Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,396)

Search Parameters:
Keywords = bioactive enrichment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8075 KiB  
Article
Integrative Transcriptomic and Network Pharmacology Analysis Reveals Key Targets and Mechanisms of Moschus (musk) Against Viral Respiratory Tract Infections
by Ke Tao, Li Shao, Haojing Chang, Xiangjun Chen, Hui Xia, Ruipeng Wu, Shaokang Wang and Hehe Liao
Pharmaceuticals 2025, 18(8), 1136; https://doi.org/10.3390/ph18081136 - 30 Jul 2025
Abstract
Background/Objectives: Moschus (musk) has long been used in traditional Tibetan medicine to prevent and treat epidemic febrile illnesses. However, its antiviral mechanisms remain poorly understood. Given the urgent need for effective treatments against viral respiratory tract infections (VRTIs), this study aimed to [...] Read more.
Background/Objectives: Moschus (musk) has long been used in traditional Tibetan medicine to prevent and treat epidemic febrile illnesses. However, its antiviral mechanisms remain poorly understood. Given the urgent need for effective treatments against viral respiratory tract infections (VRTIs), this study aimed to systematically investigate the molecular targets and pharmacological pathways through which Moschus may exert therapeutic effects. Methods: Based on the identification of bioactive compounds with favorable pharmacokinetics, we applied integrated network pharmacology and multi-omics analyses to systematically identify key therapeutic targets involved in VRTIs. Gene Set Enrichment Analysis (GSEA) and immune infiltration further revealed strong associations with multiple immune cell subsets, reflecting their pivotal roles in immunomodulatory mechanisms during viral infections. Molecular docking confirmed the strong binding affinities between Moschus compounds and these key targets. Results: Notably, testosterone exhibited the strongest and most consistent binding across key targets, suggesting its potential as a pivotal bioactive compound. Importantly, the antiviral effects of Moschus may be mediated in part by the downregulation of the key genes MCL1, MAPK3, and CDK2, which are involved in the regulation of viral replication, apoptosis, and host immune responses. Conclusions: This study provides a comprehensive mechanistic framework supporting the multi-target antiviral potential of Moschus, offering a scientific basis for its further development as a therapeutic agent against VRTIs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 1160 KiB  
Article
Enhanced Antioxidant and Antiproliferative Activities of Apple and Korean Green Chili Pepper Extracts Cultivated with Mineral Supplementation
by Ji-Sun Lim, Mi-Hee Yu, Dong Kyu Choi, Hae Won Kim, Seung-Hwan Park, Sin-Il Sin and Jong-Sang Kim
Foods 2025, 14(15), 2685; https://doi.org/10.3390/foods14152685 - 30 Jul 2025
Abstract
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts [...] Read more.
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts from both crops. Mineral-enriched cultivation significantly increased the total phenolic and flavonoid contents in both crops, which was accompanied by enhanced DPPH and ABTS radical scavenging activities. Moreover, the mineral-supplemented extracts of Korean green chili pepper activated the Nrf2 signaling pathway and upregulated downstream antioxidant enzymes, including heme oxygenase-1 (HO-1), γ-glutamylcysteine ligase (GCL), and glutathione peroxidase (GPx). Notably, the mineral-supplemented Korean green chili pepper extract significantly suppressed the proliferation of human colorectal cancer cells. These findings suggest that mineral supplementation during cultivation may improve the functional quality of apples and Korean green chili peppers, supporting their potential application in cancer prevention and complementary therapeutic strategies. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

17 pages, 7377 KiB  
Article
Comparative Untargeted Metabolomic Analysis of Fruiting Bodies from Three Sanghuangporus Species
by Zixuan Jiang, Shimao Chen, Jia Song, Tao Xie, Yu Xue and Qingshan Yang
J. Fungi 2025, 11(8), 558; https://doi.org/10.3390/jof11080558 - 28 Jul 2025
Viewed by 300
Abstract
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus [...] Read more.
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus. sanghuang (SS), Sanghuangporus. vaninii (SV), and Sanghuangporus. baumii (SB). A total of 788 metabolites were identified and classified into 16 categories, among which 97 were common differential metabolites, including bioactive compounds such as flavonoids, polysaccharides, and terpenoids. Multivariate statistical analyses (PCA and OPLS-DA) revealed distinct metabolic patterns among the species. KEGG pathway enrichment analysis showed that the differential metabolites were mainly involved in flavonoid and isoflavonoid biosynthesis. Notably, SV and SB exhibited significantly higher levels of several key bioactive compounds, including Apigenin and D-glucuronolactone, compared to SS. These findings highlight substantial interspecies differences in metabolic composition and pharmacological potential, providing a scientific basis for species authentication, quality control, and medicinal development of Sanghuangporus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 272
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

