cimb-logo

Journal Browser

Journal Browser

Pharmacological Activities and Mechanisms of Action of Natural Products

A special issue of Current Issues in Molecular Biology (ISSN 1467-3045). This special issue belongs to the section "Bioorganic Chemistry and Medicinal Chemistry".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 12350

Special Issue Editors


E-Mail Website
Guest Editor
Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Wuzhong No.111, Renai Road, Suzhou 215123, China
Interests: precision medicine; peptide drug discovery and design; mass spectrometry; proteomics-based target-identification, functional and structural characterization; high-throughput drug screening and validation; peptide and protein chemistry; molecular pharmacology; targeted protein modifiers; targeted drug delivery; natural products
Special Issues, Collections and Topics in MDPI journals
Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Wuzhong No. 111, Renai Road, Suzhou 215123, China
Interests: peptide; drug discovery; molecular pharmacology; natural products; chemical biology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
2. Department of Pharmacological Sciences, Faculty of Health Sciences, University of Macau, Macao, China
Interests: cardiovascular; neurodegenerative diseases and brain disorders; molecular pharmacology; mitochondrial functions; systems biology; genome; transcriptome; proteome; protein interaction network; natural product chemistry; Chinese medicine; peptide chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural products are small molecules biosynthesized by living organisms that have evolved to modulate biochemical pathways and biological processes. This Special Issue focuses on understanding the molecular mechanisms by which natural products exert their pharmacological activities and therapeutic effects. For centuries, natural products have been invaluable sources of medicinal agents, exemplified by antibiotics, antimalarials, analgesics, and anticancer drugs like penicillin, artemisinin, ziconotide, and paclitaxel, respectively. Unraveling their molecular targets, modes of binding, and regulatory roles can unlock new therapeutic strategies.

This SI welcomes original research elucidating the structural basis of natural products’ bioactivity through techniques like X-ray crystallography, NMR spectroscopy, computational modeling, and pharmacological assays. Also of interest are investigations into natural products’ interactions with proteins, nucleic acids, lipids, and other biomolecules, underlying their pharmacological effects, and mechanistic studies dissecting their impact on cellular signaling pathways, gene expression, enzyme activities, and other molecular processes. Additionally, this Issue aims to showcase cutting-edge strategies for natural product isolation, derivatization, and molecular target deconvolution to accelerate drug discovery. Through an enhanced understanding of natural products’ mechanisms of action, this Special Issue strives to enrich the pipeline for molecular probes and therapeutic leads.

Dr. Shining Loo
Dr. Antony Kam
Prof. Dr. Lee Simon Ming-Yuen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Current Issues in Molecular Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • pharmacological activity
  • molecular mechanisms
  • therapeutic targets
  • structure–activity relationships
  • protein–ligand interactions
  • cell signaling pathways
  • enzyme inhibition/activation
  • molecular targets

