Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases
Abstract
1. Introduction
2. The Botanical Characteristics and Chemical Components of Thesium chinense Turcz.
3. Definition and Development of NDDs
4. The Active Ingredients in Thesium chinense Turcz. May Affect NDDs
4.1. Flavonoids
4.2. Polysaccharides
4.3. Alkaloids
4.4. Organic Acids
4.5. Steroid
4.6. Volatile Oil
5. Potential Mechanisms of Thesium chinense Turcz. in Modulating NDD Pathogenesis
5.1. Anti-Inflammatory
5.2. Modulating the Gut Microbiota
5.3. Against Oxidative Stress
5.4. Modulation of the Cholinergic Nervous System
5.5. Modulation of Cerebrovascular Function
5.6. Neuroprotective Function
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.H.; Qiu, X.; Liu, C.; Shen, Z.M.; Zhou, X.X. Autophagy: The key mechanism of exercise in improving neurodegenerative diseases. Chin. J. Comp. Med. 2023, 33, 132–139. [Google Scholar]
- Zhang, N.; Qin, S.W.; Wu, H.Z.; Zhao, L.F.; Fang, F. Research progress in the detection of early biomarkers of neurodegenerative diseases. Chin. Mod. Dr. 2024, 62, 140–143+9. [Google Scholar]
- Wang, G.; Qi, J.L.; Liu, X.Y.; Ren, R.J.; Lin, S.H.; Hu, Y.S.; Li, H.X.; Xie, X.Y.; Wang, J.T.; Li, J.P.; et al. China Alzheimer’s Disease Report 2024. Diagn. Theory Pract. 2024, 23, 219–256. [Google Scholar]
- Zhang, L.Z.; Zhou, X.J.; Mao, J.J.; Ji, J.; Liang, L.L. The impact of traditional Chinese medicine constitution identification-based geriatric comprehensive assessment on the quality of life of geriatric patients. J. Tradit. Chin. Med. Manag. 2023, 31, 105–107. [Google Scholar]
- Hu, S.Q.; Chen, K.J.; Wu, Z.Z. Research progress in multi-target anti-Alzheimer’s disease of Chinese-Western medicine hybrids. J. Integr. Tradit. West. Med. 2024, 44, 373–378. [Google Scholar]
- Zang, C.X.; Bao, X.Q.; Sun, H.; Ji, J.; Liang, L.L. Research progress in traditional Chinese medicine compound treatment of Alzheimer’s disease. Pharmacol. Clin. J. Chin. Mater. Medica 2016, 32, 157–161. [Google Scholar]
- Liu, J.X. An overview of the new pharmacological activities of traditional Chinese medicine components for the treatment of neurodegenerative diseases. J. Yichun Univ. 2016, 38, 19–22. [Google Scholar]
- Cao, Q.; Wu, H.; Zhang, B.B.; Wu, X.J. Research progress on the role of flavonoids in the prevention and treatment of neurodegenerative diseases. Chin. J. Pharmacol. Toxicol. 2015, 29, 457–463. [Google Scholar]
- Li, J.Z.; Wang, Y.S.; Du, Z.W.; Wang, Y.; Zhang, C.F.; Li, T.A. Research progress on Thesium chinense Turcz. Chin. Med. J. 2024, 39, 92–101. [Google Scholar]
- Qiu, X.; Zhang, J.; Li, K.C.; Sun, Z.Y.; Shen, P.L.; Wang, F.H. Research progress on the correlation between gut microbiota and plant polysaccharides. China Food Nutr. 2021, 27, 54–57+20. [Google Scholar]
- Zeng, D.J.; Chen, Z.H.; Ding, K.Q.; Sun, X.Q.; Sun, Q.; Zhao, S.B. The application prospects of naturally-derived polysaccharides in the intervention of neurological developmental disorders. J. Shanghai Jiao Tong Univ. (Med. Sci.) 2024, 44, 779–787. [Google Scholar]
- Liu, Y.S.; Luo, M.; Pan, L.; Jiang, L.K.; Wang, Z.Q. Research progress on the antibacterial traditional Chinese medicine Thesium chinense Turcz. J. Prog. Pharmacol. 2006, 48, 252–256. [Google Scholar]
- Zhang, W.W.; Wang, Y.H.; Zhang, Z.P.; Zhen, S.H.; Cai, C.F. Suitability analysis of Thesium chinense Turcz. based on TCMGIS. China J. Mod. Tradit. Med. 2020, 22, 1962–1966. [Google Scholar]
- Liu, Z.Z. Chemical Composition and In-Vitro Activity of Thesium chinense Turcz. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2023. [Google Scholar] [CrossRef]
