Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research
Abstract
1. Introduction
1.1. Inflammation and Metabolic Concerns in Kidney Transplant Recipients
1.2. Definition of Nuts
1.3. Rationale for Studying Anti-Inflammatory and Cardiometabolic Effects of Nuts in Kidney Transplantation
2. Dietary Nut Enrichment as a Simple, Feasible Multi-Nutrient Intervention
2.1. Body Composition and Nutritional Status
2.1.1. Obesity
2.1.2. Protein Malnutrition
2.2. Cardiovascular Health—Blood Pressure and Vascular Calcification
2.2.1. Magnesium
2.2.2. Potassium
2.3. Cardiovascular Health—Lipid Status
2.4. Immunological Status
2.5. Gut Health
2.6. Inflammation
3. Potential Risks or Concerns of Dietary Nut Enrichment
3.1. Allergies
3.2. Oxalate
3.3. Mycotoxins
3.4. Phosphate/Phosphorus
4. Discussion
4.1. Current and Advised Nut Intake
4.2. Considerations for Study Population
4.3. Considerations for Study Design
4.4. Considerations for Follow-Up
4.5. Considerations for the Intervention
4.6. Considerations for Outcome Measures
4.7. Considerations for Sample Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hariharan, S.; Israni, A.K.; Danovitch, G. Long-Term Survival after Kidney Transplantation. N. Engl. J. Med. 2021, 385, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Shi, B.; Kelly, P.J.; Pilmore, H.; Clayton, P.A.; Chadban, S.J. Death after Kidney Transplantation: An Analysis by Era and Time Post-Transplant. J. Am. Soc. Nephrol. 2020, 31, 2887–2899. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; te Velde-Keyzer, C.A.; de Borst, M.H.; Navis, G.J.; Bakker, S.J.L. Lifestyle, Inflammation, and Vascular Calcification in Kidney Transplant Recipients: Perspectives on Long-Term Outcomes. J. Clin. Med. 2020, 9, 1911. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Alkaff, F.F.; Post, A.; Knobbe, T.J.; Tepel, M.; Thaunat, O.; Berger, S.P.; van den Born, J.; Genovese, F.; Karsdal, M.A.; et al. Plasma endotrophin, reflecting tissue fibrosis, is associated with graft failure and mortality in KTRs: Results from two prospective cohort studies. Nephrol. Dial. Transplant. 2022, 38, gfac332. [Google Scholar] [CrossRef] [PubMed]
- Abedini, S.; Holme, I.; März, W.; Weihrauch, G.; Fellström, B.; Jardine, A.; Cole, E.; Maes, B.; Neumayer, H.H.; Grønhagen-Riska, C.; et al. Inflammation in Renal Transplantation. Clin. J. Am. Soc. Nephrol. 2009, 4, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Heldal, T.F.; Åsberg, A.; Ueland, T.; Reisæter, A.V.; Pischke, S.E.; Mollnes, T.E.; Aukrust, P.; Hartmann, A.; Heldal, K.; Jenssen, T. Inflammation in the early phase after kidney transplantation is associated with increased long-term all-cause mortality. Am. J. Transplant. 2022, 22, 2016–2027. [Google Scholar] [CrossRef] [PubMed]
- Bayés, B.; Granada, M.L.; Pastor, M.C.; Lauzurica, R.; Salinas, I.; Sanmartí, A.; Espinal, A.; Serra, A.; Navarro, M.; Bonal, J.; et al. Obesity, Adiponectin and Inflammation as Predictors of New-Onset Diabetes Mellitus After Kidney Transplantation. Am. J. Transplant. 2007, 7, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Yepes-Calderón, M.; Sotomayor, C.G.; Gans, R.O.B.; Berger, S.P.; Leuvenink, H.G.D.; Tsikas, D.; Rodrigo, R.; Navis, G.J.; Bakker, S.J.L. Post-transplantation plasma malondialdehyde is associated with cardiovascular mortality in renal transplant recipients: A prospective cohort study. Nephrol. Dial. Transplant. 2020, 35, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; Gomes-Neto, A.W.; van Londen, M.; Gans, R.O.B.; Nolte, I.M.; Berger, S.P.; Navis, G.J.; Rodrigo, R.; Leuvenink, H.G.D.; Schalkwijk, C.G.; et al. Circulating advanced glycation endproducts and long-term risk of cardiovascular mortality in kidney transplant recipients. Clin. J. Am. Soc. Nephrol. 2019, 14, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Bustos, N.I.; Sotomayor, C.G.; Pol, R.A.; Navis, G.J.; Bakker, S.J.L. Polyphenols and Novel Insights Into Post-kidney Transplant Complications and Cardiovascular Disease: A Narrative Review. Front. Cardiovasc. Med. 2021, 8, 751036. [Google Scholar] [CrossRef] [PubMed]
- Tabriziani, H.; Lipkowitz, M.S.; Vuong, N. Chronic kidney disease, kidney transplantation and oxidative stress: A new look to successful kidney transplantation. Clin. Kidney J. 2018, 11, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Vogelpohl, F.A.; Gomes-Neto, A.W.; Martini, I.A.; Sotomayor, C.G.; Groothof, D.; Osté, M.C.J.; Heiner-Fokkema, M.R.; Muskiet, F.A.J.; Berger, S.P.; Navis, G.; et al. Low Circulating Concentrations of Very Long Chain Saturated Fatty Acids Are Associated with High Risk of Mortality in Kidney Transplant Recipients. Nutrients 2021, 13, 3383. [Google Scholar] [CrossRef] [PubMed]
- Khalili, L.; A-Elgadir, T.M.E.; Mallick, A.K.; El Enshasy, H.A.; Sayyed, R.Z. Nuts as a Part of Dietary Strategy to Improve Metabolic Biomarkers: A Narrative Review. Front. Nutr. 2022, 9, 881843. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Damasceno, N.R.T.; Braga, R.A.M.; Martinez, R.; Kris-Etherton, P.; Sala-Vila, A. Effect of Nuts on Markers of Inflammation and Oxidative Stress: A Narrative Review. Nutrients 2023, 15, 1099. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Daly, R.M.; Tey, S.L.; Brown, R.; Wong, T.H.T.; Tan, S.Y. Perspective: Is it Time to Expand Research on “Nuts” to Include “Seeds”? Justifications and Key Considerations. Adv. Nutr. 2022, 13, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- RIVM. Dutch Food Composition Database (NEVO). 2021. Available online: https://www.rivm.nl/node/50531 (accessed on 15 July 2025).