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 9247 KiB  
Article
Network Pharmacology and In Vitro Experimental Validation Reveal the Anti-Inflammatory and Anti-Apoptotic Effects of Lotus Leaf Extract in Treating Inflammatory Diarrhea in Pigs
by Yu Zheng, Jiana Zheng, Jiao Wang, Junxin Li, Jiali Liu, Bohan Zheng, Qinjin Li, Xiaohong Huang and Zhaoyan Lin
Curr. Issues Mol. Biol. 2025, 47(5), 314; https://doi.org/10.3390/cimb47050314 - 28 Apr 2025
Viewed by 71
Abstract
The objective of this research was to investigate the efficacy of lotus leaf in the prevention and treatment of inflammatory diarrhea in pigs, utilizing network pharmacology and in vitro methodologies. Initially, LC-MS was employed to analyze the constituents of lotus leaf extract (LLE); [...] Read more.
The objective of this research was to investigate the efficacy of lotus leaf in the prevention and treatment of inflammatory diarrhea in pigs, utilizing network pharmacology and in vitro methodologies. Initially, LC-MS was employed to analyze the constituents of lotus leaf extract (LLE); then, the TCMSP database was utilized to identify the active components and their corresponding targets. The GeneCards database was consulted to identify disease-related targets pertinent to inflammatory diarrhea in pigs. A drug ingredient–disease target network was constructed using Cytoscape software. Subsequently, the STRING database facilitated protein interaction analysis, which was also visualized through Cytoscape. Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted based on the genes shared between disease and LLE targets. Molecular docking of the active ingredients with key targets was performed using Autodock Vina. Subsequently, an in vitro LPS-induced inflammation model was established using IPEC-J2 cells to validate the predictions made through network pharmacology. Verification was conducted via flow cytometry and Western blot analysis. The LC-MS assay and TCMSP retrieval results revealed that Quercetin, Nuciferine, Kaempferol, Leucodelphinidin, and Catechin were identified as the main compounds of LLE, associated with 181 potential targets. A total of 5995 targets were linked to inflammatory diarrhea in pigs, with 159 overlapping targets identified between the bioactive compounds and the disease. Notable key targets included TNF-α, IL-6, caspase-3, TP53, and AKT, which are integral to inflammation and apoptosis processes. GO functional annotation indicated significant enrichment in biological processes such as gene expression regulation and transcription from RNA polymerase II promoters. KEGG pathway analysis highlighted critical pathways, including TNF signaling and apoptosis. Furthermore, molecular docking analyses demonstrated that the bioactive components of lotus leaf exhibited a strong binding affinity for essential targets, including AKT1, BAX, caspase-3, CCL2, IL-6, IL-10, MPK14, NOS3, PTGS1, and TNF-α. In vitro experiments confirmed that LLE significantly inhibited LPS-induced apoptosis in IPEC-J2 cells and suppressed the activation of the TNF-α-mediated apoptosis pathway. This study offers novel insights into the therapeutic potential of Chinese medicine and its constituents in addressing inflammatory diarrhea in pigs. Full article
Show Figures

Figure 1

15 pages, 4748 KiB  
Article
Fraxin Alleviates Atherosclerosis by Inhibiting Oxidative Stress and Inflammatory Responses via the TLR4/PI3K/Akt Pathway
by Yaru Wang, Bailing Wei, Mingyang Leng, Jiali He, Yicheng Zhao, Haohao Xia, Haibin Luo and Xue Bai
Curr. Issues Mol. Biol. 2025, 47(5), 308; https://doi.org/10.3390/cimb47050308 - 27 Apr 2025
Viewed by 84
Abstract
Fraxin is a bioactive compound derived from Cortex Fraxini. It is known for its diverse biological activities and numerous benefits, including anti-inflammatory, antioxidant, analgesic, antimicrobial, antiviral, and immunomodulatory effects. Despite growing interest in natural compounds for cardiovascular diseases Fraxin’s atheroprotective properties and molecular [...] Read more.
Fraxin is a bioactive compound derived from Cortex Fraxini. It is known for its diverse biological activities and numerous benefits, including anti-inflammatory, antioxidant, analgesic, antimicrobial, antiviral, and immunomodulatory effects. Despite growing interest in natural compounds for cardiovascular diseases Fraxin’s atheroprotective properties and molecular targets have not yet been fully elucidated. To address this gap, our research employed an integrated approach combining network pharmacology, molecular docking simulations, and in vitro biological validation to systematically unravel Fraxin’s therapeutic mechanisms against atherosclerosis (AS). The results showed that 84 potential targets for Fraxin against AS were predicted through public databases, and the key target TLR4 was identified by protein–protein interaction and molecular docking analysis. GO enrichment and KEGG pathway analysis revealed that these potential targets were significantly enriched in the PI3K-Akt and oxidative stress responses pathways. Subsequently conducted in vitro studies validated that Fraxin modulates the TLR4/PI3K/Akt signaling pathway to suppress reactive oxygen species generation and downregulate pro-inflammatory cytokines including Il1b, Il6, and Tnf thereby slowing atherosclerotic disease advancement. This investigation methodically delineates Fraxin’s therapeutic targets and underlying molecular mechanisms in AS management, establishing a scientific foundation for its potential translation into clinical practice. Full article
Show Figures

