Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Preprocessing and Filtering
2.3. Principal Component Analysis (PCA)
2.4. Probe Variance and Clustering
2.5. Cluster Annotation and Functional Enrichment
2.6. Hyper- and Hypomethylated CpG Site Selection
2.7. Genomic Context Profiling
2.8. Noncoding RNAs Analysis
3. Results
3.1. High-Quality Methylation Probe Selection
3.2. Heatmap of Methylation Beta Values and Clustering
3.3. Gene Ontology and Pathway Analyses
3.4. Genomic Probe Profiling Analysis
3.5. Noncoding RNAs Annotation and Network Analysis
4. Discussion
5. Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hermans, F.; Hemeryck, L.; Lambrichts, I.; Bronckaers, A.; Vankelecom, H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front. Cell Dev. Biol. 2021, 9, 758203. [Google Scholar] [CrossRef]
- Mao, J.J.; Prockop, D.J. Stem cells in the face: Tooth regeneration and beyond. Cell Stem Cell 2012, 11, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Egusa, H.; Sonoyama, W.; Nishimura, M.; Atsuta, I.; Akiyama, K. Stem cells in dentistry—Part I: Stem cell sources. J. Prosthodont. Res. 2012, 56, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Entezami, S.; Sam, M.R. The role of mesenchymal stem cells-derived from oral and teeth in regenerative and reconstructive medicine. Tissue Cell 2025, 93, 102766. [Google Scholar] [CrossRef]
- Cabaña-Muñoz, M.E.; Pelaz Fernández, M.J.; Parmigiani-Cabaña, J.M.; Parmigiani-Izquierdo, J.M.; Merino, J.J. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023, 15, 2109. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahman, M.R.A. Unlocking regenerative potential: Stem cell and tissue engineering innovations for permanent dental restoration. Discov. Med. 2024, 1, 113. [Google Scholar] [CrossRef]
- Kim, M.; Costello, J. DNA methylation: An epigenetic mark of cellular memory. Exp. Mol. Med. 2017, 49, e322. [Google Scholar] [CrossRef] [PubMed]
- Ai, T.; Zhang, J.; Wang, X.; Zheng, X.; Qin, X.; Zhang, Q.; Li, W.; Hu, W.; Lin, J.; Chen, F. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells. Signal Transduct. Target. Ther. 2018, 3, 1. [Google Scholar] [CrossRef]
- Mehrmohamadi, M.; Sepehri, M.H.; Nazer, N.; Norouzi, M.R. A Comparative Overview of Epigenomic Profiling Methods. Front. Cell Dev. Biol. 2021, 9, 714687. [Google Scholar] [CrossRef]
- Beltrami, C.M.; Dos Reis, M.B.; Barros-Filho, M.C.; Marchi, F.A.; Kuasne, H.; Pinto, C.A.L.; Ambatipudi, S.; Herceg, Z.; Kowalski, L.P.; Rogatto, S.R. Integrated data analysis reveals potential drivers and pathways disrupted by DNA methylation in papillary thyroid carcinomas. Clin. Epigenet. 2017, 9, 45. [Google Scholar] [CrossRef]
- Hop, P.J.; Zwamborn, R.A.J.; Hannon, E.; Shireby, G.L.; Nabais, M.F.; Walker, E.M.; van Rheenen, W.; van Vugt, J.J.F.A.; Dekker, A.M.; Westeneng, H.J.; et al. Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Sci. Transl. Med. 2022, 14, eabj0264. [Google Scholar] [CrossRef]
- Zhou, W.; Laird, P.W.; Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017, 45, e22. [Google Scholar] [CrossRef] [PubMed]
- Nazor, K.L.; Altun, G.; Lynch, C.; Tran, H.; Harness, J.V.; Slavin, I.; Garitaonandia, I.; Müller, F.J.; Wang, Y.C.; Boscolo, F.S.; et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 2012, 10, 620–634. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Chekouo, T. Filtering High-Dimensional Methylation Marks with Extremely Small Sample Size: An Application to Gastric Cancer Data. Front. Genet. 2021, 12, 705708. [Google Scholar] [CrossRef]
- Bizet, M.; Defrance, M.; Calonne, E.; Bontempi, G.; Sotiriou, C.; Fuks, F.; Jeschke, J. Improving Infinium MethylationEPIC data processing: Re-annotation of enhancers and long noncoding RNA genes and benchmarking of normalization methods. Epigenetics 2022, 17, 2434–2454. [Google Scholar] [CrossRef]
- Parca, L.; Truglio, M.; Biagini, T.; Castellana, S.; Petrizzelli, F.; Capocefalo, D.; Jordán, F.; Carella, M.; Mazza, T. Pyntacle: A parallel computing-enabled framework for large-scale network biology analysis. Gigascience 2020, 9, giaa115. [Google Scholar] [CrossRef]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Mazzoccoli, G.; Colangelo, T.; Panza, A.; Rubino, R.; Tiberio, C.; Palumbo, O.; Carella, M.; Trombetta, D.; Gentile, A.; Tavano, F.; et al. Analysis of clock gene-miRNA correlation networks reveals candidate drivers in colorectal cancer. Oncotarget 2016, 7, 45444–45461. [Google Scholar] [CrossRef]