- Vecka, M.; Staňková, B.; Kutová, S.; Tomášová, P.; Tvrzická, E.; Žák, A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN Appl. Sci. 2019, 1, 1531. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Salehi-Abargouei, A.; Salas-Salvadó, J.; Guasch-Ferré, M.; Humphries, K.; Sarrafzadegan, N. The effect of tree nut, peanut, and soy nut consumption on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Am. J. Clin. Nutr. 2015, 101, 966–982. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomás, N.; Paz-Graniel, I.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Rev. 2019, 77, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- Houston, L.; Probst, Y.C.; Singh, M.C.; Neale, E.P. Tree Nut and Peanut Consumption and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1029–1049. [Google Scholar] [CrossRef] [PubMed]
- Neale, E.P.; Tapsell, L.C.; Guan, V.; Batterham, M.J. The effect of nut consumption on markers of inflammation and endothelial function: A systematic review and meta-analysis of randomised controlled trials. BMJ Open 2017, 7, e016863. [Google Scholar] [CrossRef] [PubMed]
- Cyrino, L.G.; Galpern, J.; Moore, L.; Borgi, L.; Riella, L.V. A Narrative Review of Dietary Approaches for Kidney Transplant Patients. Kidney Int. Rep. 2021, 6, 1764. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Post, A.; Gomes-Neto, A.W.; Groothof, D.; Kunutsor, S.K.; Nilsen, T.; Hidden, C.; Sundrehagen, E.; Eisenga, M.F.; Navis, G.; et al. Plasma neutrophil gelatinase-associated lipocalin and kidney graft outcome. Clin. Kidney J. 2021, 15, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Douwes, R.M.; Gomes-Neto, A.W.; Eisenga, M.F.; Vinke, J.S.J.; de Borst, M.H.; van den Berg, E.; Berger, S.P.; Touw, D.J.; Hak, E.; Blokzijl, H.; et al. Chronic Use of Proton-Pump Inhibitors and Iron Status in Renal Transplant Recipients. J. Clin. Med. 2019, 8, 1382. [Google Scholar] [CrossRef] [PubMed]
- Douwes, R.M.; Gomes-Neto, A.W.; Schutten, J.C.; van den Berg, E.; de Borst, M.H.; Berger, S.P.; Touw, D.J.; Hak, E.; Blokzijl, H.; Navis, G.; et al. Proton-Pump Inhibitors and Hypomagnesaemia in Kidney Transplant Recipients. J. Clin. Med. 2019, 8, 2162. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: A summary. Kidney Int. 2010, 77, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.V.N.; Moore, L.W. Nutrition Trends in Kidney Transplant Recipients: The Importance of Dietary Monitoring and Need for Evidence-Based Recommendations. Front. Med. 2018, 5, 302. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Rodrigues, C.E.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Wan, S.; Luo, Y.; Luo, J.; Zhang, X.; Zhou, S.; Xu, T.; He, J.; Mechanick, J.I.; Wu, W.C.; et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll. Cardiol. 2022, 80, 2269–2285. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Spence, J.D.; Giovannucci, E.L.; Kim, Y.; Josse, R.G.; Vieth, R.; Sahye-Pudaruth, S.; Paquette, M.; Patel, D.; Mejia, S.B.; et al. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment: JACC Focus Seminar. J. Am. Coll. Cardiol. 2021, 77, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lewis, E.D.; Pae, M.; Meydani, S.N. Nutritional modulation of immune function: Analysis of evidence, mechanisms, and clinical relevance. Front. Immunol. 2019, 9, 3160. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Martinez-Urbistondo, D.; Vargas-Nuñez, J.A.; Martinez, J.A. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr. Obes. Rep. 2022, 11, 305–335. [Google Scholar] [CrossRef] [PubMed]
- Kremer, D.; Post, A.; Seidel, U.; Huebbe, P.; van der Veen, Y.; Groothof, D.; Gomes-Neto, A.W.; Knobbe, T.J.; Lüersen, K.; Eisenga, M.F.; et al. Boron Intake and decreased risk of mortality in kidney transplant recipients. Eur. J. Nutr. 2022, 61, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Kremer, D.; Groothof, D.; Seidel, U.; Huebbe, P.; Franssen, C.F.M.; Kema, I.P.; Lüersen, K.; Rimbach, G.; Bakker, S.J.L. Dietary lithium intake, graft failure and mortality in kidney transplant recipients. Nephrol. Dial. Transplant. 2022, 38, 1867–1879. [Google Scholar] [CrossRef] [PubMed]
- Calderon, M.Y.; Kremer, D.; Post, A.; Seidel, U.; Huebbe, P.; Knobbe, T.J.; Lüersen, K.; Eisenga, M.F.; Navis, G.J.; Rimbach, G.; et al. 215.2: Urinary Selenium Excretion and Long-term Outcomes in Stable Kidney Transplant Recipients. Transplantation 2022, 106, S40. [Google Scholar] [CrossRef]
