Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption
Abstract
1. Introduction
2. Results
2.1. Venn Diagram Analysis Reveals Core and Treatment-Specific Transcriptional Signatures
2.2. Impact of Venom Fractions on Osteoclastogenesis: Gene Expression Analysis of Cytokines, Differentiation, Fusion, and Resorption Pathways
2.3. Molecular Pathways Regulating Osteoclast Differentiation, Fusion, and Function: Insights from Venom Fractions and STRING Analysis
3. Discussion
3.1. Impact of Venom Fractions on Osteoclastogenesis and Bone Resorption
3.2. Core and Treatment-Specific Transcriptional Signatures
3.3. Venom Fraction-Induced Modulation of Osteoclastogenic and Anti-Osteoclastogenic Cytokines
3.4. Effects on Differentiation, Fusion, and Resorption Pathways
3.5. Canonical and Non-Canonical Pathways
3.6. Molecular Pathways and Clusters
4. Conclusions
5. Materials and Methods
5.1. Isolation of Human Peripheral Blood Mononuclear Cells (PBMCs) and Their Differentiation into OCs
5.2. Model Clarification
5.3. Determination of Non-Cytotoxic Concentrations of Bothrops moojeni Venom and Its Fractions for Osteoclast Precursor Viability Assays
5.4. Total RNA Isolation
5.5. Analysis of Isolation RNA Integrity
5.6. Library Preparation and RNA Sequencing
5.7. Sequencing Quality Control
5.8. Mapping and Read Counting
5.9. Normalization and Obtaining the Transcriptome
5.10. Functional Enrichment Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omata, Y.; Okada, H.; Uebe, S.; Izawa, N.; Ekici, A.B.; Sarter, K.; Saito, T.; Schett, G.; Tanaka, S.; Zaiss, M.M. Interspecies Single-Cell RNA-Seq Analysis Reveals the Novel Trajectory of Osteoclast Differentiation and Therapeutic Targets. J. Bone Miner. Res. Plus 2022, 6, e10631. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.S.; Madsen, K.; Price, M.; Søe, K.; Omata, Y.; Zaiss, M.M.; Gorvin, C.M.; Frost, M.; Rauch, A. Transcriptional Reprogramming during Human Osteoclast Differentiation Identifies Regulators of Osteoclast Activity. Bone Res. 2024, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.B.; Dias, E.H.V.; Costa, J.D.O.; Mamede, C.C.N. Bothrops Moojeni Snake Venom: A Source of Potential Therapeutic Agents Against Hemostatic Disorders. Int. J. Cardiovasc. Sci. 2024, 37, e20220075. [Google Scholar] [CrossRef]
- D’Amélio, F.; Vigerelli, H.; Kerkis, I. Bothrops Moojeni Venom and Its Components–An Overview. J. Venom Res. 2021, 11, 26. [Google Scholar] [PubMed]
- Almeida, G.D.O.; Cintra, A.C.O.; Silva, T.A.; De Oliveira, I.S.; Correia, L.I.V.; Torquato, R.J.S.; Ferreira Junior, R.S.; Arantes, E.C.; Sampaio, S.V. Moojecin: The First Disintegrin from Bothrops Moojeni Venom and Its Antitumor Activity in Acute Myeloid Leukemia. Int. J. Biol. Macromol. 2024, 279, 135066. [Google Scholar] [CrossRef] [PubMed]
- Frihling, B.E.F.; Boleti, A.P.D.A.; De Oliveira, C.F.R.; Sanches, S.C.; Cardoso, P.H.D.O.; Verbisck, N.; Macedo, M.L.R.; Rita, P.H.S.; Carvalho, C.M.E.; Migliolo, L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops Moojeni. Pharmaceuticals 2022, 15, 724. [Google Scholar] [CrossRef] [PubMed]
- Amorim, F.G.; Morandi-Filho, R.; Fujimura, P.T.; Ueira-Vieira, C.; Sampaio, S.V. New Findings from the First Transcriptome of the Bothrops Moojeni Snake Venom Gland. Toxicon 2017, 140, 105–117. [Google Scholar] [CrossRef] [PubMed]
- D’Amélio, F.; Vigerelli, H.; Prieto-da-Silva, Á.R.D.B.; Osório Frare, E.; Batista, I.D.F.C.; Pimenta, D.C.; Kerkis, I. Bothrops Moojeni Venom and Its Components Strongly Affect Osteoclasts’ Maturation and Protein Patterns. Toxins 2021, 13, 459. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.; Chhugani, K.; Chang, Y.; Karlsberg, A.; Loeffler, C.; Zhang, J.; Muszyńska, A.; Munteanu, V.; Yang, H.; Rotman, J.; et al. RNA-Seq Data Science: From Raw Data to Effective Interpretation. Front. Genet. 2023, 14, 997383. [Google Scholar] [CrossRef] [PubMed]