24 pages, 1886 KiB  
Review
Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research
by Daan Kremer, Fabian A. Vogelpohl, Yvonne van der Veen, Caecilia S. E. Doorenbos, Manuela Yepes-Calderón, Tim J. Knobbe, Adrian Post, Eva Corpeleijn, Gerjan Navis, Stefan P. Berger and Stephan J. L. Bakker
Nutrients 2025, 17(15), 2419; https://doi.org/10.3390/nu17152419 - 24 Jul 2025
Viewed by 363
Abstract
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that [...] Read more.
Kidney transplant recipients face a substantial burden of premature mortality and morbidity, primarily due to persistent inflammation, cardiovascular risk, and nutritional deficiencies. Traditional nutritional interventions in this population have either focused on supplementing individual nutrients—often with limited efficacy—or required comprehensive dietary overhauls that compromise patient adherence. In this narrative review, we explore the rationale for dietary nut enrichment as a feasible, multi-nutrient strategy tailored to the needs of kidney transplant recipients. Nuts, including peanuts and tree nuts with no added salt, sugar, or oil, are rich in beneficial fats, proteins, vitamins, minerals, and bioactive compounds. We summarize the multiple post-transplant challenges—including obesity, sarcopenia, dyslipidemia, hypertension, immunological dysfunction, and chronic inflammation—and discuss how nut consumption may mitigate these issues through mechanisms involving improved micro-nutrient intake (e.g., magnesium, potassium, selenium), lipid profile modulation, endothelial function, immune support, and gut microbiota health. Additionally, we highlight the scarcity of randomized controlled trials in high-risk populations such as kidney transplant recipients and make the case for studying this group as a model for investigating the clinical efficacy of nuts as a nutritional intervention. We also consider practical aspects for future clinical trials, including the choice of study population, intervention design, duration, nut type, dosage, and primary outcome measures such as systemic inflammation. Finally, potential risks such as nut allergies and oxalate or mycotoxin exposure are addressed. Altogether, this review proposes dietary nut enrichment as a promising, simple, and sustainable multi-nutrient approach to support cardiometabolic and immune health in kidney transplant recipients, warranting formal investigation in clinical trials. Full article
Show Figures

Figure 1

15 pages, 1493 KiB  
Review
Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases
by Ziyi Li, Yanfang Zhao, Rong Wang, Ruoxuan Zhou, Xuehua Chen, Jingchen Jiang, Yilan Dai and Huaiqing Luo
Int. J. Mol. Sci. 2025, 26(15), 7079; https://doi.org/10.3390/ijms26157079 - 23 Jul 2025
Viewed by 194
Abstract
Thesium chinense Turcz., a traditional Chinese medicinal herb, is enriched with bioactive constituents such as flavonoids and polysaccharides, demonstrating multifaceted therapeutic properties including anti-inflammatory, antioxidant, and neuroprotective effects. This review systematically elucidates the regulatory mechanisms by which active components of Thesium chinense [...] Read more.
Thesium chinense Turcz., a traditional Chinese medicinal herb, is enriched with bioactive constituents such as flavonoids and polysaccharides, demonstrating multifaceted therapeutic properties including anti-inflammatory, antioxidant, and neuroprotective effects. This review systematically elucidates the regulatory mechanisms by which active components of Thesium chinense Turcz. modulate pathological processes in NDDs, such as neuroinflammation and oxidative stress. Furthermore, it synthesizes evidence of its neuroprotective efficacy across experimental models and evaluates its translational potential for clinical applications. By integrating preclinical findings and mechanistic insights, this work provides a robust theoretical foundation for advancing natural product-based therapeutics in the management of NDDs. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