- McMillan, D.C.; Maguire, D.; Talwar, D. Relationship between nutritional status and the systemic inflammatory response: Micronutrients. Proc. Nutr. Soc. 2019, 78, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Galloway, S.P.; McMillan, D.C.; Sattar, N. Effect of the inflammatory response on trace element and vitamin status. Ann. Clin. Biochem. Int. J. Lab. Med. 2000, 37, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Bomer, N.; Pavez-Giani, M.G.; Beverborg, N.G.; Cleland, J.G.F.; van Veldhuisen, D.J.; van der Meer, P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J. Intern. Med. 2022, 291, 713–731. [Google Scholar] [CrossRef] [PubMed]
- Balakrishna, R.; Bjørnerud, T.; Bemanian, M.; Aune, D.; Fadnes, L.T. Consumption of Nuts and Seeds and Health Outcomes Including Cardiovascular Disease, Diabetes and Metabolic Disease, Cancer, and Mortality: An Umbrella Review. Adv. Nutr. 2022, 13, 2136–2148. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Neto, A.W.; Osté, M.C.J.; Sotomayor, C.G.; van den Berg, E.; Geleijnse, J.M.; Berger, S.P.; Gans, R.O.B.; Bakker, S.J.L.; Navis, G.J. Mediterranean Style Diet and Kidney Function Loss in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2020, 15, 238–246. [Google Scholar] [CrossRef] [PubMed]
- El-Agroudy, A.E.; Wafa, E.W.; Gheith, O.E.; El-Dein, A.B.S.; Ghoneim, M.A. Weight gain after renal transplantation is a risk factor for patient and graft outcome. Transplantation 2004, 77, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Altheaby, A.; Alajlan, N.; Shaheen, M.F.; Abosamah, G.; Ghallab, B.; Aldawsari, B.; Rashidi, A.; Gafar, M.; Arabi, Z. Weight gain after renal transplant: Incidence, risk factors, and outcomes. PLoS ONE 2022, 17, e0268044. [Google Scholar] [CrossRef] [PubMed]
- Dienemann, T.; Ziolkowski, S.L.; Bender, S.; Goral, S.; Long, J.; Baker, J.F.; Shults, J.; Zemel, B.S.; Reese, P.P.; Wilson, F.P.; et al. Changes in Body Composition, Muscle Strength, and Fat Distribution Following Kidney Transplantation. Am. J. Kidney Dis. 2021, 78, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Rosivall, L.; Novak, M.; Kalantar-Zadeh, K.; Molnar, M.Z.; Mucsi, I. Body mass index, waist circumference and mortality in kidney transplant recipients. Am. J. Transplant. 2010, 10, 2644–2651. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, I.M.Y.; Post, A.; Kremer, D.; Boslooper-Meulenbelt, K.; Van Der Veen, Y.; De Jong, M.F.C.; Pol, R.A.; TransplantLines Investigators; Jager-Wittenaar, H.; Navis, G.J.; et al. Muscle mass, muscle strength and mortality in kidney transplant recipients: Results of the TransplantLines Biobank and Cohort Study. J. Cachexia Sarcopenia Muscle 2022, 13, 2932–2943. [Google Scholar] [CrossRef] [PubMed]
- Eslami, O.; Shidfar, F.; Dehnad, A. Inverse association of long-term nut consumption with weight gain and risk of overweight/obesity: A systematic review. Nutr. Res. 2019, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mateo, G.; Rojas-Rueda, D.; Basora, J.; Ros, E.; Salas-Salvadó, J. Nut intake and adiposity: Meta-analysis of clinical trials. Am. J. Clin. Nutr. 2013, 97, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
- Guarneiri, L.L.; Cooper, J.A. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. 2021, 12, 384–401. [Google Scholar] [CrossRef] [PubMed]
- Vučković, M.; Radić, J.; Gelemanović, A.; Raos, H.; Nenadić, D.B.; Kolak, E.; Radić, M. Mediterranean diet adherence and nutritional status in dalmatian kidney transplant recipients—Are they related? Nutrients 2021, 13, 3246. [Google Scholar] [CrossRef] [PubMed]
- Nikodijevic, C.J.; Probst, Y.C.; Tan, S.Y.; Neale, E.P. The Effects of Tree Nut and Peanut Consumption on Energy Compensation and Energy Expenditure: A Systematic Review and Meta-Analysis. Adv. Nutr. 2023, 14, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Nikodijevic, C.J.; Probst, Y.C.; Tan, S.Y.; Neale, E.P. The Metabolizable Energy and Lipid Bioaccessibility of Tree Nuts and Peanuts: A Systematic Review with Narrative Synthesis of Human and In Vitro Studies. Adv. Nutr. 2023, 14, 796–818. [Google Scholar] [CrossRef] [PubMed]