- Mazza, T.; Mazzoccoli, G.; Fusilli, C.; Capocefalo, D.; Panza, A.; Biagini, T.; Castellana, S.; Gentile, A.; De Cata, A.; Palumbo, O.; et al. Multifaceted enrichment analysis of RNA-RNA crosstalk reveals cooperating micro-societies in human colorectal cancer. Nucleic Acids Res. 2016, 44, 4025–4036. [Google Scholar] [CrossRef] [PubMed]
- Menniti, S.; Castagna, E.; Mazza, T. Estimating the global density of graphs by a sparseness index. Appl. Math. Comput. 2013, 224, 346–357. [Google Scholar] [CrossRef]
- Mazza, T.; Romanel, A.; Jordán, F. Estimating the divisibility of complex biological networks by sparseness indices. Brief. Bioinform. 2010, 11, 364–374. [Google Scholar] [CrossRef]
- Aol, L.; Zhou, X.; Hao, H.; Nie, J.; Zhang, W.; Yao, D.; Su, L.; Xue, W. LncRNAs modulating tooth development and alveolar resorption: Systematic review. Heliyon 2024, 10, e39895. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Tan, L. Downregulation of lncRNA DANCR promotes osteogenic differentiation of periodontal ligament stem cells. BMC Dev. Biol. 2020, 20, 2. [Google Scholar] [CrossRef]
- Tong, X.; Gu, P.C.; Xu, S.Z.; Lin, X.J. Long non-coding RNA-DANCR in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. Biosci. Biotechnol. Biochem. 2015, 79, 732–737. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, X.; Huang, Y.; Jia, L.; Li, W. Time series clustering of mRNA and lncRNA expression during osteogenic differentiation of periodontal ligament stem cells. PeerJ 2018, 6, e5214. [Google Scholar] [CrossRef]
- Jin, C.; Jia, L.; Tang, Z.; Zheng, Y. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/ AKT pathway. Cell Death Dis. 2020, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lin, T.; Gao, Y.; Li, X.; Yang, C.; Zhang, K.; Wang, C.; Zhou, X. Long noncoding RNA ZFAS1 suppresses osteogenic differentiation of bone marrow-derived mesenchymal stem cells by upregulating miR-499-EPHA5 axis. Mol. Cell Endocrinol. 2022, 539, 111490. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhou, T.; Guo, S.; Guo, C.; Zhang, Q.; Dong, N.; Wang, Y. LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. Int. J. Cardiol. 2017, 243, 404–412. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, J.; Peng, F. The regulatory activities of MALAT1 in the development of bone and cartilage diseases. Front. Endocrinol. 2022, 13, 1054827. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, R.A.; Ladd-Acosta, C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, H.; Gabo, K.; Rongione, M.; Webster, M.; et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 2009, 41, 178–186. [Google Scholar] [CrossRef]
- Yang, X.; Han, H.; De Carvalho, D.D.; Lay, F.D.; Jones, P.A.; Liang, G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014, 26, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Rodas-Junco, B.A.; Canul-Chan, M.; Rojas-Herrera, R.A.; De-la-Peña, C.; Nic-Can, G.I. Stem Cells from Dental Pulp: What Epigenetics Can Do with Your Tooth. Front. Physiol. 2017, 8, 999. [Google Scholar] [CrossRef]
- Uribe-Etxebarria, V.; Agliano, A.; Unda, F.; Ibarretxe, G. Wnt signaling reprograms metabolism in dental pulp stem cells. J. Cell Physiol. 2019, 234, 13068–13082. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.V.; Popova, O.P.; Danilova, T.I.; Latyshev, A.V.; Yanushevich, O.O.; Ivanov, A.A. Effects of ECM Components on Periodontal Ligament Stem Cell Differentiation Under Conditions of Disruption of Wnt and TGF-β Signaling Pathways. J. Funct. Biomater. 2025, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, X.; Li, J.; Yue, Y.; Li, J.; Wang, M.; Wei, N.; Hao, L. Mechanisms of mechanical force in periodontal homeostasis: A review. Front. Immunol. 2024, 15, 1438726. [Google Scholar] [CrossRef]
- Zhou, T.; Pan, J.; Wu, P.; Huang, R.; Du, W.; Zhou, Y.; Wan, M.; Fan, Y.; Xu, X.; Zhou, X.; et al. Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int. 2019, 2019, 9159605. [Google Scholar] [CrossRef]
- Tokavanich, N.; Wein, M.N.; English, J.D.; Ono, N.; Ono, W. The Role of Wnt Signaling in Postnatal Tooth Root Development. Front. Dent. Med. 2021, 2, 769134. [Google Scholar] [CrossRef]