Figure 1

20 pages, 2848 KiB  
Article
Tauroursodeoxycholic Acid Confers Protection Against Oxidative Stress via Autophagy Induction in Retinal Pigment Epithelial Cells
by Daniella Zubieta, Cassandra Warden, Sujoy Bhattacharya and Milam A. Brantley, Jr.
Curr. Issues Mol. Biol. 2025, 47(4), 224; https://doi.org/10.3390/cimb47040224 - 26 Mar 2025
Viewed by 239
Abstract
Tauroursodeoxycholic acid (TUDCA) has been shown to protect against oxidative damage in retinal pigment epithelial (RPE) cells. However, the mechanisms by which it mediates these protective effects have not been thoroughly investigated in the context of age-related macular degeneration (AMD) disease onset and [...] Read more.
Tauroursodeoxycholic acid (TUDCA) has been shown to protect against oxidative damage in retinal pigment epithelial (RPE) cells. However, the mechanisms by which it mediates these protective effects have not been thoroughly investigated in the context of age-related macular degeneration (AMD) disease onset and progression. We measured LC3-II and p62 expression via Western blot and immunohistochemistry in RPE cells treated with H2O2, TUDCA, or a combination of both to measure autophagy induction. To determine autophagy flux, we measured the expression of LC3-II/LC3-I in RPE cells in the presence of bafilomycin via Western blot. To determine the mechanistic pathways of TUDCA-induced autophagy, we measured the protein expression of autophagy regulators (Atg5, Beclin-1, S6, AMPK, and Akt) via Western blot. We show that TUDCA-mediated autophagy induction confers protection of RPE cells against oxidative damage via mTORC1/mTORC2 independent pathways but depends on Atg5. Our work adds to the overall understanding of RPE cell homeostasis and highlights the role of TUDCA in maintaining RPE health. Full article
Show Figures

Figure 1

25 pages, 6229 KiB  
Article
Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR
by Harald Kühnel, Markus Seiler, Barbara Feldhofer, Atefeh Ebrahimian and Michael Maurer
Curr. Issues Mol. Biol. 2025, 47(2), 130; https://doi.org/10.3390/cimb47020130 - 18 Feb 2025
Viewed by 1272
Abstract
Cellular senescence plays a crucial role in skin aging, with senescent dermal fibroblasts contributing to reduced skin elasticity and increased inflammation. This study investigated the potential of Ganoderma lucidum (Reishi) ethanol extract to modulate the senescent phenotype of human dermal fibroblasts. Reishi powder [...] Read more.
Cellular senescence plays a crucial role in skin aging, with senescent dermal fibroblasts contributing to reduced skin elasticity and increased inflammation. This study investigated the potential of Ganoderma lucidum (Reishi) ethanol extract to modulate the senescent phenotype of human dermal fibroblasts. Reishi powder of two different vendors was used. The extract was produced by extracting the Reishi powder for at least three weeks in 40% ethanol at room temperature. Etoposide-induced senescent fibroblasts were treated with Reishi extracts from two commercial sources for 14 days. Gene expression analysis was performed using qPCR to assess senescence makers, antioxidant defense, and extracellular matrix remodeling. Results showed that Reishi extracts significantly upregulated antioxidant and cytoprotective genes, including Heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (γGCS-L), and NAD(P)H dehydrogenase [quinone] 1 (NQO1), compared to untreated controls. Importantly, Reishi treatment suppressed the expression of p16INK4a, a key marker of cellular senescence, while transiently upregulating p21Cip1. The extracts also demonstrated potential senolytic properties, reducing the percentage of senescent cells as measured by senescence-associated β-galactosidase staining. However, Reishi treatment did not mitigate the upregulation of MMP1 and IL-8 in one Reishi treatment group, indicating differences in the preparations of different vendors. These findings suggest that Ganoderma lucidum extract may help alleviate some aspects of cellular senescence in dermal fibroblasts, primarily through enhanced antioxidant defense and cytoprotection, potentially offering a novel approach to combat skin aging. Full article
Show Figures