- Deetman, P.E.; Said, M.Y.; Kromhout, D.; Dullaart, R.P.F.; Kootstra-Ros, J.E.; Sanders, J.S.F.; Seelen, M.A.J.; Gans, R.O.B.; Navis, G.; Joosten, M.M.; et al. Urinary Urea Excretion and Long-term Outcome After Renal Transplantation. Transplantation 2015, 99, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.W.G.; Boslooper-Meulenbelt, K.; Geelink, M.; van Vliet, I.M.Y.; Post, A.; Joustra, M.L.; Knoop, H.; Berger, S.P.; Navis, G.J.; Bakker, S.J.L. Protein Intake, Fatigue and Quality of Life in Stable Outpatient Kidney Transplant Recipients. Nutrients 2020, 12, 2451. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Said, M.Y.; Gomes-Neto, A.W.; Minović, I.; Groothof, D.; Swarte, J.C.; Boer, T.; Kema, I.P.; Heiner-Fokkema, M.R.; Franssen, C.F.M.; et al. Urinary 3-hydroxyisovaleryl carnitine excretion, protein energy malnutrition and risk of all-cause mortality in kidney transplant recipients: Results from the TransplantLines cohort studies. Clin. Nutr. 2021, 40, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Said, M.Y.; Deetman, P.E.; de Vries, A.P.J.; Zelle, D.M.; Gans, R.O.B.; Navis, G.; Joosten, M.M.; Bakker, S.J.L. Causal path analyses of the association of protein intake with risk of mortality and graft failure in renal transplant recipients. Clin. Transplant. 2015, 29, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Derbyshire, E.; Higgs, J.; Feeney, M.J.; Carughi, A. Believe It or ‘Nut’: Why It Is Time to Set the Record Straight on Nut Protein Quality: Pistachio (Pistacia vera L.) Focus. Nutrients 2023, 15, 2158. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Gardner, C.D. Dietary Protein and Amino Acids in Vegetarian Diets—A Review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed]
- Neale, J.; Smith, A.C. Cardiovascular risk factors following renal transplant. World J. Transplant. 2015, 5, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.R.; Burgess, E.D.; Cooper, J.E.; Fenves, A.Z.; Goldsmith, D.; McKay, D.; Mehrotra, A.; Mitsnefes, M.M.; Sica, D.A.; Taler, S.J. Assessment and management of hypertension in transplant patients. J. Am. Soc. Nephrol. 2015, 26, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Jensky, N.E.; Criqui, M.H.; Wright, M.C.; Wassel, C.L.; Brody, S.A.; Allison, M.A. Blood pressure and vascular calcification. Hypertension 2010, 55, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Briet, M.; Boutouyrie, P.; Laurent, S.; London, G.M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012, 82, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.A.; John, A.; Weir, M.R.; Smith, S.R.; Hunsicker, L.; Kasiske, B.L.; Kusek, J.W.; Bostom, A.; Ivanova, A.; Levey, A.S.; et al. BP, cardiovascular disease, and death in the Folic Acid for Vascular Outcome Reduction in Transplantation trial. J. Am. Soc. Nephrol. 2014, 25, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Anjum, S.; Shah, R.; Skogen, J.; Kandaswamy, C.; Danielson, B.; O’Shaughnessy, E.A.; Dahl, D.C.; Silkensen, J.R.; Sahadevan, M.; et al. Hypertension after kidney transplantation. Am. J. Kidney Dis. 2004, 43, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Opelz, G.; Döhler, B. Improved Long-Term Outcomes After Renal Transplantation Associated with Blood Pressure Control. Am. J. Transplant. 2005, 5, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Oh, T.R.; Suh, S.H.; Choi, H.S.; Bae, E.H.; Ma, S.K.; Jung, J.H.; Kim, B.; Do Han, K.; Kim, S.W. Uncontrolled hypertension is associated with increased risk of graft failure in kidney transplant recipients: A nationwide population-based study. Front. Cardiovasc. Med. 2023, 10, 1185001. [Google Scholar] [CrossRef] [PubMed]
- Mange, K.C.; Cizman, B.; Joffe, M.; Feldman, H.I. Arterial Hypertension and Renal Allograft Survival. JAMA 2000, 283, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Halimi, J.M.; Persu, A.; Sarafidis, P.A.; Burnier, M.; Abramowicz, D.; Sautenet, B.; Oberbauer, R.; Mallamaci, F.; London, G.; Rossignol, P.; et al. Optimizing hypertension management in renal transplantation: A call to action. Nephrol. Dial. Transplant. 2017, 32, 1959–1962. [Google Scholar] [CrossRef] [PubMed]
- Dahle, D.O.; Eide, I.A.; Åsberg, A.; Leivestad, T.; Holdaas, H.; Jenssen, T.G.; Fagerland, M.W.; Pihlstrøm, H.; Mjøen, G.; Hartmann, A. Aortic stiffness in a mortality risk calculator for kidney transplant recipients. Transplantation 2015, 99, 1730–1737. [Google Scholar] [CrossRef] [PubMed]
- Keyzer, C.A.; De Borst, M.H.; van den Berg, E.; Jahnen-Dechent, W.; Arampatzis, S.; Farese, S.; Bergmann, I.P.; Floege, J.; Navis, G.; Bakker, S.J.L.; et al. Calcification Propensity and Survival among Renal Transplant Recipients. J. Am. Soc. Nephrol. 2016, 27, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Study of the Association Between Diets Containing Nuts and Seeds and the Degree of Abdominal Aortic Calcification. Nutrients 2024, 16, 4325. [Google Scholar] [CrossRef] [PubMed]
- Ter Braake, A.D.; Tinnemans, P.T.; Shanahan, C.M.; Hoenderop, J.G.J.; de Baaij, J.H.F. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Sci. Rep. 2018, 8, 2069. [Google Scholar] [CrossRef] [PubMed]
- Schutten, J.C.; Joosten, M.M.; de Borst, M.H.; Bakker, S.J.L. Magnesium and Blood Pressure: A Physiology-Based Approach. Adv. Chronic Kidney Dis. 2018, 25, 244–250. [Google Scholar] [CrossRef] [PubMed]