- Edgar, R.; Tan, P.P.; Portales-Casamar, E.; Pavlidis, P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenet. Chromatin 2014, 7, 28. [Google Scholar] [CrossRef]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, H.; Fang, H.; Deng, Q.; Huang, H.; Hou, D.; Wang, M.; Yao, Q.; Si, Q.; Chen, R.; et al. Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int. 2022, 2022, 5015856. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.; Yao, H.; Zhang, Z.; Zhao, H. Epigenetic control of dental stem cells: Progress and prospects in multidirectional differentiation. Epigenet. Chromatin 2024, 17, 37. [Google Scholar] [CrossRef]
- Giovannetti, A.; Guarnieri, R.; Petrizzelli, F.; Lazzari, S.; Padalino, G.; Traversa, A.; Napoli, A.; Di Giorgio, R.; Pizzuti, A.; Parisi, C.; et al. Small RNAs and tooth development: The role of microRNAs in tooth agenesis and impaction. J. Dent. Sci. 2024, 19, 2150–2156. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, K.; Chen, Z.; Wu, B. Noncoding RNAs: New insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Res. Ther. 2019, 10, 297. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, C. Role of noncoding RNAs in orthodontic tooth movement: New insights into periodontium remodeling. J. Transl. Med. 2023, 21, 101. [Google Scholar] [CrossRef]
- Goss, A.M.; Tian, Y.; Tsukiyama, T.; Cohen, E.D.; Zhou, D.; Lu, M.M.; Yamaguchi, T.P.; Morrisey, E.E. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev. Cell 2009, 17, 290–298. [Google Scholar] [CrossRef]
- Yu, W.; Sun, Z.; Sweat, Y.; Sweat, M.; Venugopalan, S.R.; Eliason, S.; Cao, H.; Paine, M.L.; Amendt, B.A. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development 2020, 147, dev186023. [Google Scholar] [CrossRef] [PubMed]
- Marañón-Vásquez, G.A.; Dantas, B.; Kirschneck, C.; Arid, J.; Cunha, A.; Ramos, A.G.C.; Omori, M.A.; Rodrigues, A.S.; Teixeira, E.C.; Levy, S.C.; et al. Tooth agenesis-related GLI2 and GLI3 genes may contribute to craniofacial skeletal morphology in humans. Arch. Oral Biol. 2019, 103, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; van der Kraan, P.M.; Bian, Z.; Fan, M.; Walboomers, X.F.; Jansen, J.A. Mineralized tissue formation by BMP2-transfected pulp stem cells. J. Dent. Res. 2009, 88, 1020–1025. [Google Scholar] [CrossRef]
- Malik, Z.; Roth, D.M.; Eaton, F.; Theodor, J.M.; Graf, D. Mesenchymal Bmp7 Controls Onset of Tooth Mineralization: A Novel Way to Regulate Molar Cusp Shape. Front. Physiol. 2020, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Phan, A.V.; Yu, W.; Guo, Y.; Thompson, J.; Coppinger, C.; Venugopalan, S.R.; Amendt, B.A.; Van Otterloo, E.; Cao, H. Transcriptional programs of Pitx2 and Tfap2a/Tfap2b controlling lineage specification of mandibular epithelium during tooth initiation. PLoS Genet. 2024, 20, e1011364. [Google Scholar] [CrossRef]
- Consonni, F.; Gambineri, E.; Veltroni, M.; Callea, M. Extensive dental caries and periodontal disease in a child with GATA2 deficiency. J. Clin. Exp. Dent. 2023, 15, e787–e790. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Park, E.K.; Jia, S.; Liu, H.; Lan, Y.; Jiang, R. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice. J. Dent. Res. 2015, 94, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ye, X.; Zhou, J.; Fang, Y.; Yang, J.; Meng, M.; Zou, J. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells. Oral Dis. 2024, 30, 2797–2806. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarnieri, R.; Giovannetti, A.; Marigliani, G.; Pieroni, M.; Mazza, T.; Barbato, E.; Caputo, V. Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs. Appl. Sci. 2025, 15, 8749. https://doi.org/10.3390/app15158749
Guarnieri R, Giovannetti A, Marigliani G, Pieroni M, Mazza T, Barbato E, Caputo V. Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs. Applied Sciences. 2025; 15(15):8749. https://doi.org/10.3390/app15158749
Chicago/Turabian StyleGuarnieri, Rosanna, Agnese Giovannetti, Giulia Marigliani, Michele Pieroni, Tommaso Mazza, Ersilia Barbato, and Viviana Caputo. 2025. "Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs" Applied Sciences 15, no. 15: 8749. https://doi.org/10.3390/app15158749
APA StyleGuarnieri, R., Giovannetti, A., Marigliani, G., Pieroni, M., Mazza, T., Barbato, E., & Caputo, V. (2025). Epigenetic Signatures of Dental Stem Cells: Insights into DNA Methylation and Noncoding RNAs. Applied Sciences, 15(15), 8749. https://doi.org/10.3390/app15158749