New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Tested Essential Oils
2.2. Anti-Tyrosinase Efficacy of the Examined Essential Oils Isolated from Ginger Rhizomes and Hop Strobiles
2.3. Lipid Peroxidation Inhibitory Activity of Tested Essential Oils
2.4. ABTS-Based Evaluation of Radical Scavenging Activity of the Investigated Essential Oils
3. Materials and Methods
3.1. Plant Material and Essential Oil Extraction
3.2. Preparation of Essential Oil Samples
3.3. Gas Chromatography-Mass Spectrometry (GC-MS) Characterization of Essential Oil Components
3.4. Evaluation of the Anti-Tyrosinase Activity of Essential Oils
3.5. Assessment of Linoleic Acid Peroxidation Inhibition by Examined Essential Oils
3.6. Antioxidant Capacity of Essential Oils Using the ABTS•+ Radical Scavenging Assay
3.7. Evaluation of Interaction Effects Between Ginger and Hop Essential Oils Using Combination Index (CI) and Dose Reduction Index (DRI) Analyses
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and Its Bioactive Components Are Potential Resources for Health Beneficial Agents. Phytother. Res. 2021, 35, 711–742. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some Phytochemical, Pharmacological and Toxicological Properties of Ginger (Zingiber officinale Roscoe): A Review of Recent Research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Antioxidant Activities, Total Phenolics and Flavonoids Content in Two Varieties of Malaysian Young Ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in Redox Biology and Medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Juretić, L.; Dunkić, V.; Gobin, I.; Inić, S.; Kremer, D.; Nazlić, M.; Pollak, L.; Mežnarić, S.; Barbarić, A.; Jurišić Grubešić, R. Chemical Composition, Quality, and Bioactivity of Laurus nobilis L. Hydrosols from the Adriatic Regions of Croatia: Implications for Dermatological Applications. Antioxidants 2025, 14, 688. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and Anti-Inflammatory Activities of Essential Oils: A Short Review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin Whitening Agents: Medicinal Chemistry Perspective of Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef]
- Kim, Y.J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, R. Comprehensive Analysis and Therapeutic Potential of Ginger Essential Oil. J. Pharmacogn. Phytochem. 2024, 13, 420–425. [Google Scholar] [CrossRef]
- Menon, A.N.; Padmakumari, K.P.; Kutty, B.S.; Sumathikutty, M.A.; Sreekumar, M.M.; Arumugham, C. Effects of Processing on the Flavor Compounds of Indian Fresh Ginger (Zingiber officinale Rosc.). J. Essent. Oil Res. 2007, 19, 105–109. [Google Scholar] [CrossRef]
- Singh, G.; Maurya, S.; Catalan, C.; de Lampasona, M.P. Studies on Essential Oils, Part 42: Chemical, Antifungal, Antioxidant and Sprout Suppressant Studies on Ginger Essential Oil and Its Oleoresin. Flavour Fragr. J. 2005, 20, 1–6. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Varoni, E.M.; Salehi, B.; Sharifi-Rad, J.; Matthews, K.R.; Ayatollahi, S.A.; Kobarfard, F.; Ibrahim, S.A.; Mnayer, D.; Zakaria, Z.A.; et al. Plants of the Genus Zingiber as a Source of Bioactive Phytochemicals: From Tradition to Pharmacy. Molecules 2017, 22, 2145. [Google Scholar] [CrossRef]
- Ivanović, M.; Makoter, K.; Islamčević Razboršek, M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.; Haw, X.R.; Alkatib, H.H.; Sasidharan, S.; Marriott, P.J.; Wong, Y.F. Phytochemical Constituents and Antiproliferative Activities of Essential Oils from Four Varieties of Malaysian Zingiber officinale Roscoe against Human Cervical Cancer Cell Line. Plants 2022, 11, 1280. [Google Scholar] [CrossRef]
- Stevens, J.F.; Page, J.E. Xanthohumol and Related Prenylflavonoids from Hops and Beer: To Your Good Health. Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Başer, K.H.C. (Ed.) Handbook of Essential Oils: Science, Technology and Applications, 3rd ed.; CRC Press; Taylor & Francis: Boca Raton, FL, USA, 2020; ISBN 9781351246460. [Google Scholar] [CrossRef]