Graphical abstract

14 pages, 1469 KiB  
Article
Lychee Peel Extract Ameliorates Hyperuricemia by Regulating Uric Acid Production and Excretion in Mice
by Zhenwang Guo, Li Zhang, Jinlei Liu and Ziming Yang
Curr. Issues Mol. Biol. 2025, 47(2), 76; https://doi.org/10.3390/cimb47020076 - 25 Jan 2025
Viewed by 755
Abstract
Lychee peel generated during the industrial processing of lychee fruit are currently disposed of as agricultural waste. This study investigates the primary components of lychee peel extract (LPE) and the regulatory mechanisms of LPE on reducing uric acid (UA). Mice were injected with [...] Read more.
Lychee peel generated during the industrial processing of lychee fruit are currently disposed of as agricultural waste. This study investigates the primary components of lychee peel extract (LPE) and the regulatory mechanisms of LPE on reducing uric acid (UA). Mice were injected with hypoxanthine and potassium oxonate to induce hyperuricemia and concurrently orally administered LPE. The analysis of the LPE composition reveals a predominance of polyphenolic compounds, including (-)-epicatechin, (-)-epigallocatechin, and procyanidin A2. In vitro tests have demonstrated that the LPE significantly inhibits the activity of xanthine oxidase (XOD). In vivo studies showed that LPE can reduce UA levels in hyperuricemia mice. Further mechanistic insights indicate that LPE inhibits hepatic XOD activity, thereby reducing UA synthesis within the organism. It also decreases the protein expression of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9), which leads to diminished UA reabsorption and increased excretion of UA. Additionally, LPE enhances the activity of superoxide dismutase (SOD) while simultaneously reducing malondialdehyde (MDA) contents, thereby improving antioxidant capacity in mice. Our findings indicate that LPE not only inhibits the production of UA but also promotes its elimination, positioning it as a promising candidate for UA-lowering agents. Full article
Show Figures

Figure 1

16 pages, 7196 KiB  
Article
Notoginsenoside R1 Attenuates H/R Injury in H9c2 Cells by Maintaining Mitochondrial Homeostasis
by Yuanbo Xu, Piao Wang, Ting Hu, Ke Ning and Yimin Bao
Curr. Issues Mol. Biol. 2025, 47(1), 44; https://doi.org/10.3390/cimb47010044 - 10 Jan 2025
Viewed by 1348
Abstract
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia–reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional [...] Read more.
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia–reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear. This study aimed to elucidate the mechanisms of NGR1 in maintaining mitochondrial homeostasis in hypoxia/reoxygenation (H/R) H9c2 cells. The results showed that NGR1 pretreatment effectively increased cell survival rates post-H/R, reduced lactate dehydrogenase (LDH) leakage, and mitigated cell damage. Further investigation into mitochondria revealed that NGR1 alleviated mitochondrial structural damage, improved mitochondrial membrane permeability transition pore (mPTP) persistence, and prevented mitochondrial membrane potential (Δψm) depolarization. Additionally, NGR1 pretreatment enhanced ATP levels, increased the activity of mitochondrial respiratory chain complexes I–V after H/R, and reduced excessive mitochondrial reactive oxygen species (mitoROS) production, thereby protecting mitochondrial function. Further analysis indicated that NGR1 upregulated the expression of mitochondrial biogenesis-related proteins (PGC-1α, Nrf1, Nrf2) and mitochondrial fusion proteins (Opa1, Mfn1, Mfn2), while downregulating mitochondrial fission proteins (Fis1, Drp1) and reducing mitochondrial autophagy (mitophagy) levels, as well as the expression of mitophagy-related proteins (Pink1, Parkin, BNIP3) post-H/R. Therefore, this study showed that NGR1 can maintain mitochondrial homeostasis by regulating mitophagy, mitochondrial fission–fusion dynamics, and mitochondrial biogenesis, thereby alleviating H9c2 cell H/R injury and protecting cardiomyocytes. Full article
Show Figures