- D’Amélio, F.; Vigerelli, H.; Batista, I.D.F.C.; Araldi, R.P.; Prieto-da-Silva, Á.R.B.; Pimenta, D.C.; Kerkis, I. Selective Modulation of Osteoclast Function by Bothrops Moojeni Venom and Its Fractions: Implications for Therapeutic Targeting in Bone Diseases. Toxins 2025, 17, 141. [Google Scholar] [CrossRef] [PubMed]
- Rong, K.; Liang, Z.; Xiang, W.; Wang, Z.; Wen, F.; Lu, L. IL1R2 Polymorphisms and Their Interaction Are Associated with Osteoporosis Susceptibility in the Chinese Han Population. Int. J. Immunogenet. 2021, 48, 510–525. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Nakajima, A.; Sudo, K.; Liu, Y.; Mizoroki, A.; Ikarashi, T.; Horai, R.; Kakuta, S.; Watanabe, T.; Iwakura, Y. IL-1 Receptor Type 2 Suppresses Collagen-Induced Arthritis by Inhibiting IL-1 Signal on Macrophages. J. Immunol. 2015, 194, 3156–3168. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-α Induces Osteoclastogenesis by Direct Stimulation of Macrophages Exposed to Permissive Levels of RANK Ligand. J. Clin. Investig. 2000, 106, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Mabilleau, G.; Sabokbar, A. Interleukin-32 Promotes Osteoclast Differentiation but Not Osteoclast Activation. PLoS ONE 2009, 4, e4173. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.C.; Kim, S.; Hong, S.; Lee, C.-K.; Yoo, B.; Chang, E.-J.; Kim, Y.-G. Role of IL-32 Gamma on Bone Metabolism in Autoimmune Arthritis. Immune Netw. 2018, 18, e20. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.M.; Yoon, B.Y.; Her, Y.M.; Oh, H.J.; Lee, J.S.; Kim, K.W.; Lee, S.Y.; Woo, Y.J.; Park, K.S.; Park, S.H.; et al. IL-32 and IL-17 Interact and Have the Potential to Aggravate Osteoclastogenesis in Rheumatoid Arthritis. Arthritis Res. Ther. 2012, 14, R246. [Google Scholar] [CrossRef] [PubMed]
- Wintges, K.; Beil, F.T.; Albers, J.; Jeschke, A.; Schweizer, M.; Claass, B.; Tiegs, G.; Amling, M.; Schinke, T. Impaired Bone Formation and Increased Osteoclastogenesis in Mice Lacking Chemokine (C-C Motif) Ligand 5 (Ccl5). J. Bone Miner. Res. 2013, 28, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, N. Regulation of NFATc1 in Osteoclast Differentiation. J. Bone Metab. 2014, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Matsuo, K.; Suzuki, H.; Suzuki, T.; Sato, K.; Yokochi, T.; Oda, H.; Nakamura, K.; Taniguchi, T. RANKL Maintains Bone Homeostasis through c-Fos-Dependent Induction of Interferon-β. Nature 2002, 416, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Carey, H.A.; Hildreth, B.E.; Geisler, J.A.; Nickel, M.C.; Cabrera, J.; Ghosh, S.; Jiang, Y.; Yan, J.; Lee, J.; Makam, S.; et al. Enhancer Variants Reveal a Conserved Transcription Factor Network Governed by PU.1 during Osteoclast Differentiation. Bone Res. 2018, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Maile, L.A.; DeMambro, V.E.; Wai, C.; Aday, A.W.; Capps, B.E.; Beamer, W.G.; Rosen, C.J.; Clemmons, D.R. An Essential Role for the Association of CD47 to SHPS-1 in Skeletal Remodeling. J. Bone Miner. Res. 2011, 26, 2068–2081. [Google Scholar] [CrossRef] [PubMed]
- Lotinun, S.; Kiviranta, R.; Matsubara, T.; Alzate, J.A.; Neff, L.; Lüth, A.; Koskivirta, I.; Kleuser, B.; Vacher, J.; Vuorio, E.; et al. Osteoclast-Specific Cathepsin K Deletion Stimulates S1P-Dependent Bone Formation. J. Clin. Investig. 2013, 123, JCI64840. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Chen, W.; Tang, C.Y.; McVicar, A.; Edwards, D.; Wang, J.; McConnell, M.; Yang, S.; Li, Y.; Chang, Z.; et al. Knockout and Double Knockout of Cathepsin K and Mmp9 Reveals a Novel Function of Cathepsin K as a Regulator of Osteoclast Gene Expression and Bone Homeostasis. Int. J. Biol. Sci. 2022, 18, 5522–5538. [Google Scholar] [CrossRef] [PubMed]