- Wu, Z.X. Research on the Extraction, Purification Process and Activity Test of Kaempferol Glycoside in Thesium chinense Turcz. Master’s Thesis, Guizhou University, Guiyang, China, 2016. [Google Scholar]
- Chen, P.Y.; Chen, X.Q.; Wu, C.; Meng, Y.; Cao, J.F. Research progress on the development and utilization of Thesium chinense Turcz. Chin. J. Wild Plant Resour. 2020, 39, 48–52. [Google Scholar]
- Li, G.H.; Fang, K.L.; Yang, K.; Cheng, X.P.; Wang, X.N.; Shen, T.; Lou, H.X. Thesium chinense Turcz.: An ethnomedical, phytochemical and pharmacological review. J. Ethnopharmacol. 2021, 273, 113950. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.L.; Jin, C.; Liao, J.W.; He, X.Y.; Zhang, L. Research progress on the mechanism of flavonoids in the treatment of neurodegenerative diseases by intervening neuroinflammation. Chin. Pharmacol. Bull. 2024, 40, 2224–2231. [Google Scholar]
- Wang, W.L.; Zhu, X.M.; Liu, X.L. Research progress on the influencing factors of polysaccharide bioactivity. Chem. Biochem. Eng. 2024, 41, 9–17. [Google Scholar]
- Xue, H.; Zhang, P.; Zhang, C.; Gao, Y.; Tan, J. Research progress in the preparation, structural characterization, and biological activities of polysaccharides from traditional Chinese medicine. Int. J. Biol. Macromol. 2024, 262 Pt 1, 129923. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Li, C.; Huang, Q.; Fu, X.; Dong, H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit. Rev. Food Sci. Nutr. 2023, 63, 5890–5910. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.Q. Preparation Method of Thesium chinense Turcz. Granules; Anhui Jiuhua Huayuan Pharmaceutical Co, Ltd: Anhui, China, 2015. [Google Scholar]
- Jin, S.Z.; Shi, P.C.; Hu, B.C. Introduction to Thesium chinense Turcz preparations. J. Tradit. Chin. Med. Clin. Health Care 1993. [Google Scholar] [CrossRef]
- Xu, Z.A.; Jiang, H.Y.; Fan, X.Y.; Li, W.F.; Bao, J.; Xu, C.; Jin, H.T. Research progress on compound drugs against neurodegenerative diseases. J. China J. Drug Alerts 2024, 21, 967–972. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Mckeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attema, J.; Ballard, C.G. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Kopp, K.O.; Glotfelty, E.J.; LI, Y.; Greig, N.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol. Res. 2022, 186, 106550. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M., 3rd; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, F. Visualization analysis of research hotspots on exercise and neurodegenerative diseases. Sports Sci. Technol. 2024, 45, 38–41+5. [Google Scholar]
- Yan, L.Y.; Wu, H.; Zhao, L.; Niu, S. The protective mechanism of exercise training in neurodegenerative diseases. J. Neuroanat. 2024, 40, 262–266. [Google Scholar]
- Zhou, S.R. Establishment and Analysis of a Database of Lifestyle Habits Related to Neurodegenerative Diseases. Master’s Thesis, Soochow University, Suzhou, China, 2020. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Sun, L.Y.; Cao, J.M.; Cheng, Y.; Li, S.; Liu, X.F. Pathogenesis and new therapeutic advances in Alzheimer’s disease. J. Hebei Norm. Univ. (Nat. Sci. Ed.) 2024, 48, 401–413. [Google Scholar]
- Chen, S.Y.; Gao, Y.; Sun, J.Y.; Meng, X.L.; Yang, D.; Fan, L.H.; Xiang, L.; Wang, P. Traditional Chinese Medicine: Role in Reducing β-Amyloid, Apoptosis, Autophagy, Neuroinflammation, Oxidative Stress, and Mitochondrial Dysfunction of Alzheimer’s Disease. Front. Pharmacol. 2020, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Zhang, Y.K. Research progress on Chuanxiong in neurodegenerative diseases. Chin. J. Tradit. Chin. Med. 2024, 44, 1–10. [Google Scholar]