Figure 1

9 pages, 793 KiB  
Article
Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4+ T-Cells While Decreasing Protein Synthesis in Kidney Cells
by Bradley Hernlem and Reuven Rasooly
Curr. Issues Mol. Biol. 2024, 46(12), 13970-13978; https://doi.org/10.3390/cimb46120835 - 11 Dec 2024
Viewed by 1004
Abstract
Abrin, a toxin of the rosary pea plant (Abras precatorius), has been implicated as causing an autoimmune demyelinating disease in humans, but the exact mechanisms responsible for the induction of these demyelinating conditions are still unknown. Certain superantigen microbial toxins such [...] Read more.
Abrin, a toxin of the rosary pea plant (Abras precatorius), has been implicated as causing an autoimmune demyelinating disease in humans, but the exact mechanisms responsible for the induction of these demyelinating conditions are still unknown. Certain superantigen microbial toxins such as Staphylococcus enterotoxin type A, type D, type E or streptococcal pyrogenic exotoxin type C also lead to various diseases including autoimmune disorders of the nervous system. Here, the effect of abrin toxin on the immune reaction was studied in human CD4+ T-cell lines, and its inhibition of protein synthesis in kidney cells. It is shown for the first time that low concentrations of abrin toxin up to as high as 1 to 10 ng/mL amplifies superantigen activity in stimulated T-cells, leading to excessive NFAT pathway activation and secretion of cytokines, e.g., interleukin-2 (IL-2) and interferon-γ (INFγ), in a dose-dependent manner. This behavior, except at high concentration, is contrary to the effect on other cell types. Abrin’s inhibition of protein synthesis was demonstrated with Vero (kidney) cells and milk was observed to competitively reduce this effect. This new concept in the behavior of abrin in amplifying superantigen activity may explain the mechanism by which abrin toxin triggers autoimmune demyelinating disease in people exposed to low doses of the toxin via the excessive secretion of cytokines which may create excessive inflammation leading to loss of immune tolerance and triggering an immune response against self-antigens. Full article
Show Figures

Figure 1

15 pages, 2242 KiB  
Article
Curcumin Mitigates Muscle Atrophy Potentially by Attenuating Calcium Signaling and Inflammation in a Spinal Nerve Ligation Model
by Casey Appell, Nigel C. Jiwan, Chwan-Li Shen and Hui-Ying Luk
Curr. Issues Mol. Biol. 2024, 46(11), 12497-12511; https://doi.org/10.3390/cimb46110742 - 5 Nov 2024
Viewed by 1584
Abstract
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine [...] Read more.
Denervation-induced calcium/calmodulin-dependent protein kinase II (CaMKII) activation and inflammation can result in muscle atrophy. Curcumin and bisdemethoxycurcumin are well known to exhibit an anti-inflammatory effect. In addition, curcumin has been shown to attenuate CaMKII activation in neuronal cells. This study aimed to examine the effect of curcumin or bisdemethoxycurcumin on CaMKII activation, inflammation, and muscle cross-sectional area (CSA) in spinal nerve ligated rats. Sixteen female rats were assigned to sham (CON), spinal nerve ligation (SNL), SNL+ curcumin 100 mg/kg BW (100CUR), and SNL+ bisdemethoxycurcumin 50 mg/kg BW (50CMO) for 4 weeks. Ipsilateral (surgical) soleus and tibialis anterior (TA) muscles was stained for dystrophin to measure CSA. Ipsilateral and contralateral (non-surgical) plantaris muscles were analyzed for protein content for acetylcholine receptor (AChR), CaMKII, CaMKIIThr286, nuclear factor-κB (NF-κB), NF-κBSer536, and interleukin-1β (IL-1β) and normalized to α-tubulin and then CON. A significant (p < 0.050) group effect was observed for TA CSA where CON (11,082.25 ± 1617.68 μm2; p < 0.001) and 100CUR (9931.04 ± 2060.87 μm2; p = 0.018) were larger than SNL (4062.25 ± 151.86 μm2). In the ipsilateral plantaris, the SNL (4.49 ± 0.69) group had greater CaMKII activation compared to CON (1.00 ± 0.25; p = 0.010), 100CUR (1.12 ± 0.45; p = 0.017), and 50CMO (0.78 ± 0.19; p = 0.009). The ipsilateral plantaris (2.11 ± 0.66) had greater IL-1β protein content than the contralateral leg (0.65 ± 0.14; p = 0.041) in the SNL group. In plantaris, the SNL (1.65 ± 0.51) group had greater NF-κB activation compared to CON (1.00 ± 0.29; p = 0.021), 100CUR (0.61 ± 0.10; p = 0.003), 50CMO (0.77 ± 0.25; p = 0.009) groups. The observed reduction in Ca2+ signaling and inflammation in type II plantaris muscle fibers might reflect the changes within the type II TA muscle fibers which may contribute to the mitigation of TA mass loss with curcumin supplementation. Full article
Show Figures