- Dietz, C.; Cook, D.; Huismann, M.; Wilson, C.; Ford, R. The Multisensory Perception of Hop Essential Oil: A Review. J. Inst. Brew. 2020, 126, 320–342. [Google Scholar]
- Champagne, A.; Boutry, M. A Comprehensive Proteome Map of Glandular Trichomes of Hop (Humulus lupulus L.) Female Cones: Identification of Biosynthetic Pathways of the Major Terpenoid-Related Compounds and Possible Transport Proteins. Proteomics 2017, 17, 1600411. [Google Scholar] [CrossRef]
- Wang, G.; Tian, L.; Aziz, N.; Broun, P.; Dai, X.; He, J.; King, A.; Zhao, P.X.; Dixon, R.A. Terpene Biosynthesis in Glandular Trichomes of Hop. Plant Physiol. 2008, 148, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- de Smidt, O.; du Plessis, W.; Zacharia, P.R.; Manduna, I.T. Comparison of Major Compounds in Essential Oils Steam Distilled from Fresh Plant Material of South African Hop Varieties. Life 2025, 15, 282. [Google Scholar] [CrossRef]
- Cvetanović Kljakić, A.; Ocvirk, M.; Rutnik, K.; Košir, I.J.; Pavlić, B.; Mašković, P.; Mašković, J.; Teslić, N.; Stupar, A.; Uba, A.I.; et al. Exploring the Composition and Potential Uses of Four Hops Varieties through Different Extraction Techniques. Food Chem. 2024, 447, 138910. [Google Scholar] [CrossRef] [PubMed]
- Ligor, M.; Stankevičius, M.; Wenda-Piesik, A.; Obelevičius, K.; Ragažinskienė, O.; Stanius, Ž.; Maruška, A.; Buszewski, B. Comparative Gas Chromatographic–Mass Spectrometric Evaluation of Hop (Humulus lupulus L.) Essential Oils and Extracts Obtained Using Different Sample Preparation Methods. Food Anal. Methods 2014, 7, 1433–1442. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Sabino, B.C.C.; Bonfim, F.P.G.; Cabral, M.N.F.; Viriato, V.; Pak Campos, O.; Neves, C.S.; Fernandes, G.d.C.; Gomes, J.A.O.; Facanali, R.; Marques, M.O.M. Phytochemical Characterization of Humulus lupulus L. Varieties Cultivated in Brazil: Agricultural Zoning for the Crop in Tropical Areas. Horticulturae 2025, 11, 470. [Google Scholar] [CrossRef]
- Paventi, G.; de Acutis, L.; De Cristofaro, A.; Pistillo, M.; Germinara, G.S.; Rotundo, G. Biological Activity of Humulus lupulus (L.) Essential Oil and Its Main Components against Sitophilus granarius (L.). Biomolecules 2020, 10, 1108. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-C.; Talalay, P. Quantitative Analysis of Dose-Effect Relationships: The Combined Effects of Multiple Drugs or Enzyme Inhibitors. Adv. Enzym. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef] [PubMed]
- Pisano, L.; Turco, M.; Supuran, C.T. Biomedical Applications of Tyrosinases and Tyrosinase Inhibitors. Enzymes 2024, 56, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Beygi, M.; Mohammad, T.F.; Alijanianzadeh, M.; Pillaiyar, T.; Garcia-Molina, P.; Garcia-Canovas, F.; Munoz-Munoz, J.; Saboury, A.A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem. Pharmacol. 2023, 212, 115574. [Google Scholar] [CrossRef]
- Chang, C.T.; Chang, W.L.; Hsu, J.C.; Shih, Y.; Chou, S.T. Chemical Composition and Tyrosinase Inhibitory Activity of Cinnamomum Cassia Essential Oil. Bot. Stud. 2013, 54, 10. [Google Scholar] [CrossRef]
- Ha, S.Y.; Jung, J.Y.; Yang, J.K. Camellia japonica Essential Oil Inhibits α-MSH-Induced Melanin Production and Tyrosinase Activity in B16F10 Melanoma Cells. Evid. Based Complement Alternat. Med. 2021, 2021, 6328767. [Google Scholar] [CrossRef]
- Kim, M.; Sowndhararajan, K.; Kim, S. The Chemical Composition and Biological Activities of Essential Oil from Korean Native Thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Molecules 2022, 27, 4251. [Google Scholar] [CrossRef]
- Sytykiewicz, H.; Łukasik, I.; Goławska, S. Chemical Composition, Anti-Tyrosinase and Antioxidant Potential of Essential Oils from Acorus calamus (L.) and Juniperus communis (L.). Molecules 2025, 30, 2417. [Google Scholar] [CrossRef]