- Gao, Y.J.; Zhu, Y.X.; Sun, Q.M.; Chen, D.H. Ribosome-associated protein quality control: Implications for neurodegenerative diseases and therapeutic potential. Sci. Bull. 2024, 69, 1165–1169. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Li, P.S.; Xia, H.; Zhang, M.Y.; Yang, X.L. The causal relationship between Parkinson’s disease and gut microbiota. J. Brain Nerv. Dis. 2024, 32, 623–629. [Google Scholar]
- Xu, T.; Shen, L.H.; Wang, G.H. Research progress on clinical application of hyperbaric oxygen therapy in neurodegenerative diseases. J. Nantong Univ. (Med. Ed.) 2024, 44, 260–265. [Google Scholar]
- Hao, Y.X. Database System of RNA Editing in Neurodegenerative Diseases. Master’s Thesis, Xidian University, Xian, China, 2023. [Google Scholar] [CrossRef]
- Cao, S.; Qi, X.; Zhang, Y.J.; Liu, M.Y.; FU, X.X.; Duan, K.X. Research status of traditional Chinese medicine targeted regulation of inflammasomes in the treatment of vascular dementia. Chin. J. Tradit. Chin. Med. 2024, 42, 8–13. [Google Scholar]
- Tian, W.G.; Wang, C.F.; Chen, J.P.; Liu, Y.; Gai, X.H.; Ren, T.; Tian, C.W. Research progress on the effects and mechanisms of traditional Chinese medicine in combating Alzheimer’s disease. Acta Pharm. Sin. 2022, 53, 3195–3208. [Google Scholar]
- Ying, C.M.; Pan, X.L.; Wang, B.Q.; He, Y.X.; Zhao, W.J.; Liu, F.X.; Zhao, Y.K. Research progress on traditional Chinese medicine in inhibiting inflammatory responses and intervening vascular dementia. Chin. Tradit. Pat. Med. 2025, 47, 148–155. [Google Scholar]
- Li, Y.; Wang, D.; Li, T.; YAN, Y.M. Research progress on the pharmacological mechanisms of Rehmannia glutinosa in the treatment of Parkinson’s disease. Chin. J. Exp. Tradit. Med. Formulae 2022, 28, 228–236. [Google Scholar]
- Pei, H.; Ma, L.; Cao, Y.; Wang, F.X.; Li, N.Y.; Liu, M.X.; Wei, Y.; Li, H. Traditional Chinese Medicine for Alzheimer’s Disease and Other Cognitive Impairment: A Review. Am. J. Chin. Med. 2020, 48, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Ding, L.; Wang, F.; Lin, L. A Review of the Pathogenesis and Chinese Medicine Intervention of Alzheimer’s Disease. J. Integr. Neurosci. 2022, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- AL-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; AIMssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Youdim, K.A.; Joseph, J.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects. Free Radic. Biol. Med. 2001, 30, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Study on Extraction, Purification, Physicochemical Properties and Antioxidant Activity of Thesium chinense Turcz. Polysaccharides. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2017. [Google Scholar] [CrossRef]
- Zhang, R.J.; Jing, Y.S.; Zhang, D.S. Polysaccharides of traditional Chinese medicine in the treatment of neurodegenerative diseases and their mechanisms. Chin. J. Pharmacol. Toxicol. 2019, 33, 876–877. [Google Scholar]
- Li, K. Study on Extraction, Purification, Structural Characterization and Antioxidant Activity of Thesium chinense Turcz. Polysaccharides. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2015. [Google Scholar]
- Wang, Z.; Li, S.S. Isolation and identification of alkaloid components in Thesium chinense Turcz. Chin. J. Med. Chem. 2006, 17, 306–308. [Google Scholar]
- Long, Z.Y.; Chen, M.M.; Chen, H.S.; Zhang, L.; Dai, T.L. Research progress on extraction process and physiological activity of plant alkaloids. Shandong Chem. Ind. 2025, 54, 104–106. [Google Scholar]