Graphical abstract

19 pages, 7937 KiB  
Article
Exploring the Benefits of Herbal Medicine Composite 5 (HRMC5) for Skin Health Enhancement
by Rira Ha, Won Kyong Cho, Euihyun Kim, Sung Joo Jang, Ju-Duck Kim, Chang-Geun Yi and Sang Hyun Moh
Curr. Issues Mol. Biol. 2024, 46(11), 12133-12151; https://doi.org/10.3390/cimb46110720 - 29 Oct 2024
Viewed by 1264
Abstract
The skin, as the body’s largest organ, is vital for protecting against environmental stressors, regulating temperature, and preventing water loss. Here, we examined the potential of a mixture of five traditional Korean herbal extracts—Cimicifuga racemosa, Paeonia lactiflora, Phellodendron amurense, [...] Read more.
The skin, as the body’s largest organ, is vital for protecting against environmental stressors, regulating temperature, and preventing water loss. Here, we examined the potential of a mixture of five traditional Korean herbal extracts—Cimicifuga racemosa, Paeonia lactiflora, Phellodendron amurense, Rheum rhaponticum, and Scutellaria baicalensis—referred to as herbal medicine composite 5 (HRMC5) for enhancing skin health and managing menopausal symptoms. High-performance liquid chromatography identified 14 bioactive compounds, including flavonoids, phenolic acids, anthraquinones, and alkaloids. In vitro studies revealed an optimal concentration of 0.625 g/L for cell survival and UV protection, with the mixture demonstrating significant wound-healing properties comparable to epidermal growth factor. HRMC5 exhibited anti-inflammatory effects by downregulating COX2 expression and upregulating the key skin barrier proteins. A 4-week clinical trial involving 20 postmenopausal women showed significant improvements in skin redness, hemoglobin concentration, and skin moisture content. Visual analog scale assessments indicated substantial reductions in facial flushing severity and the associated sweating. The topical application of HRMC5 cream offered potential advantages over ingested phytoestrogens by reducing the systemic side effects. These findings suggest that HRMC5 is a promising non-invasive treatment for vasomotor symptoms in menopausal women and overall skin health, warranting further research on its long-term efficacy and safety in larger populations. Full article
Show Figures

Figure 1

13 pages, 3017 KiB  
Article
Platycladus orientalis Leaf Extract Promotes Hair Growth via Non-Receptor Tyrosine Kinase ACK1 Activation
by Jaeyoon Kim, Jang Ho Joo, Juhyun Kim, Heena Rim, Jae young Shin, Yun-Ho Choi, Kyoungin Min, So Young Lee, Seung-Hyun Jun and Nae-Gyu Kang
Curr. Issues Mol. Biol. 2024, 46(10), 11207-11219; https://doi.org/10.3390/cimb46100665 - 5 Oct 2024
Viewed by 1984
Abstract
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. [...] Read more.
Platycladus orientalis is a traditional oriental herbal medicinal plant that is widely used as a component of complex prescriptions for alopecia treatment in Eastern Asia. The effect of PO on hair growth and its underlying mechanism, however, have not been demonstrated or clarified. In this study, we investigated the hair-growth-promoting effect of PO in cultured human dermal papilla cells (hDPCs). Platycladus orientalis leaf extract (POLE) was found to stimulate the proliferation of hDPCs. POLE with higher quercitrin concentration, especially, showed a high level of cellular viability. In the context of cellular senescence, POLE decreased the expression of p16 (CDKN2A) and p21(CDKN1A), which resulted in enhanced proliferation. In addition, growth factor receptors, FGFR1 and VEGFR2/3, and non-receptor tyrosine kinases, ACK1 and HCK, were significantly activated. In addition, LEF1, a transcription factor of Wnt/β-catenin signaling, was enhanced, but DKK1, an inhibitor of Wnt/β-catenin signaling, was downregulated by POLE treatment in cultured hDPCs. As a consequence, the expression of growth factors such as bFGF, KGF, and VEGF were also increased by POLE. We further investigated the hair-growth-promoting effect of topically administered POLE over a 12-week period. Our data suggest that POLE could support terminal hair growth by stimulating proliferation of DPCs and that enhanced production of growth factors, especially KGF, occurred as a result of tyrosine kinase ACK1 activation. Full article
Show Figures