- de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.L. Magnesium in Disease Prevention and Overall Health. Adv. Nutr. 2013, 4, 378S–383S. [Google Scholar] [CrossRef] [PubMed]
- Del Gobbo, L.C.; Imamura, F.; Wu, J.H.Y.; Otto, M.C.D.O.; Chiuve, S.E.; Mozaffarian, D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013, 98, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Standing Committee on the Scientific. Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar] [CrossRef]
- Nijenhuis, T.; Hoenderop, J.G.J.; Bindels, R.J.M. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J. Am. Soc. Nephrol. 2004, 15, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.Y.; Choi, W.S.; Ock, S.M.; Kim, C.M.; Kim, D.H. Dietary magnesium intake and metabolic syndrome in the adult population: Dose-response meta-analysis and meta-regression. Nutrients 2014, 6, 6005–6019. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Li, W.; Wang, L.; Jiang, H.; Wang, S.; Jia, X.; Wang, Z.; Wang, H.; Zhang, B.; Ding, G. Relationship between Dietary Magnesium Intake and Metabolic Syndrome. Nutrients 2022, 14, 2013. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Mainous, A.G.; Geesey, M.E.; Woolson, R.F. Dietary Magnesium and C-reactive Protein Levels. J. Am. Coll. Nutr. 2005, 24, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Clase, C.M.; Carrero, J.J.; Ellison, D.H.; Grams, M.E.; Hemmelgarn, B.R.; Jardine, M.J.; Kovesdy, C.P.; Kline, G.A.; Lindner, G.; Obrador, G.T.; et al. Potassium homeostasis and management of dyskalemia in kidney diseases: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020, 97, 42–61. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.M.H.; Vogt, L.; Rotmans, J.I.; Hoorn, E.J.; de Borst, M.H. Potassium: Poison or panacea in chronic kidney disease? Nephrol. Dial. Transplant. 2019, 34, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ardiles, L.; Cardenas, A.; Burgos, M.E.; Droguett, A.; Ehrenfeld, P.; Carpio, D.; Mezzano, S.; Figueroa, C.D. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria. Am. J. Physiol.-Ren. Physiol. 2013, 304, F1399–F1410. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed]
- Eisenga, M.F.; Kieneker, L.M.; Soedamah-Muthu, S.S.; Van Den Berg, E.; Deetman, P.E.; Navis, G.J.; Gans, R.O.B.; Gaillard, C.A.J.M.; Bakker, S.J.L.; Joosten, M.M. Urinary potassium excretion, renal ammoniagenesis, and risk of graft failure and mortality in renal transplant recipients. Am. J. Clin. Nutr. 2016, 104, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Badiou, S.; Cristol, J.P.; Mourad, G. Dyslipidemia following kidney transplantation: Diagnosis and treatment. Curr. Diabetes Rep. 2009, 9, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Arnaboldi, L.; Moroni, G.; Corsini, A. Treatment of dyslipidemia in kidney transplantation. Expert Opin. Drug Saf. 2020, 19, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular disease in the kidney transplant recipient: Epidemiology, diagnosis and management strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Prasad, G.V.R. Post-transplant dyslipidemia: Mechanisms, diagnosis and management. World J. Transplant. 2016, 6, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Tonelli, M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.G.M.; Gomes, A.C.; Naves, M.M.V.; Mota, J.F. Nuts and legume seeds for cardiovascular risk reduction: Scientific evidence and mechanisms of action. Nutr. Rev. 2015, 73, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, M.; Sathe, S.K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Aune, D.; Beyene, J.; Mobarak, S.; Asadi, M.; Sadeghi, O. Dietary intake and biomarkers of alpha linolenic acid and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of cohort studies. BMJ 2021, 375, n2213. [Google Scholar] [CrossRef] [PubMed]
- de Lorgeril, M.; Renaud, S.; Salen, P.; Monjaud, I.; Mamelle, N.; Martin, J.L.; Guidollet, J.; Touboul, P.; Delaye, J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 1994, 343, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, K.L. The Science of Fatty Acids and Inflammation. Adv. Nutr. 2015, 6, 293S–301S. [Google Scholar] [CrossRef] [PubMed]
