicory root) different degrees of polymerization | HFD-fed Sprague Dawley rats | 1 g/kg·d, 3 weeks | DP-specific: longer chains modulate microbiota; SCFA production; ↓ glucose | DP27 reduced weight gain; ↓ glucose | [113] |
Konjac Glucomannan | HFD-fed C57BL/6J mice | 8% w/w diet (8 g/kg·d), 10 weeks | ↑ β3-adrenergic receptor (ADR3β) → ↑ UCP1 thermogenesis in iWAT; modulation of lipid metabolism genes | ↓ body weight; ↓ adipose accumulation; ↓ plasma lipids; improved glucose tolerance | [114] |
Xyloglucan Oligosaccharides (Tamarind seed) | HFD-fed C57BL/6J mice | 4.8 g/kg/day, 19 weeks | Modulated gut microbiota (↑ B. pseudolongum, ↓ Klebsiella spp.); regulated lipid metabolism via gut–liver axis; suppressed systemic inflammation | ↓ body weight gain (~12.8–23.3%); ↓ liver steatosis; ↑ microbial diversity; ↓ inflammatory markers | [115] |
β-glucan | - | 40 mg/kg BW | ↓ fatty acid synthesis (SREBP-1c and FAS); adipogenesis (PPARγ); TC synthesis (HMG-CoA and FABP4) | Reduce body weight, TC, TG, LDL-c, and adiponectin levels; increase HDL-C and leptin levels | [116] |
Polysaccharide Source | Mouse Model | Dose | Mechanism | Effects | Effect on Gut Microbiota | Key Structural Features | Reference |
---|---|---|---|---|---|---|---|
Rosa roxburghii fruit polysaccharides | C57BL/6J | 200 mg/kg BW 400 mg/kg BW | Inhibit inflammatory signaling pathways (TLR4 and NF-κB p65); ↓mRNA expression | ↓ body weight, TG, TC, LDL-C, and LDL-C/HDL-C ratio levels | ↑ Oscillospiraceae and Tannerellaceae | Mw ~67.2 kDa; composed of arabinose (37.2%), galactose (34.4%), glucose (10.0%), fucose (18.3%); pectic backbone with mixed α/β linkages | [117,118] |
Sea buckthorn polysaccharide | C57BL/6J | 0.1% w/w SP of HFD | Activate the AMPK pathway | ↓ body weight, TC, TG, LDL-c, ALT, and AST levels; ↑HDL-C levels | ↑ abundance of Muribaculaceae unclassified, Bifidobacterium, Rikenellaceae RC9, Alistipes, and Bacteroides; ↓ Lactobacillus, Firmicutes_unclassified, Dubosiella Bilophila, and Streptococcus | Mw ≈6.26 × 103 kDa; rich in galacturonic acid, galactose, rhamnose; irregular branched pectin–hemicellulose network | [73,119] |
Morchella esculenta polysaccharides | C57BL/6J | 100 mg/kg BW, 400 mg/kg BW | ↓ mRNA levels of G6Pase, GLUT1, PPAR-α, PPAR-γ, and C/EBPα | ↓ body weight, LDL-C, ALT, AST, ALP, and GGT levels; ↑ TNF-α, IL-1β, IL-6, and HDL-C levels | ↓ Firmicutes/Bacteroidetes ratio; ↓ abundance of obesity-related Faecalibaculum; ↑abundance of Dubosiella, Lactobacillus, and Rikenellaceae RC9 | Mw ~4.7 × 103 Da (FMP-1) or ~3.0 × 103 kDa (MMP-L); backbone of →4)-α-d-Glcp and →1,6/→4,6-linked Glc/Gal/Man units with branching | [120,121] |
Sargassum pallidum polysaccharide polysaccharide | BALB/c | 50 mg/kg BW, 100 mg/kg BW, 400 mg/kg BW | ↓ TG synthesis and metabolism by decreasing mRNA levels of PPAR-γ, SREBP-1c, FAS, ACC1, and G6Pase | ↓ body weight, TC, TG, LDL-c, GSH, and T-SOD levels; ↑ HDL-C levels | Fractions ~5.9–7.3 kDa; composition includes fucose, glucose, mannose, galactose, xylose | [122,123] | |