24 pages, 6281 KiB  
Article
Bioactive Polysaccharides Prevent Lipopolysaccharide-Induced Intestinal Inflammation via Immunomodulation, Antioxidant Activity, and Microbiota Regulation
by Mingyang Gao, Wanqing Zhang, Yan Ma, Tingting Liu, Sijia Wang, Shuaihu Chen, Zhengli Wang and Hong Shen
Foods 2025, 14(15), 2575; https://doi.org/10.3390/foods14152575 - 23 Jul 2025
Viewed by 302
Abstract
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through [...] Read more.
Intestinal inflammation involves barrier impairment, immune hyperactivation, and oxidative stress imbalance. Bioactive polysaccharides universally alleviate inflammation via anti-inflammatory, antioxidant, and microbiota-modulating effects, yet exhibit distinct core mechanisms. Elucidating these differences is vital for targeted polysaccharide applications. This research examines distinct regulatory pathways through which diverse bioactive polysaccharides mitigate lipopolysaccharide-triggered intestinal inflammation in male Kunming (KM) mice. This experiment employed Lentinula edodes polysaccharide (LNT), Auricularia auricula polysaccharide (AAP), Cordyceps militaris polysaccharide (CMP), Lycium barbarum polysaccharide (LBP), and Brassica rapa polysaccharide (BRP). The expression levels of biomarkers associated with the TLR4 signaling pathway, oxidative stress, and intestinal barrier function were quantified, along with comprehensive gut microbiota profiling. The results showed that all five polysaccharides alleviated inflammatory responses in mice by inhibiting inflammatory cytokine release, reducing oxidative damage, and modulating gut microbiota, but their modes of action differed: LBP significantly suppressed the TLR-4/MyD88 signaling pathway and its downstream pro-inflammatory cytokine expression, thereby blocking inflammatory signal transduction and reducing oxidative damage; LNT and CMP enhanced the body’s antioxidant capacity by increasing antioxidant enzyme activities and decreasing malondialdehyde (MDA) levels; AAP and BRP enriched Akkermansia (Akk.) within the Verrucomicrobia (Ver.) phylum, upregulating tight junction protein expression to strengthen the intestinal mucosal barrier and indirectly reduce oxidative damage. This research demonstrates that different polysaccharides alleviate inflammation through multi-target synergistic mechanisms: LBP primarily inhibits inflammatory pathways; AAP and BRP focus on intestinal barrier protection and microbiota modulation; and LNT and CMP exert effects via antioxidant enzyme activation. These data support designing polysaccharide blends that leverage complementary inflammatory modulation mechanisms. Full article
Show Figures

Figure 1

25 pages, 1919 KiB  
Article
Valorisation of Beetroot Peel for the Development of Nutrient-Enriched Dehydrated Apple Snacks
by Ioana Buțerchi, Liliana Ciurlă, Iuliana-Maria Enache, Antoanela Patraș, Gabriel-Ciprian Teliban and Liviu-Mihai Irimia
Foods 2025, 14(15), 2560; https://doi.org/10.3390/foods14152560 - 22 Jul 2025
Viewed by 344
Abstract
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of [...] Read more.
Beetroot peel, an underutilised by-product of the food industry, has significant potential for valorisation due to its high content of bioactive compounds and natural pigments. This study aimed to sustainably reintroduce beetroot peel into the food chain by enriching the nutritional value of dehydrated apple snacks. Five experimental formulations of apple slices were developed: dipped in 5% RBPP in water, dipped in 10% RBPP in water, dipped in 5% RBPP in 50% lemon juice, dipped in 10% RBPP in 50% lemon juice all seasoned with cinnamon powder, and a control formulation. The biochemical analysis showed that the total phenolic content (2780.01 ± 68.38 mg GAE/100 g DM) and antioxidant activity of apple snacks significantly increased (503.96 ± 1.83 µmol TE/g DM). Sensory evaluation indicated that snacks with beetroot peel powder and lemon juice achieved the highest scores in colour, flavour, and acceptability. These results demonstrate that the valorisation of beetroot peel has the potential to reduce agro-industrial waste and also enhance the nutritional and functional quality of apple snacks. It is recommended that beetroot peel be further explored as a cost-effective natural ingredient to develop healthier, value-added snack products within a circular economy framework. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

23 pages, 14728 KiB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 295
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