Figure 1

20 pages, 3780 KiB  
Article
Quercetin as a Modulator of PTPN22 Phosphomonoesterase Activity: A Biochemical and Computational Evaluation
by Abdulhakeem Olarewaju Sulyman, Tafa Ndagi Akanbi Yusuf, Jamiu Olaseni Aribisala, Kamaldeen Sanni Ibrahim, Emmanuel Oladipo Ajani, Abdulfatai Temitope Ajiboye, Saheed Sabiu and Karishma Singh
Curr. Issues Mol. Biol. 2024, 46(10), 11156-11175; https://doi.org/10.3390/cimb46100662 - 3 Oct 2024
Viewed by 1233
Abstract
Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor [...] Read more.
Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro. The initial screening identified quercetin with the highest percentage inhibition (81%) among the screened compounds when compared with ursolic acid that has 84%. After the identification of quercetin, we proceeded by investigating the effect of increasing concentrations of the compound on the activity of PTPN22. In vitro studies showed that quercetin inhibited PTPN22 with an IC50 of 29.59 μM, outperforming the reference standard ursolic acid, which had an IC50 of 37.19 μM. Kinetic studies indicated a non-competitive inhibition by quercetin with a Ki of 550 μM. In silico analysis supported these findings, showing quercetin’s better binding affinity (ΔGbind −24.56 kcal/mol) compared to ursolic acid, attributed to its higher reactivity and electron interaction capabilities at PTPN22′s binding pocket. Both quercetin and ursolic acid improved the structural stability of PTPN22 during simulations. These results suggest quercetin’s potential as an anticancer agent, meriting further research. However, in vivo studies and clinical trials are necessary to fully assess its efficacy and safety, and to better understand its mechanisms of action. Full article
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 1169 KiB  
Review
Natural Products and Health Care Functions of Inonotus obliquus
by Yiming Wang, Jingsheng Gu, Jiaying Wu, Yuxuan Xu, Yiting Liu, Fengxiu Li, Qiao Liu, Kailun Lu, Ting Liang, Jingwen Hao, Ludan Li, Xiaoying Cao and Jihong Jiang
Curr. Issues Mol. Biol. 2025, 47(4), 269; https://doi.org/10.3390/cimb47040269 - 10 Apr 2025
Viewed by 496
Abstract
With the increasing attention of modern medicine to natural medicinal agents, Inonotus obliquus (chaga), a macrofungus with remarkable medicinal value, has gradually garnered widespread academic interest. This paper reviews the primary bioactive components of I. obliquus in recent years, including polysaccharides, phenolic compounds, [...] Read more.
With the increasing attention of modern medicine to natural medicinal agents, Inonotus obliquus (chaga), a macrofungus with remarkable medicinal value, has gradually garnered widespread academic interest. This paper reviews the primary bioactive components of I. obliquus in recent years, including polysaccharides, phenolic compounds, and triterpenoids, which exhibit diverse pharmacological effects such as antioxidant, anti-inflammatory, immunomodulatory, and antitumor activities. It further discusses how these bioactive components enhance human health and disease resistance through distinct biological mechanisms, such as the activation of antioxidant systems, regulation of immune responses, and modulation of apoptosis pathways. Additionally, the article explores the biosynthetic pathways of I. obliquus metabolites and their pharmacological relevance. Finally, we summarize the potential of I. obliquus as a natural medicinal resource and envisage its future applications in clinical drug development. This review aims to provide novel perspectives for the cultivation, utilization, and industrial-scale exploitation of I. obliquus. Full article
Show Figures

Figure 1

Back to TopTop