Kelp polysaccharide | C57BL/6J | 300 mg/kg BW | ↓ TG synthesis (SREBP-1c and FAS); decrease TC synthesis (HMGCR); ↑ TC consumption (CYP7A1 and CYP27A1) | ↓ bodyweight, TC, TG, LDL-c, ALT, and AST; ↑ HDL-C levels | ↓ Colidextribacter abundance; ↑ Desulfovibrio abundance | Typical sulfated α-l-fucose backbone (such as (1→3) and (1→4) linked); high sulfate ester content (≈30–40%); Mw range 50–1000 kDa | [124] |
Barley grass polysaccharides | C57BL/6J | 200 mg/kg BW 400 mg/kg BW | ↓ TNF-α and IL-6 levels | ↓ body weight, TC, TG, and LDL-C levels | ↑ relative abundance of Bacteroidetes, Bacteroidacea, and Lachnospiraceae; ↓ Firmicutes/Bacteroidetes ratio and relative abundance of Desulfovibrio | Arabinoxylan-type heteropolysaccharide rich in arabinose/xylose; high insoluble fiber; Mw not specified but branched xylose backbone typical | [125,126] |
Caulerpa racemosa sulfated polysaccharide | Rattus norvegicus | 65 or 130 mg/kg BW/d orally for 8 weeks | Activates mTOR-SIRT1-AMPK and PRMT1-DDAH-ADMA pathways: upregulates SIRT1, AMPK, DDAH-II, PGC-1α, SOD; downregulates PRMT1, mTOR, TNF-α, HMGCR | ↓ body weight gain; ↓ TG, LDL-C, TC, blood glucose; ↑ HDL; improved insulin sensitivity and reduced hepatic steatosis | ↑ Firmicutes/Bacteroidetes ratio; SPCr reverses this and increases Bacteroides, Parabacteroides, Alloprevotella, Ruminococcus; ↓ Desulfovibrionaceae, Bilophila; lowers circulating LPS | Rhamnose and xylose-based sulfated backbone with side chains of mannose, arabinose, galactose; | [127] |
Artemisia sphaerocephala Krasch seed polysaccharides (ASKP1, ASKP2, ASKP3) | C57BL/6J mice fed an HFD | 400 mg/kg·bw | Modulation of gut microbiota and thermogenesis | Reduction in body weight, liver and epididymal white adipose tissue (eWAT) indices; improvement in glucose and lipid metabolism; elevation of antioxidant capacity; alleviation of inflammation | ASKP1 promotes the proliferation of beneficial bacterium Akkermansia more effectively than ASKP2 and ASKP3; increases the abundance of beneficial bacteria such as Blautia, Christensenellaceae_R-7_group, Romboutsia, and Allobaculum | ASKP1: Neutral heteropolysaccharide with an average molecular weight of 9.08 × 105 Da; ASKP2 and ASKP3: Acidic heteropolysaccharides with molecular weights of 9.39 × 105 and 8.41 × 105 Da, respectively | [128] |
Ginseng polysaccharide from ginseng root slices | C57BL/6J | 100 mg/kg·bw | Inhibits hepatic lysine degradation (downregulates AASS, ALDH7A1, NSDHL); improves lipid metabolism and antioxidant capacity | ↓ body weight, liver index, TG, TC, ALT, AST; ↑ SOD, T-AOC; improved liver histology | ↑ Lactobacillus, Bifidobacterium, Bacteroides; ↓ Firmicutes/Bacteroidetes ratio; ↑ SCFA-producing bacteria | Predominantly composed of glucose (94.91%) primarily contains pyranose-type monosaccharides; glycosidic linkages are primarily in α-configuration | [129] |
Auricularia auricula-judae (Bull.) polysaccharides | C57BL/6J | 50 mg/kg·bw | Modulates TLR4/JNK; activates AMPK/AKT; improves gut barrier; increased SCFAs | ↓ body weight; ↓ lipid accumulation; ↓ inflammation; ↑ SCFAs; improved metabolic profile | ↑ SCFA-producing bacteria; ↓ harmful bacteria | Mw ≈ 1.21 × 106 Da; 67.68% neutral sugar, 25.50% uronic acids; rich in mannose, galacturonic acid; β-pyranose (1069, 905 cm−1) | [130] |