- Hayman, A.R.; Bune, A.J.; Bradley, J.R.; Rashbass, J.; Cox, T.M. Osteoclastic Tartrate-Resistant Acid Phosphatase (Acp 5): Its Localization to Dendritic Cells and Diverse Murine Tissues. J. Histochem. Cytochem. 2000, 48, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Hayman, A.R.; Bune, A.J.; Cox, T.M. Widespread Expression of Tartrate-resistant Acid Phosphatase (Acp 5) in the Mouse Embryo. J. Anat. 2000, 196, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Gravallese, E.M.; Galson, D.L.; Goldring, S.R.; Auron, P.E. The Role of TNF-Receptor Family Members and Other TRAF-Dependent Receptors in Bone Resorption. Arthritis Res. Ther. 2000, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Li, J.; Yao, Z.; Xing, L. Nuclear Factor-Kappa B Regulation of Osteoclastogenesis and Osteoblastogenesis. Endocrinol. Metab. 2023, 38, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Nakao, K.; Aoyama, M.; Fukuoka, H.; Fujita, M.; Miyazawa, K.; Asai, K.; Goto, S. IGF2 Modulates the Microenvironment for Osteoclastogenesis. Biochem. Biophys. Res. Commun. 2009, 378, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Jin, Z.; Yang, J.; Xu, D.; Zhao, L.; Kiram, A.; Yin, Y.; Zhou, D.; Sun, Z.; Xiao, L.; et al. Muscle-Bone Cross-Talk through the FNIP1-TFEB-IGF2 Axis Is Associated with Bone Metabolism in Human and Mouse. Sci. Transl. Med. 2024, 16, eadk9811. [Google Scholar] [CrossRef] [PubMed]
- Matsumae, G.; Shimizu, T.; Tian, Y.; Takahashi, D.; Ebata, T.; Alhasan, H.; Yokota, S.; Kadoya, K.; Terkawi, M.A.; Iwasaki, N. Targeting Thymidine Phosphorylase as a Potential Therapy for Bone Loss Associated with Periprosthetic Osteolysis. Bioeng. Transl. Med. 2021, 6, e10232. [Google Scholar] [CrossRef] [PubMed]
- Kitaura, H.; Marahleh, A.; Ohori, F.; Noguchi, T.; Nara, Y.; Pramusita, A.; Kinjo, R.; Ma, J.; Kanou, K.; Mizoguchi, I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int. J. Mol. Sci. 2022, 23, 1481. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Molecular Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Lam, B.P.W.; Cruz, D.; Fulton, A. A robust demonstration of the cognate facilitation effect in first-language and second-language naming. J. Exp. Child Psychol. 2016, 141, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.H.; Han, D.M.; Kim, H.M.; Park, D.; Jeong, D.M.; Kang, H.A.; Jeon, C.O. Metabolic Features of Ganjang (a Korean Traditional Soy Sauce) Fermentation Revealed by Genome-Centered Metatranscriptomics. mSystems 2021, 6, e0044121. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Baccarella, A.; Williams, C.R.; Parrish, J.Z.; Kim, C.C. Empirical assessment of the impact of sample number and read depth on RNA-Seq analysis workflow performance. BMC Bioinform. 2018, 19, 423. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, S.; Furió-Tarí, P.; Turrà, D.; Pietro, A.D.; Nueda, M.J.; Ferrer, A.; Conesa, A. Tarazona S, Furió-Tarí P, Turrà D, Pietro AD, Nueda MJ, Ferrer A, Conesa A. Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 2015, 43, e140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mathur, R.; Rotroff, D.; Ma, J.; Shojaie, A.; Motsinger-Reif, A. Gene set analysis methods: A systematic comparison. BioData Mining 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
Pathway/Cluster | HMM Fraction | LMM Fraction |
---|---|---|
Differentiation | Modulates classical osteoclastogenesis pathways (e.g., RANKL/RANK) and TNF-related signaling. | Fine-tunes TNF signaling; influences NF-kappa-B pathways to a lesser extent. |