20 pages, 2541 KiB  
Article
Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
by Miguel A. Gallardo, M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo and Manuel Álvarez-Ortí
Foods 2025, 14(14), 2548; https://doi.org/10.3390/foods14142548 - 21 Jul 2025
Viewed by 232
Abstract
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) [...] Read more.
The agri-food sector faces the challenge of valorizing by-products and reducing waste. The frozen pumpkin industry generates substantial amounts of by-products rich in nutritional value, especially β-carotene. This study evaluates the nutritional and physical impact of incorporating pumpkin pulp flour (dehydrated and freeze-dried) obtained from by-products into cracker formulation. Crackers were prepared by replacing 10% and 20% of wheat flour with pumpkin flour, assessing the effects based on drying method. Physical parameters (expansion, color, and texture parameters) were measured, in the dough and in the baked products. Furthermore, β-carotene content was analyzed by HPLC-DAD, antioxidant capacity was measured with DPPH, ABTS, and ORAC, and total phenolic content was evaluated with the Folin–Ciocalteu method. Proximate composition and mineral content were also analyzed. Additionally, a preliminary sensory evaluation was conducted with 50 untrained consumer judges to assess acceptability of external appearance, texture, and taste. The inclusion of pumpkin flour significantly increased β-carotene content (up to 2.36 mg/100 g), total phenolics, and antioxidant activity of the baked crackers. Proximate analysis showed a marked improvement in fiber content and a slight reduction in energy value compared to wheat flour. Mineral analysis revealed that pumpkin flours exhibited significantly higher levels of K, Ca, Mg, and P, with improved but not always statistically significant retention in the final crackers. Freeze-dried flour retained more bioactive compounds and enhanced color. However, it also increased cracker hardness, particularly with dehydrated flour. Only the 10% freeze-dried formulation showed mechanical properties similar to those of the control. Sensory analysis indicated that all formulations were positively accepted, with the 10% freeze-dried sample showing the best balance in consumer preference across all evaluated attributes. Frozen pumpkin by-products can be effectively valorized through their incorporation into bakery products such as crackers, enhancing their nutritional and functional profile. Freeze-drying better preserves antioxidants and β-carotene, while a 10% substitution offers a balance between nutritional enrichment and technological performance and sensory acceptability. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 589 KiB  
Article
Circular Model for the Valorization of Black Grape Pomace for Producing Pasteurized Red Must Enriched in Health-Promoting Phenolic Compounds
by Victoria Artem, Arina Oana Antoce, Elisabeta Irina Geana, Ancuta Nechita, Georgeta Tudor, Petronela Anca Onache and Aurora Ranca
Sustainability 2025, 17(14), 6633; https://doi.org/10.3390/su17146633 - 21 Jul 2025
Viewed by 387
Abstract
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive [...] Read more.
As compared to red wine technology, where pomace is macerated, the grape juices and musts are obtained by pressing the grapes and removing the pomace, thus removing an important source of antioxidant molecules. The objective of this study was to exploit the bioactive compounds from the black grape pomace and obtain a new food product, namely pasteurized red must with improved health-promoting properties. The study was conducted on four grape varieties for red wines—Fetească Neagră, Cabernet Sauvignon, Blauer Zweigelt, and Arcaș—each coming from a certain recognized Romanian vineyard, as follows: Murfatlar, Dealu Mare, Ștefănești-Argeș, and Iași, respectively. Both the must and the pomace extract used for each product were from the same variety and region. The recovery of polyphenols was achieved by macerating the pomace at ambient temperature, using solutions of ethanol in concentrations of 25%, 50%, and 75%. The results showed that the most efficient method of polyphenol recovery was obtained by using the ethanolic solution of 50%, which was selected for the subsequent stages of the study. The selected hydroalcoholic extract was concentrated by eliminating the solvent by roto evaporation and used as a source of supplementary bioactive compounds for the pasteurized must. The phenolic profiles of the musts enriched with phenolic extracts were determined by liquid chromatography, UHPLS-HRMS, revealing significant increases in the content of individual phenolic acids and other polyphenols. The phenolic extract recovered from the pomace significantly optimized the phenolic quality of the pasteurized must, thus contributing to the improvement of its nutritional value. The new product has a phenolic profile close to that of a red wine, but does not contain alcohol. Also, this technology is a sustainable method to convert grape waste into a safe, antioxidant-rich grape juice with potential health benefits. Full article
(This article belongs to the Special Issue Sustainable Research on Food Science and Food Technology)
Show Figures