- Wang, Y.H.; Li, M.Q.; Zhao, X.L.; Zhang, L.; Dai, T.L. Research progress on pharmacological effects and clinical applications of common traditional Chinese medicine alkaloids. West China J. Pharm. Sci. 2025, 40, 95–99. [Google Scholar]
- Perry, E.; Court, J.; Goodchild, R.; Griffths, M.; Jaros, E.; Johnson, M.; Lloyd, S.; Piggott, M.; Spurden, D.; Ballard, C.; et al. Clinical neurochemistry: Developments in dementia research based on brain bank material. J. Neural Transm. 1998, 105, 915–933. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.M.; Wu, G.F.; Lu, H. Research progress on the pharmacological actions of alkaloid compounds. J. Shizhen Med. Mater. Medica Res. 2003, 14, 700–702. [Google Scholar]
- Yu, H.Y.; Yang, Y.S. Research on the alkaloids of Huperzia selago (L.) Trev. J. Shizhen Med. Mater. Medica Res. 2002, 13, 176–179. [Google Scholar]
- Tang, X.L.; Liu, J.X.; Li, L. Pharmacological effects of organic acid components of traditional Chinese medicine and their application in cardiovascular diseases. Chin. J. Exp. Tradit. Med. Formulae 2012, 18, 243–246. [Google Scholar]
- Yang, F.; Min, Y.; Liu, X.Y.; Rao, B.; Wang, K.M.; Yang, Z.W. Research progress on microbial transformation and degradation metabolism of steroidal compounds. Microbiol. China 2019, 46, 2743–2762. [Google Scholar]
- Yang, Y.; Liu, Y.; Zhang, Y.; Ji, W.; Wang, L.; Lee, S.C. Periplogenin Activates ROS-ER Stress Pathway to Trigger Apoptosis via BIP-eIF2α- CHOP and IRE1α-ASK1-JNK Signaling Routes. Anti-Cancer Agents Med. Chem. 2021, 21, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, R. Initial Exploration of the Anti-Colorectal Cancer Effects and Mechanisms of Geniposide Combined with 5-FU. Master’s Thesis, Shanxi University, Taiyuan, China, 2021. [Google Scholar]
- Weng, J.; Liu, H.; Wu, Z.; Huang, Y.; Zhang, S.; Xu, Y.J. Periplocin improves the sensitivity of oxaliplatin-resistant hepatocellular carcinoma cells by inhibiting M2 macrophage polarization. Biomol. Biomed. 2025, 25, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H. Research status of volatile oils in traditional Chinese medicine. Mod. Tradit. Chin. Med. 2009, 29, 68–70. [Google Scholar]
- Shui, Y.L.; Ren, Z.Q.; He, Y.J.; Chen, B.B.; Hong, J.; Liu, K.T.; Xiao, L. Hydrogen sulfide and neuroinflammation-mediated neurodegenerative diseases. J. Local Anat. Surg. Oper. 2024, 33, 551–554. [Google Scholar]
- Villa, A.; Vegeto, E.; Poletti, A.; Maggi, A. Estrogens, Neuroinflammation, and Neurodegeneration. Endocr. Rev. 2016, 37, 372–402. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Z.; He, P.Y.; Zhu, S.W.; Zang, L.Q.; Zhu, S. Research progress on the pharmacological effects and clinical application of rutin. J. Guangdong Pharm. Univ. 2025, 41, 158–164. [Google Scholar]
- Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr. Neuropharmacol. 2020, 18, 918–935. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Jana, M.; Majumder, M.; Mondal, S.; Roy, A.; Pahan, K. Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat. Commun. 2021, 12, 5382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Nan, H.; Guo, J.; Yang, S.; Liu, J. Periplocin induces apoptosis and inhibits inflammation in rheumatoid arthritis fibroblast-like synoviocytes via nuclear factor kappa B pathway. IUBMB Life 2020, 72, 1951–1959. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhen, H.N.; Wang, Q.; He, F. Quercetin inhibits inflammatory responses and extracellular matrix damage of COPD model cells by inhibiting the PI3K/AKT signaling pathway. Chin. J. Med. Mater. 2024, 47, 2063–2066. [Google Scholar]
- Wang, J.; Jalali Motlagh, N.; Wang, C.; Wojtkiewicz, G.R.; Schmidt, S.; Chau, C.; Narsimhan, R.; Kullenberg, E.G.; Zhu, C.; Linnoila, J.; et al. d-mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2107663118. [Google Scholar] [CrossRef] [PubMed]