Fusion | Induces broad immune responses, influencing precursor fusion. | Enhances CD44 and CD47-mediated fusion, emphasizing immune modulation and bone homeostasis. |
Resorption | Influences DC-STAMP activity, contributing to OC fusion. | Modulates IL-6 receptor pathways, affecting bone resorption. |
Osteoclastogenesis and Inflammatory Factors | Increases IL-10 signaling, inhibiting osteoclastogenesis. | Stronger modulation of interferon signaling, affecting osteoclastogenesis regulation. |
Anti-Osteoclastogenic Inflammatory Factors | Modulates IL-10 signaling and affects immune responses broadly. | Modulates interferon signaling to regulate osteoclastogenesis. |
Inhibitory Pathway | Influences negative regulation of B cell differentiation. | Modulates IL-27-mediated signaling, impacting immune responses and OC function. |
Non-Canonical Pathway | Affects thioesterase activity and insulin-like growth factor binding. | Modulates insulin-like growth factor mRNA binding and thioesterase activity. |
Canonical Pathway | Strong modulation of MAP kinase activity and NF-kappa-B signaling. | Modulates NF-kappa-B and MAP kinase pathways to a lesser degree. |
Overall Impact on OC Biology | Induces broader inflammatory responses and OC differentiation, with a focus on classical signaling. | Targets more specific immune and growth factor signaling, with an emphasis on fine-tuning OC function. |
Regulatory Node | Osteoclast Function | Venom Fraction | Effect on STRING Network and Pathways | Functional Implication |
---|---|---|---|---|
NFATc1 | Master regulator of OC differentiation and gene expression | HMM | Enhances NF-kappa-B pathway interactions upstream of NFATc1, promoting inflammatory signaling | Increased OC differentiation and maturation driven by inflammation |
CTSK | Bone matrix degradation via proteolytic activity | HMM | Upregulates CTSK-associated networks involved in OC activation and resorption | Elevated bone resorption capacity of mature OC |
CD44/CD47 | Mediate OC precursor fusion and immune modulation | LMM | Selectively modulates CD44/CD47 interaction cluster, affecting cell adhesion and fusion with minimal inflammation | Precise control of OC precursor fusion and multinucleation without broad immune activation |
Phred Score (Q) | Error (E) | Accuracy (1 − Error) |
---|---|---|
10 | 1/10 = 10% | 90% |
20 | 1/100 = 1% | 99% |
30 | 1/1000 = 0.1% | 99.9% |
40 | 1/10,000 = 0.01% | 99.99% |
50 | 1/1,000,000 = 0.001% | 99.999% |
60 | 1/10,000,000 = 0.0001% | 99.9999% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amélio, F.; Vigerelli, H.; Araldi, R.P.; Batista, I.d.F.C.; Pimenta, D.C.; Kerkis, I. Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption. Toxins 2025, 17, 358. https://doi.org/10.3390/toxins17070358
D’Amélio F, Vigerelli H, Araldi RP, Batista IdFC, Pimenta DC, Kerkis I. Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption. Toxins. 2025; 17(7):358. https://doi.org/10.3390/toxins17070358
Chicago/Turabian StyleD’Amélio, Fernanda, Hugo Vigerelli, Rodrigo Pinheiro Araldi, Isabel de Fátima Correia Batista, Daniel Carvalho Pimenta, and Irina Kerkis. 2025. "Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption" Toxins 17, no. 7: 358. https://doi.org/10.3390/toxins17070358
APA StyleD’Amélio, F., Vigerelli, H., Araldi, R. P., Batista, I. d. F. C., Pimenta, D. C., & Kerkis, I. (2025). Comprehensive RNA-Seq Analysis of Human Osteoclast Function in Response to Bothrops moojeni Venom Fractions: Pathways of Bone Resorption and Cytoskeletal Disruption. Toxins, 17(7), 358. https://doi.org/10.3390/toxins17070358