- van der Heide, J.J.H.; Bilo, H.; Donker, J.M.; Wilmink, J.M.; Tegzess, A.M. Effect of Dietary Fish Oil on Renal Function and Rejection in Cyclosporine-Treated Recipients of Renal Transplants. N. Engl. J. Med. 1993, 329, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.W.G.; Sotomayor, C.G.; Pranger, I.G.; Van Den Berg, E.; Gans, R.O.B.; Soedamah-Muthu, S.S.; Navis, G.J.; Bakker, S.J.L. Intake of marine-derived omega-3 polyunsaturated fatty acids and mortality in renal transplant recipients. Nutrients 2017, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Kornsteiner-Krenn, M.; Wagner, K.-H.; Elmadfa, I. Phytosterol content and fatty acid pattern of ten different nut types. Int. J. Vitam. Nutr. Res. 2013, 83, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Ashraf-Khorassani, M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef] [PubMed]
- Cleeman, J.I. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Ostlund, R.E. Phytosterols in human nutrition. Annu. Rev. Nutr. 2002, 22, 533–549. [Google Scholar] [CrossRef] [PubMed]
- He, S.; He, S.; Chen, Y.; Jin, X.; Mei, W.; Lu, Q. Beta-Sitosterol Modulates the Migration of Vascular Smooth Muscle Cells via the PPARG/AMPK/mTOR Pathway. Pharmacology 2022, 107, 495–509. [Google Scholar] [CrossRef] [PubMed]
- Demonty, I.; Ras, R.T.; Van Der Knaap, H.C.M.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. The effect of plant sterols on serum triglyceride concentrations is dependent on baseline concentrations: A pooled analysis of 12 randomised controlled trials. Eur. J. Nutr. 2013, 52, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Koc, K.; Geyikoglu, F.; Cakmak, O.; Koca, A.; Kutlu, Z.; Aysin, F.; Yilmaz, A.; Aşkın, H. The targets of β-sitosterol as a novel therapeutic against cardio-renal complications in acute renal ischemia/reperfusion damage. Naunyn. Schmiedeberg’s Arch. Pharmacol. 2021, 394, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Loizou, S.; Lekakis, I.; Chrousos, G.P.; Moutsatsou, P. β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 2010, 54, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; März, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Fretts, A.M.; Mozaffarian, D.; Siscovick, D.S.; King, I.B.; McKnight, B.; Psaty, B.M.; Rimm, E.B.; Sitlani, C.; Sacks, F.M.; Song, X.; et al. Associations of plasma phospholipid SFAs with total and cause-specific mortality in older adults differ according to SFA chain length. J. Nutr. 2016, 146, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.; Mehendale, N.; Singh, S.; Mallik, R.; Kamat, S.S. Lipidomics Suggests a New Role for Ceramide Synthase in Phagocytosis. ACS Chem. Biol. 2018, 13, 2280–2287. [Google Scholar] [CrossRef] [PubMed]
- Haney, M.S.; Bohlen, C.J.; Morgens, D.W.; Ousey, J.A.; Barkal, A.A.; Tsui, C.K.; Ego, B.K.; Levin, R.; Kamber, R.A.; Collins, H.; et al. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat. Genet. 2018, 50, 1716–1727. [Google Scholar] [CrossRef] [PubMed]
- Barthelmes, J.; de Bazo, A.M.; Pewzner-Jung, Y.; Schmitz, K.; Mayer, C.A.; Foerch, C.; Eberle, M.; Tafferner, N.; Ferreirós, N.; Henke, M.; et al. Lack of ceramide synthase 2 suppresses the development of experimental autoimmune encephalomyelitis by impairing the migratory capacity of neutrophils. Brain Behav. Immun. 2015, 46, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Köberlin, M.S.; Snijder, B.; Heinz, L.X.; Baumann, C.L.; Fauster, A.; Vladimer, G.I.; Gavin, A.C.; Superti-Furga, G. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses. Cell 2015, 162, 170–183. [Google Scholar] [CrossRef] [PubMed]
- York, A.G.; Skadow, M.H.; Oh, J.; Qu, R.; Zhou, Q.D.; Hsieh, W.-Y.; Mowel, W.K.; Brewer, J.R.; Kaffe, E.; Williams, K.J.; et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024, 627, 628–635. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. A.R.S. USDA National Nutrient Database for Standard Reference, 18th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2005. [Google Scholar]
- Wang, Y.Y.; Shang, H.F.; Lai, Y.N.; Yeh, S.L. Arginine supplementation enhances peritoneal macrophage phagocytic activity in rats with gut-derived sepsis. J. Parenter. Enter. Nutr. 2003, 27, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Popovic, P.J.; Zeh, H.J.; Ochoa, J.B. Arginine and Immunity. J. Nutr. 2007, 137, 1681S–1686S. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009, 37, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Mazur, A.; Maier, J.A.M.; Rock, E.; Gueux, E.; Nowacki, W.; Rayssiguier, Y. Magnesium and the inflammatory response: Potential physiopathological implications. Arch. Biochem. Biophys. 2007, 458, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium, inflammation, and obesity in chronic disease. Nutr. Rev. 2010, 68, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Lee, S.G.; Choo, M.K.; Kim, J.H.; Lee, H.M.; Kim, S.; Fomenko, D.E.; Kim, H.Y.; Park, J.M.; Gladyshev, V.N. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci. Rep. 2017, 7, 5119. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.; Wong, D.; Cederbaum, S.; Lim, B.; Qu, Y. Peanut consumption increases levels of plasma very long chain fatty acids in humans. Mol. Genet. Metab. 2012, 107, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef] [PubMed]