- Hemshekhar, M.; Thushara, R.M.; Chandranayaka, S.; Sherman, L.S.; Kemparaju, K.; Girish, K.S. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int. J. Biol. Macromol. 2016, 86, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Barreca, M.M.; Alessandro, R.; Corrado, C. Effects of Flavonoids on Cancer, Cardiovascular and Neurodegenerative Diseases: Role of NF-κB Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 9236. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.F.; Lu, M.; Zhao, Y.P.; Liu, N.; Niu, Y.T.; Niu, Y.; Zhou, R.; Yu, J.Q. N-Methylcytisine Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Mice by Inhibiting the Inflammatory Response. Molecules 2018, 23, 510. [Google Scholar] [CrossRef] [PubMed]
- Tsypysheva, I.P.; Borisevich, S.S.; Zainullina, L.F.; Makara, N.S.; Koval′skaya, A.V.; Petrova, P.R.; Khursan, S.L.; Vakhitova, Y.V.; Zarudii, F.S. Anti-Inflammatory Activity of Novel 12-N-methylcytisine Derivatives. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2017, 16, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, M.; Hong, H.; Luo, C.; Liu, Z.; Yang, R. Sophocarpine attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Immunol. Res. 2018, 66, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Zhang, X.; Chen, Q.; Xia, L. Role of succinic acid in the regulation of sepsis. Int. Immunopharmacol. 2022, 110, 109065. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, Y.; Li, H.; Luo, Z.; Wang, Q.; Yao, X.; Tang, F.; Huang, Y.; Ling, Y.; Ma, W. Periplogenin inhibits pyroptosis of fibroblastic synoviocytes in rheumatoid arthritis through the NLRP3/Caspase-1/GSDMD signaling pathway. Int. Immunopharmacol. 2024, 133, 112041. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Jing, Q.; Yan, X.; Chen, J.; Shen, Y.; Ma, Y.; Xiang, Y.; Li, X.; Liu, X.; Liu, Z.; et al. 4-Hydroxybenzoic acid restrains Nlrp3 inflammasome priming and activation via disrupting PU.1 DNA binding activity and direct antioxidation. Chem.-Biol. Interact. 2024, 404, 111262. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pardo, P.; Kliest, T.; Dodiya, H.B.; Broersen, L.M.; Garssen, J.; Keshavarzian, A.; Kraneveld, A.D. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. Eur. J. Pharmacol. 2017, 817, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhou, D.; Hong, Z. Research status of gut microbiota in neurological and psychiatric diseases. Chin. J. Microecol. 2018, 30, 350–357. [Google Scholar]
- Ai, C.; Ma, N.; Sun, X.; Duan, M.; Wu, S.; Yang, J.; Wen, C.; Song, S. Absorption and degradation of sulfated polysaccharide from pacific abalone in in vitro and in vivo models. J. Funct. Foods 2017, 35, 127–133. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef] [PubMed]
- Barnham, K.J.; Masters, C.L.; Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 2004, 3, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Panahi, Y.; Rajaee, S.M.; Johnston, T.P.; Sahebkar, A. Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: A literature review. J. Cell. Biochem. 2019, 120, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Wen, L.L.; Huang, Y.N.; Chen, Y.T.; Ku, M.C. Dual effects of antioxidants in neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharm. Des. 2006, 12, 3521–3533. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxidative Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef] [PubMed]