- Wang, L.-X.; Qian, J.; Zhao, L.-N.; Zhao, S.-H. Effects of Volatile Oil From Ginger on the Murine B16 Melanoma Cells and its Mechanism. Food Funct. 2018, 9, 1058–1069. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Zhang, X.; Zheng, J.; Wang, J.; Hu, W.; Teng, B. Tyrosinase Inhibition Ability Provided by Hop Tannins: A Mechanistic Investigation. Biol. Life Sci. Forum 2021, 6, 66. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Li, Y.; Zhang, Y.; Zhang, Y.; Liu, Z.; Zhang, Y. Hop Tannins as Multifunctional Tyrosinase Inhibitors: Structure Characterization, Inhibition Activity, and Mechanism. Antioxidants 2022, 11, 772. [Google Scholar] [CrossRef]
- You, Z.; Li, Y.; Chen, M.; Wong, V.K.W.; Zhang, K.; Zheng, X.; Liu, W. Inhibition of Plant Essential Oils and Their Interaction in Binary Combinations Against Tyrosinase. Food Nutr. Res. 2022, 66, 8466. [Google Scholar] [CrossRef]
- Chou, T.-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chou, T.-C. Frequently Asked Questions in Drug Combinations and the Mass-Action Law-Based Answers. Synergy 2014, 1, 3–21. [Google Scholar] [CrossRef]
- Höferl, M.; Stoilova, I.; Wanner, J.; Jirovetz, L.; Schmidt, E.; Trifonova, D.; Krastev, L.; Krastanov, A. Composition and Comprehensive Antioxidant Activity of Ginger (Zingiber officinale) Essential Oil from Ecuador. Nat. Prod. Commun. 2015, 10, 1039–1042. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Jeena, K.; Liju, V.B.; Kuttan, R. Antioxidant, Anti-Inflammatory and Antinociceptive Activities of Essential Oil from Ginger. Indian J. Physiol. Pharmacol. 2013, 57, 51–62. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the Antioxidant Activity of Some Common Non-Phenolic Components of Essential Oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Tarfaoui, K.; Brhadda, N.; Ziri, R.; Oubihi, A.; Imtara, H.; Haida, S.; Al kamaly, O.M.; Saleh, A.; Parvez, M.K.; Fettach, S.; et al. Chemical Profile, Antibacterial and Antioxidant Potential of Zingiber officinale Roscoe and Elettaria cardamomum (L.) Maton Essential Oils and Extracts. Plants 2022, 11, 1487. [Google Scholar] [CrossRef]
- Erdoğan, Ü. Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L. (Turmeric). Int. J. Second. Metabol. 2022, 9, 137–148. [Google Scholar] [CrossRef]
- Lyu, J.I.; Ryu, J.; Seo, K.-S.; Kang, K.-Y.; Park, S.H.; Ha, T.H.; Ahn, J.-W.; Kang, S.-Y. Comparative Study on Phenolic Compounds and Antioxidant Activities of Hop (Humulus lupulus L.) Strobile Extracts. Plants 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Di Sotto, A.; Checconi, P.; Celestino, I.; Locatelli, M.; Carissimi, S.; De Angelis, M.; Rossi, V.; Limongi, D.; Toniolo, C.; Martinoli, L.; et al. Antiviral and Antioxidant Activity of a Hydroalcoholic Extract from Humulus lupulus L. Oxidative Med. Cell. Longev. 2018, 2018, 5919237. [Google Scholar] [CrossRef]
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef]
- Rajčević, N.; Bukvički, D.; Dodoš, T.; Marin, P.D. Interactions between Natural Products—A Review. Metabolites 2022, 12, 1256. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Briganti, S.; Picardo, M. Antioxidant Activity, Lipid Peroxidation and Skin Diseases. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. [Google Scholar] [CrossRef]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Caturla, N.; Castillo, J.; Benavente-García, O.; Alcaraz, M.; Micol, V. Protective Effects of Citrus and Rosemary Extracts on UV-Induced Damage in Skin Cell Model and Human Volunteers. J. Photochem. Photobiol. B 2014, 136, 12–18. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. A Review of The Bioactivity and Potential Health Benefits of Chamomile Tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, H.M.; Wilkinson, J.M. Biological Activities of Lavender Essential Oil. Phytother. Res. 2002, 16, 301–308. [Google Scholar] [CrossRef]
- Pullar, J.M.; Carr, A.C.; Vissers, M.C.M. The Roles of Vitamin C In Skin Health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; ISBN 978-0-9981557-2-2. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST Mass Spectral Library, 2023th ed.; U.S. Department of Commerce: Washington, DC, USA, 2023. Available online: https://www.nist.gov/srd/nist-standard-reference-database-1a (accessed on 2 January 2025).