Figure 1

30 pages, 11312 KiB  
Article
Study on the Mechanism and Dose–Effect Relationship of Flavonoids in Different Extracts of Radix Hedysari Against Gastrointestinal Injury Induced by Chemotherapy
by Shasha Zhao, Miaomiao Yang, Zimu Yang, Hai He, Ziyang Wang, Xinyu Zhu, Zhijia Cui and Jing Shao
Pharmaceuticals 2025, 18(7), 1072; https://doi.org/10.3390/ph18071072 - 20 Jul 2025
Viewed by 287
Abstract
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified [...] Read more.
Background: Previous studies have shown Radix Hedysari (RH)’s gastroprotective potential, but its active components and mechanisms remain uncharacterized. This study aimed to identify RH’s bioactive fractions, elucidate protection mechanisms, establish flavonoid dose-effect relationships, and determine the pharmacodynamic basis. Methods: Chemical profiling quantified eight flavonoids via HPLC. Network pharmacology screened targets/pathways using TCMSP, GeneCards databases. In vivo validation employed cisplatin–induced injury models in Wistar rats (n = 10/group). Assessments included: behavioral monitoring; organ indices; ELISA (MTL, VIP, IFN–γ, IgG, IL–6, TNF–α etc.); H&E; and Western blot:(SCF, c–Kit, p65). Dose–effect correlations were analyzed by PLS–DA. Results: Content determination indicated that Calycosin–7–glucoside and Ononin were notably enriched on both the n–BuOH part and the EtOAc part. Network pharmacology identified 5 core flavonoids and 8 targets enriched in IL–17/TNF signaling pathways. n–BuOH treatment minimized weight loss vs. MCG, increased spleen/thymus indices. n–BuOH and HPS normalized gastrointestinal, immune, inflammatory biomarkers (p < 0.01 vs. MCG). Histopathology confirmed superior mucosal protection in n–BuOH group vs. MCG. Western blot revealed n–BuOH significantly downregulated SCF, c–kit, and p65 expressions in both gastric and intestinal tissues (p < 0.001 vs. MCG). PLS–DA demonstrated Calycosin–7–glucoside had the strongest dose–effect correlation (VIP > 1) with protective outcomes. Conclusions: The n–BuOH fraction of RH is the primary bioactive component against chemotherapy–induced gastrointestinal injury, with Calycosin–7–glucoside as its key effector. Protection is mediated through SCF/c–Kit/NF–κB pathway inhibition, demonstrating significant dose–dependent efficacy. These findings support RH’s potential as a complementary therapy during chemotherapy. Full article
Show Figures

Graphical abstract

21 pages, 2039 KiB  
Article
Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption
by Fernanda D’Amélio, Hugo Vigerelli, Rodrigo Pinheiro Araldi, Isabel de Fátima Correia Batista, Daniel Carvalho Pimenta and Irina Kerkis
Toxins 2025, 17(7), 358; https://doi.org/10.3390/toxins17070358 - 19 Jul 2025
Viewed by 336
Abstract
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied [...] Read more.
This study investigated the effects of Bothrops moojeni (B. moojeni) venom and its high- (HMM) and low-molecular mass (LMM) fractions on human osteoclast (OC) differentiation and function in vitro, aiming to identify novel therapeutics for bone disorders. Venom preparations were applied at 5 µg/mL (crude venom and HMM) or 1 µg/mL (LMM) from day 4 of peripheral blood mononuclear cell (PBMC) differentiation through terminal OC formation, enabling evaluation across early differentiation, fusion, and maturation stages. RNA sequencing revealed 7793 genes common to all experimental groups, with unique gene expression signatures of 149 (control), 221 (HMM), 248 (crude venom), and 60 (LMM) genes, reflecting distinct molecular responses. The negative control PBMC group exhibited 1013 unique genes enriched in immune-related pathways, consistent with their undifferentiated state. Crude venom induced the broadest transcriptional modulation, upregulating key fusion (CD47) and resorption (CTSK) genes, and altering markers of OC differentiation. The HMM fraction predominantly influenced inflammatory and osteoclastogenic pathways, notably TNF and NF-κB signaling, while the LMM fraction selectively regulated fusion-related genes (e.g., CD44) and immune pathways, indicating targeted modulation of OC activity. Cytokine profiling showed that crude venom and HMM suppressed osteoclastogenic cytokines such as IL-1β and IL-6, supporting their potential use in inflammatory bone diseases. Pathway enrichment analyses confirmed these differential effects on immune response and bone resorption mechanisms. Together, these results demonstrate that B. moojeni venom and its fractions differentially impact OC biology, with crude venom exerting broad effects and HMM and LMM fractions offering more specific modulation. Future studies will isolate bioactive components and assess therapeutic efficacy in animal models of osteoporosis and rheumatoid arthritis. Full article
(This article belongs to the Special Issue Transcriptomic and Proteomic Study on Animal Venom: Looking Forward)
Show Figures