Psidium guajava crude polysaccharides | C57BL/6J | 100 mg/kg·bw | Modulates gut microbiota; regulates TLR4/JNK signaling pathway; enhances SCFA production | ↓ body weight gain; ↓ visceral obesity; ↓ serum cholesterol, TG, LDL-C; ↓ liver lipid accumulation; improved insulin resistance and liver inflammation | ↑ Clostridium XlVa, Parvibacter, Enterorhabdus; ↑ SCFAs (primarily butyrate); restored Firmicutes/Bacteroidetes ratio; ↓ Mucispirillum | Mw of 8.0 × 105 and 2.2 × 104, Galacturonic acid, Galactose, Arabinose in a molar ratio of 3:1:6 | [131] |
Polysaccharide fraction from Raphanus sativus greens | C57BL/6J mice | 4 mg/kg BW (oral gavage) | Improves gut barrier integrity, modulates gut microbiota, suppresses expression of lipid metabolism-related genes | ↓ Body weight gain; ↓ visceral fat mass; ↓ adipocyte size; ↓ serum TC, TG, and LDL-C levels | Restored Firmicutes/Bacteroidetes ratio; shifted gut microbiota toward a healthier profile | Mw: 61.1 kDa; Mn: 3.91 kDa; Mw/Mn = 15.6; composed of 70.8% neutral sugar and 22.3% uronic acid; dominant monosaccharides: galactose (40.7%), arabinose (22.9%), galacturonic acid (12.7%) | [132] |
Polysaccharide Source | Subjects | Dose | Key Outcomes | Reference |
---|---|---|---|---|
Oat β-glucan | 19 healthy adults | 2–4 g/30 g carbs, acute and postprandial (lunch) meals | ↓ peak glucose iPeak (p < 0.05); ↓ iAUC (0–60 min, p < 0.05); ↓ insulin iAUC (p < 0.05); increased satiety | [133] |
Oat β-glucan | 35-trial meta-analysis | Median 2.8 g/30 g carbs | ↓ postprandial glucose iAUC and insulin iAUC; effect modified by MW | [134] |
Barley β-glucan | Hypercholesterolemic/overweight | 3–10 g/day, 4–12 week | ↓ LDL-C, TC; improved glycemia | [135] |
Inulin | 40 overweight adults | 10 g/day, 6 weeks | ↓ weight; ↓ insulin; ↑ GLP-1; ↑ probiotic content | [136] |
Arabinoxylan (wheat bran) | Overweight adults | Varies, RCT | ↑ insulin sensitivity; ↓ LDL | [137] |
Psyllium husk | T2DM adults | Not specified, meta-analysis | ↓ FBS, HbA1c, HOMA-IR; improved glycemic control | [138] |
Konjac glucomannan | Overweight adults | 3.99 g/d, 8 weeks | ↓ BMI, weight; improved satiety; well tolerated | [139] |
Pectin (apple) | Obese adults | 15 g/meal | ↑ satiety; delayed gastric emptying | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, G.; Li, B.; Zhu, L.; Chen, L.; Xiao, J.; Chen, J. Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity. Biomolecules 2025, 15, 1140. https://doi.org/10.3390/biom15081140
Fang G, Li B, Zhu L, Chen L, Xiao J, Chen J. Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity. Biomolecules. 2025; 15(8):1140. https://doi.org/10.3390/biom15081140
Chicago/Turabian StyleFang, Guihong, Baolian Li, Li Zhu, Liqian Chen, Juan Xiao, and Juncheng Chen. 2025. "Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity" Biomolecules 15, no. 8: 1140. https://doi.org/10.3390/biom15081140
APA StyleFang, G., Li, B., Zhu, L., Chen, L., Xiao, J., & Chen, J. (2025). Anti-Obesity Mechanisms of Plant and Fungal Polysaccharides: The Impact of Structural Diversity. Biomolecules, 15(8), 1140. https://doi.org/10.3390/biom15081140