- Kuo, J.-M.; Yeh, D.-B.; Pan, B.S. Rapid Photometric Assay Evaluating Antioxidative Activity in Edible Plant Material. J. Agric. Food Chem. 1999, 47, 3206–3209. [Google Scholar] [CrossRef] [PubMed]
- Python Programming Language, version 3.11.0; Python Software Foundation: Wilmington, DE, USA, 2022; Available online: https://www.python.org/downloads/release/python-3110/ (accessed on 22 July 2025).
Chemical Compounds | RT | RI | Peak Area (%) |
---|---|---|---|
2-Heptanol | 9.84 | 901 | 0.1 |
Tricyclene | 10.55 | 919 | 0.1 |
α-Thujene | 10.79 | 926 | <0.1 |
α-Pinene | 11.00 | 931 | 2.8 |
Camphene | 11.56 | 946 | 6.8 |
Sabinene | 12.55 | 971 | 0.1 |
β-Pinene | 12.64 | 974 | 0.4 |
Sulcatone | 13.13 | 986 | 0.2 |
β-Myrcene | 13.30 | 991 | 1.4 |
α-Phellandrene | 13.75 | 1003 | 0.3 |
Δ3-Carene | 13.98 | 1009 | 0.1 |
α-Terpinene | 14.23 | 1015 | <0.1 |
p-Cymene | 14.53 | 1023 | 0.2 |
β-Phellandrene | 14.69 | 1027 | 5.7 |
1,8-Cineole | 14.77 | 1029 | 4.8 |
γ-Terpinene | 15.88 | 1058 | <0.1 |
Terpinolene | 17.05 | 1088 | 0.3 |
2-Nonanone | 17.16 | 1091 | <0.1 |
Pinene oxide | 17.35 | 1096 | 0.1 |
Rosefuran | 17.36 | 1096 | 0.2 |
Linalool | 17.46 | 1099 | 0.7 |
(Z)-p-Menth-2-en-1-ol | 18.24 | 1120 | <0.1 |
cis-p-Mentha-2,8-dien-1-ol | 18.93 | 1139 | <0.1 |
Camphor | 19.09 | 1143 | 0.1 |
trans-Verbenol | 19.13 | 1144 | <0.1 |
(E)-p-Menth-2-en-1-ol | 19.24 | 1147 | <0.1 |
β-Citronellal | 19.44 | 1153 | 0.3 |
Isoborneol | 19.57 | 1156 | <0.1 |
Borneol | 19.90 | 1165 | 1.0 |
Rosefuran epoxide | 20.26 | 1175 | 0.1 |
Terpinen-4-ol | 20.33 | 1177 | 0.1 |
Isogeranial | 20.53 | 1182 | 0.1 |
p-Cymen-8-ol | 20.65 | 1185 | 0.1 |
α-Terpineol | 20.82 | 1190 | 0.9 |
Myrtenal | 21.01 | 1195 | 0.1 |
Methyl chavicol | 21.10 | 1198 | 0.1 |
β-Citronellol | 22.17 | 1228 | 0.6 |
Nerol | 22.36 | 1233 | <0.1 |
Neral | 22.65 | 1242 | 7.2 |
Geraniol | 23.09 | 1254 | 0.4 |
(E)-2-Decenal | 23.34 | 1261 | 0.1 |
Geranial | 23.71 | 1272 | 12.7 |
Bornyl acetate | 24.22 | 1286 | 0.1 |
2-Undecanone | 24.45 | 1293 | 0.1 |
δ-Elemene | 25.99 | 1339 | <0.1 |
Citronellyl acetate | 26.46 | 1353 | <0.1 |
α-Ylangene | 26.93 | 1367 | 0.2 |
α-Copaene | 27.27 | 1377 | 0.5 |
Geranyl acetate | 27.45 | 1383 | <0.1 |
β-Cubebene | 27.75 | 1392 | 0.1 |
β-Elemene | 27.80 | 1393 | 0.5 |
(E)-β-Caryophyllene | 28.69 | 1421 | 0.1 |
β-Copaene | 28.74 | 1423 | 0.1 |
γ-Elemene | 29.12 | 1435 | 0.2 |
(E)-α-Bergamotene | 29.18 | 1437 | <0.1 |
allo-Aromadendrene | 30.01 | 1460 | 0.3 |
γ-Muurolene | 30.46 | 1478 | 0.5 |
α-Curcumene | 30.63 | 1483 | 7.8 |
β-Selinene | 30.81 | 1489 | 0.1 |
α-Zingiberene | 31.06 | 1497 | 11.4 |
β-Bisabolene | 31.42 | 1509 | 8.9 |
γ-Cadinene | 31.59 | 1515 | 0.5 |