Figure 1

25 pages, 3835 KiB  
Article
A Marine-Derived Steroid from Rhodococcus sp., 3,12-Dioxochola-4,6-dien-24-oic Acid, Enhances Skin Re-Epithelialization and Tissue Repair
by Mücahit Varlı, Hui Tan, Chaeyoung Lee, Jeongyun Lee, Ji Young Lee, Jeong-Hyeon Kim, Songyi Lee, Hangun Kim and Sang-Jip Nam
Mar. Drugs 2025, 23(7), 292; https://doi.org/10.3390/md23070292 - 19 Jul 2025
Viewed by 464
Abstract
The discovery of bioactive natural compounds from microbes holds promise for regenerative medicine. In this study, we identified and characterized a steroid-like compound, 3,12-dioxochola-4,6-dien-24-oic acid (DOCDA), from a crude extract of Rhodococcus sp. DOCDA significantly promoted wound healing by enhancing HaCaT cell invasion [...] Read more.
The discovery of bioactive natural compounds from microbes holds promise for regenerative medicine. In this study, we identified and characterized a steroid-like compound, 3,12-dioxochola-4,6-dien-24-oic acid (DOCDA), from a crude extract of Rhodococcus sp. DOCDA significantly promoted wound healing by enhancing HaCaT cell invasion and migration. It upregulated key growth factors (EGF, VEGF-A, IGF, TGF-β, and HGF), indicating the activation of regenerative signaling. Additionally, DOCDA increased the expression of genes related to focal adhesion and cytoskeletal regulation (ITGB1, ITGA4, FAK, SRC, RHOA, CDC42, RAC1, and paxillin), supporting enhanced cellular motility and remodeling. Notably, DOCDA promoted stem-like properties in HaCaT cells, as shown by increased spheroid formation and elevated levels of the stemness markers ALDH1 and CD44. Target prediction and molecular docking identified the glucocorticoid receptor (GR) as the primary target of DOCDA, with a docking score of −7.7 kcal/mol. Network and pathway enrichment analysis revealed that GR-linked pathways were significantly associated with wound healing, including steroid hormone signaling, inflammation, immune responses, and cell migration. In vivo, the topical application of DOCDA led to over 70% wound closure in mice by day 5. These findings suggest that DOCDA is a steroid-like compound that accelerates wound healing and may serve as a potential agent in regenerative therapy. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

16 pages, 1211 KiB  
Article
Exploring the Chemical Composition and Antimicrobial Activity of Extracts from the Roots and Aboveground Parts of Limonium gmelini
by Dariya Kassymova, Francesco Cairone, Donatella Ambroselli, Rosa Lanzetta, Bruno Casciaro, Aizhan Zhussupova, Deborah Quaglio, Angela Casillo, Galiya E. Zhusupova, Maria Michela Corsaro, Bruno Botta, Silvia Cammarone, Maria Luisa Mangoni, Cinzia Ingallina and Francesca Ghirga
Molecules 2025, 30(14), 3024; https://doi.org/10.3390/molecules30143024 - 18 Jul 2025
Viewed by 299
Abstract
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and [...] Read more.
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and polyphenolic compounds extracted from both the roots and aboveground parts of Limonium gmelini. Several methods of extraction, including ultrasound-assisted extraction (UAE), conventional maceration (CM), and supercritical fluid extraction (SFE), were employed to obtain bioactive fractions. Chemical profiling, primarily represented by monosaccharides and polyphenolic compounds, was characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) techniques. While polyphenol-rich fractions exhibited significant antibacterial activity, particularly against Staphylococcus epidermidis, polysaccharide-rich aqueous fractions showed minimal antibacterial activity. Among the methods, CM and UAE yielded higher polyphenol content, whereas SFE provided more selective extractions. Notably, methanolic SPE fractions derived from the roots were especially enriched in active polyphenols such as gallic acid, myricetin, and naringenin, and they exhibited the highest antibacterial activity against Staphylococcus epidermidis. In contrast, extracts from the aboveground parts showed more moderate activity and a partially different chemical profile. These findings underscore the importance of plant part selection and support the targeted use of root-derived polyphenol-enriched fractions from L. gmelini as promising candidates for the development of natural antibacterial agents. Further investigation is needed to isolate and validate the most active constituents for potential therapeutic applications. Full article
Show Figures

Figure 1

Back to TopTop