- Hawas, U.W.; EL-Ansari, M.A.; EL-Hagrassi, A.M. A new acylated flavone glycoside, in vitro antioxidant and antimicrobial activities from Saudi Diospyros mespiliformis Hochst. ex A. DC (Ebenaceae) leaves. Zeitschrift fur Naturforschung C. J. Biosci. 2022, 77, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Fu, Y.; Zhang, H.; Lai, Z.Q.; Dong, Y.F. Sophocarpine alleviates doxorubicin-induced heart injury by suppressing oxidative stress and apoptosis. Sci. Rep. 2024, 14, 428. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.M. Research progress on acetylcholinesterase inhibitors in the treatment of senile dementia. Zhejiang Pract. Med. 2005, 286–288. [Google Scholar] [CrossRef]
- Guo, J.Q.; Wei, Y.H.; Zhang, H.; Liu, N.; Yang, J.X.; Kong, J. Pathogenesis of Alzheimer’s disease and research progress in treatment based on neurotransmitters. Med. Rev. 2021, 27, 3761–3766. [Google Scholar]
- Zou, L.; Quan, M.H.; Cheng, Y.Q.; Li, L.T. Research progress on acetylcholinesterase inhibitors. Food Sci. 2005, 26, 105–108. [Google Scholar]
- Shu, Z.M. Research on the Biological Activity of Volatile Oils and Organic Acids in Commonly Used Traditional Chinese Medicine. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2011. [Google Scholar]
- Gavilan, J.; Mennickent, D.; Ramirez-Molina, O.; Triviño, S.; Perez, C.; Silva-Grecchi, T.; Godoy, P.A.; Becerra, J.; Aguayo, L.G.; Moraga-Cid, G.; et al. 17 Oxo Sparteine and Lupanine, Obtained from Cytisus scoparius, Exert a Neuroprotection against Soluble Oligomers of Amyloid-β Toxicity by Nicotinic Acetylcholine Receptors. J. Alzheimer’s Dis. 2019, 67, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Corral-Sarasa, J.; Martínez-Gálvez, J.M.; González-García, P.; Wendling, O.; Jiménez-Sánchez, L.; López-Herrador, S.; Quinzii, C.M.; Díaz-Casado, M.E.; López, L.C. 4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease. Cell Rep. 2024, 43, 114148. [Google Scholar] [CrossRef] [PubMed]
- Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease--lessons from pathology. BMC Med. 2014, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Commenges, D.; Scotet, V.; Renaud, S.; Wendling, O.; Jiménez-Sánchez, L.; López-Herrador, S.; Quinzii, C.M.; Díaz-Casado, M.E.; López, L.C. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol. 2000, 16, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; He, F.; Zhao, K.; Lin, Y.X.; Li, H.; Liu, X.; Cen, J.; Duan, S. A Triple-Targeted Rutin-Based Self-Assembled Delivery Vector for Treating Ischemic Stroke by Vascular Normalization and Anti-Inflammation via ACE2/Ang1-7 Signaling. ACS Cent. Sci. 2023, 9, 1180–1199. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Xiao, J.; Ju, F.; Liu, J.; Hu, Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front. Pharmacol. 2024, 15, 1353234. [Google Scholar] [CrossRef] [PubMed]
- Krikorian, R.; Boespflug, E.L.; Fleck, D.E.; Liu, J.; Hu, Z. Concord grape juice supplementation and neurocognitive function in human aging. J. Agric. Food Chem. 2012, 60, 5736–5742. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.G.; Shukitt-Hale, B. Berry fruit enhances beneficial signaling in the brain. J. Agric. Food Chem. 2012, 60, 5709–5715. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Hao, Q.; Zong, Y.; Shen, Y.; Zhang, Z.; Ma, C. Sophocarpine Attenuates Cognitive Impairment and Promotes Neurogenesis in a Mouse Model of Alzheimer’s Disease. Neuroimmunomodulation 2021, 28, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Ertugrul, B.; Iplik, E.S.; Cakmakoglu, B. In Vitro Inhibitory Effect of Succinic Acid on T-Cell Acute Lymphoblastic Leukemia Cell Lines. Arch. Med. Res. 2021, 52, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Gan, J.L.; Luo, Y.M. Review on therapeutic drugs for neurodegenerative diseases. Guangdong Chem. Ind. 2014, 41, 107–108. [Google Scholar]