trans-Calamenene | 31.90 | 1525 | 0.3 |
β-Sesquiphellandrene | 31.92 | 1526 | 5.4 |
Elemol | 32.68 | 1552 | 0.5 |
Zingiberenol (isomer 1) | 34.55 | 1616 | 0.7 |
Zingiberenol (isomer 2) | 35.03 | 1633 | 1.1 |
β-Eudesmol (isomer 1) | 35.64 | 1654 | 0.5 |
β-Eudesmol (isomer 2) | 35.74 | 1658 | 0.4 |
(Z)-Nuciferal | 37.51 | 1721 | 0.2 |
(E)-Nuciferal | 37.73 | 1729 | 0.1 |
Total | - | - | 89.3 |
Chemical Compounds | RT | RI | Peak Area (%) |
---|---|---|---|
Methyl isobutyl ketone | 4.66 | 670 | 1.8 |
3-Methyl-2-pentanone | 4.99 | 710 | 0.5 |
α-Pinene | 11.00 | 931 | 0.5 |
2-Butyl-1,3,3-trimethylcyclohexene | 13.74 | 1002 | 0.5 |
Limonene | 14.69 | 1027 | 0.2 |
cis-Linalool oxide | 16.40 | 1071 | 0.4 |
trans-Linalool oxide | 17.01 | 1087 | 0.3 |
Linalool | 17.46 | 1099 | 0.5 |
3-Carene-10-al | 17.54 | 1101 | 0.4 |
α-Fenchol | 17.94 | 1112 | 0.2 |
Borneol | 19.92 | 1166 | 0.5 |
α-Terpineol | 20.82 | 1190 | 0.2 |
trans-Anethole | 24.21 | 1286 | 7.5 |
2-Undecanone | 24.45 | 1293 | 2.1 |
α-Ylangene | 27.12 | 1373 | 0.7 |
α-Copaene | 27.27 | 1377 | 1.7 |
(E)-α-Bergamotene | 29.18 | 1437 | 1.9 |
α-Humulene | 29.77 | 1456 | 0.8 |
γ-Muurolene | 30.48 | 1479 | 3.5 |
Germacrene D | 30.63 | 1483 | 0.9 |
β-Selinene | 30.81 | 1489 | 1.3 |
α-Selinene | 31.07 | 1497 | 1.2 |
γ-Cadinene | 31.64 | 1517 | 4.8 |
trans-Calamenene | 31.90 | 1525 | 4.3 |
α-Cadinene | 32.33 | 1540 | 0.6 |
α-Calacorene | 32.51 | 1546 | 1.0 |
β-Elemenone | 34.02 | 1597 | 0.8 |
trans-Caryophyllene oxide | 34.18 | 1602 | 2.2 |
1,2-Humulenepoxide | 34.49 | 1613 | 2.3 |
1,10-di-epi-Cubenol | 34.63 | 1618 | 0.6 |
epi-α-Cadinol | 35.36 | 1644 | 1.8 |
α-Cadinol | 35.76 | 1658 | 1.1 |
Cadalene | 36.32 | 1678 | 2.1 |
1-epi-Cubenol | 37.85 | 1734 | 12.2 |
β-Caryophyllene-9,10-diol (isomer 1) | 40.12 | 1819 | 1.9 |
β-Caryophyllene-9,10-diol (isomer 2) | 40.30 | 1826 | 12.7 |
Total | - | - | 71.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sytykiewicz, H.; Goławska, S.; Łukasik, I. New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms. Molecules 2025, 30, 3294. https://doi.org/10.3390/molecules30153294
Sytykiewicz H, Goławska S, Łukasik I. New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms. Molecules. 2025; 30(15):3294. https://doi.org/10.3390/molecules30153294
Chicago/Turabian StyleSytykiewicz, Hubert, Sylwia Goławska, and Iwona Łukasik. 2025. "New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms" Molecules 30, no. 15: 3294. https://doi.org/10.3390/molecules30153294
APA StyleSytykiewicz, H., Goławska, S., & Łukasik, I. (2025). New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms. Molecules, 30(15), 3294. https://doi.org/10.3390/molecules30153294