- Spencer, J.P. Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes Nutr. 2009, 4, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Yu, J. Clinical Research Progress of Brain-derived neurotrophic factor. J. Neuroanat. 2011, 27, 221–225. [Google Scholar]
- Liang, B.; Li, Y.; Zhang, S. New Progress of Brain-Derived Neurotrophic Factor in Basic Research and Clinical Application of Brain Trauma. J. Armed Police Med. Coll. 2010, 19, 338–340+344. [Google Scholar]
- Chang, L.; Dai, Y. Immunomodulatory effects of isoquinoline alkaloids. Pharm. Clin. Res. 2020, 28, 198–201. [Google Scholar]
- Wang, Y. Multi-Target Drug Molecule Design, Synthesis and Pharmacological Activity Evaluation for Neurodegenerative Diseases. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2012. [Google Scholar]
- Luo, H.; Wei, S.; Fu, S.; Han, L. Role of Achyranthes aspera in neurodegenerative diseases: Current evidence and future directions. Front. Pharmacol. 2025, 16, 1511011. [Google Scholar] [CrossRef] [PubMed]
Categories | Main Ingredients | Chemical Structure (Molecular Formula) | Role | References |
---|---|---|---|---|
Flavonoids | Kaempferol | anti-inflammatory and analgesic effects (the hydroxyl position); antioxidant effects and anti-apoptotic effects | [8,14,45,46,47] | |
Rutin | ||||
flavone glycoside | ||||
Polysaccharides | D(+)-Mannose | neuroprotective effects (apoptosis, enhancing the vitality of nerve cells and resisting oxidative stress injury, and inhibiting excitotoxicity to alleviate further damage of neurons) and andantioxidant effects influence the regulation of the intestinal flora | [48,49,50] | |
Sodium D-Glucuronate Monohydrate | ||||
Alkaloids | N-Methylcytisine | antibacterial, anti-inflammatory, antiviral, anti-tumor, antioxidant, and immune regulation improve the central nervous system | [51,52,54,55,56] | |
Lupanine | ||||
Sophocarpine | ||||
Organic acids | Succinic Acid | anti-inflammatory responses, inhibition of platelet aggregation, anti-thrombosis, antioxidation, and induction of tumor cell apoptosis, etc. | [34,57] | |
4-Hydroxybenzoicacid | ||||
The steroid compounds | Periplogenin | anti-inflammatory, antioxidant, and immunomodulatory effects effectively enhance the immune function of the body and help resist the invasion of external pathogens; anti-colon cancer effect | [59,60] | |
periplocin | promote apoptosis of tumor cells and inhibit tumor growth (anti-tumor mechanism may be related to the activation of apoptosis-related signaling pathways) | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhao, Y.; Wang, R.; Zhou, R.; Chen, X.; Jiang, J.; Dai, Y.; Luo, H. Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases. Int. J. Mol. Sci. 2025, 26, 7079. https://doi.org/10.3390/ijms26157079
Li Z, Zhao Y, Wang R, Zhou R, Chen X, Jiang J, Dai Y, Luo H. Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases. International Journal of Molecular Sciences. 2025; 26(15):7079. https://doi.org/10.3390/ijms26157079
Chicago/Turabian StyleLi, Ziyi, Yanfang Zhao, Rong Wang, Ruoxuan Zhou, Xuehua Chen, Jingchen Jiang, Yilan Dai, and Huaiqing Luo. 2025. "Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases" International Journal of Molecular Sciences 26, no. 15: 7079. https://doi.org/10.3390/ijms26157079
APA StyleLi, Z., Zhao, Y., Wang, R., Zhou, R., Chen, X., Jiang, J., Dai, Y., & Luo, H. (2025). Research Progress on the Effect of Thesium chinense Turcz. on Neurodegenerative Diseases. International Journal of Molecular Sciences, 26(15), 7079. https://doi.org/10.3390/ijms26157079