- Demirci, B.G.; Tutal, E.; Eminsoy, I.O.; Kulah, E.; Sezer, S. Dietary Fiber Intake: Its Relation With Glycation End Products and Arterial Stiffness in End-Stage Renal Disease Patients. J. Ren. Nutr. 2019, 29, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Camerotto, C.; Cupisti, A.; D’Alessandro, C.; Muzio, F.; Gallieni, M. Dietary Fiber and Gut Microbiota in Renal Diets. Nutrients 2019, 11, 2149. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J. Food Sci. Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Kerr, W.L.; Swanson, R.B.; Hargrove, J.L.; Pegg, R.B. Peanut skins-fortified peanut butters: Effect of processing on the phenolics content, fibre content and antioxidant activity. Food Chem. 2014, 145, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, F6879. [Google Scholar] [CrossRef] [PubMed]
- Otten, J.J.; Hellwig, J.P.; Meyers, L.D. Fiber. In Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Fitzgerald, E.; Lambert, K.; Stanford, J.; Neale, E.P. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: A systematic review. Br. J. Nutr. 2021, 125, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Bunnapradist, S.; Neri, L.; Wong, W.; Lentine, K.L.; Burroughs, T.E.; Pinsky, B.W.; Takemoto, S.K.; Schnitzler, M.A. Incidence and risk factors for diarrhea following kidney transplantation and association with graft loss and mortality. Am. J. Kidney Dis. 2008, 51, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Swarte, J.C.; Li, Y.; Hu, S.; Björk, J.R.; Gacesa, R.; Vich Vila, A.; Douwes, R.M.; Collij, V.; Kurilshikov, A.; Post, A.; et al. Gut microbiome dysbiosis is associated with increased mortality after solid organ transplantation. Sci. Transl. Med. 2022, 14, eabn7566. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Gago, M.; Cornell, L.D.; Kremers, W.K.; Stegall, M.D.; Cosio, F.G. Kidney Allograft Inflammation and Fibrosis, Causes and Consequences. Am. J. Transplant. 2012, 12, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.B.; Moreso, F.; Sarró, E.; Meseguer, A.; Serón, D. The interplay between inflammation and fibrosis in kidney transplantation. BioMed Res. Int. 2014, 2014, 750602. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.D.; Cai, X.; Scialla, J.J.; Dobre, M.A.; Chen, J.; Hsu, C.Y.; Leonard, M.B.; Go, A.S.; Rao, P.S.; Lash, J.P.; et al. Serum Calcification Propensity and Coronary Artery Calcification Among Patients With CKD: The CRIC (Chronic Renal Insufficiency Cohort) Study. Am. J. Kidney Dis. 2019, 73, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.D.; Cai, X.; Mehta, R.C.; Scialla, J.J.; de Boer, I.H.; Hsu, C.Y.; Go, A.S.; Dobre, M.A.; Chen, J.; Rao, P.S.; et al. Serum Calcification Propensity and Clinical Events in CKD. Clin. J. Am. Soc. Nephrol. 2019, 14, 1562–1571. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L.; et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017, 2, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001, 38, 938–942. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.K.; Taal, M.W.; Bungay, P.; McIntyre, C.W. Progressive vascular calcification over 2 years is associated with arterial stiffening and increased mortality in patients with stages 4 and 5 chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Zhang, J.J.; Xu, X.X.; Wu, Y.G. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: A systematic review and meta-analysis. Ren. Fail. 2019, 41, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Ponticelli, C.; Campise, M.R. The inflammatory state is a risk factor for cardiovascular disease and graft fibrosis in kidney transplantation. Kidney Int. 2021, 100, 536–545. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Kruse, H.D.; Orent, E.R.; Mccollum, E. V Studies on magnesium deficiency in animals. 1. Symptomatology resulting: From magnesium deprivation. J. Biol. Chem. 1932, 96, 519–539. [Google Scholar] [CrossRef]
- Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Kornsteiner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT—Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Bodoira, R.; Maestri, D. Phenolic Compounds from Nuts: Extraction, Chemical Profiles, and Bioactivity. J. Agric. Food Chem. 2020, 68, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, M.; Waskiewicz, A.; Ratajczak, I. The Content of Phenolic Compounds and Mineral Elements in Edible Nuts. Molecules 2022, 27, 4326. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Mckay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar] [PubMed]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Bin Dukhyil, A.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Kuru, R.; Yilmaz, S.; Tasli, P.N.; Yarat, A.; Sahin, F. Boron Content of Some Foods Consumed in Istanbul, Turkey. Biol. Trace Elem. Res. 2019, 187, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Simsek, A.; Velioglu, Y.S.; Coskun, A.L.; Sayli, B.S. Boron concentrations in selected foods from borate-producing regions in Turkey. J. Sci. Food Agric. 2003, 83, 586–592. [Google Scholar] [CrossRef]
- Şimşek, A.; Korkmaz, D.; Velioǧlu, Y.S.; Ataman, O.Y. Determination of boron in hazelnut (Corylus avellana L.) varieties by inductively coupled plasma optical emission spectrometry and spectrophotometry. Food Chem. 2003, 83, 293–296. [Google Scholar] [CrossRef]
- Koivistoinen, P. Mineral element composition of Finnish foods. Acta Agric. 1980, 22, 165–171. [Google Scholar]
- Naghii, M.R.; Wall, P.M.L.; Samman, S. The boron content of selected foods and the estimation of its daily intake among free-living subjects. J. Am. Coll. Nutr. 1996, 15, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Jun, Y.S. Analysis of boron content in frequently consumed foods in Korea. Biol. Trace Elem. Res. 2008, 126, 13–26. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; International Atomic Energy Agency; Food and Agriculture Organization of the United Nations. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996; Volume 360. [Google Scholar]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Panel, E.; Nda, A. Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- Li, M.; Shi, Z. Riboflavin Intake Inversely Associated with Cardiovascular-Disease Mortality and Interacting with Folate Intake: Findings from the National Health and Nutrition Examination Survey (NHANES) 2005–2016. Nutrients 2022, 14, 5345. [Google Scholar] [CrossRef] [PubMed]
- Lotto, V.; Choi, S.W.; Friso, S. Vitamin B6: A challenging link between nutrition and inflammation in CVD. Br. J. Nutr. 2011, 106, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53 (Suppl. S2), S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Becerra, M.O.; Contreras, L.M.; Lo, M.H.; Díaz, J.M.; Herrera, G.C. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Foods 2020, 66, 103771. [Google Scholar] [CrossRef]
- Abdulla, K.A.; Um, C.Y.; Gross, M.D.; Bostick, R.M. Circulating γ-tocopherol concentrations are inversely associated with antioxidant exposures and directly associated with systemic oxidative stress and inflammation in adults. J. Nutr. 2018, 148, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Jiala, I. Anti-inflammatory Effects of α-tocopherol. Ann. N. Y. Acad. Sci. 2004, 1031, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Emeka, P.M.; Rasool, S.T.; Morsy, M.A.; Islam, M.I.H.; Chohan, M.S. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition of nuclear factor-kappaB/ caspase 3. Korean J. Physiol. Pharmacol. 2021, 25, 495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.G.; Qi, Z.C.; Liu, W.L.; Wang, W.Z. Lutein protects against ischemia/reperfusion injury in rat kidneys. Mol. Med. Rep. 2015, 11, 2179–2184. [Google Scholar] [CrossRef] [PubMed]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.A.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Robbins, K.S.; Gong, Y.; Wells, M.L.; Greenspan, P.; Pegg, R.B. Investigation of the antioxidant capacity and phenolic constituents of U.S. pecans. J. Funct. Foods 2015, 15, 11–22. [Google Scholar] [CrossRef]
- Barchielli, G.; Capperucci, A.; Tanini, D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Sotomayor, C.G.; Rodrigo, R.; Gomes-Neto, A.W.; Gormaz, J.G.; Pol, R.A.; Minović, I.; Eggersdorfer, M.L.; Vos, M.; Riphagen, I.J.; de Borst, M.H.; et al. Plasma versus Erythrocyte Vitamin E in Renal Transplant Recipients, and Duality of Tocopherol Species. Nutrients 2019, 11, 12821. [Google Scholar] [CrossRef] [PubMed]
- Yepes-Calderón, M.; Kremer, D.; Post, A.; Sotomayor, C.G.; Seidel, U.; Huebbe, P.; Knobbe, T.J.; Lüersen, K.; Eisenga, M.F.; Corpeleijn, E.; et al. Low selenium intake is associated with risk of all-cause mortality in kidney transplant recipients. Nephrol. Dial. Transplant. 2023, 38, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Minović, I.; Riphagen, I.J.; Van Den Berg, E.; Kootstra-Ros, J.E.; Van Faassen, M.; Neto, A.W.G.; Geleijnse, J.M.; Gans, R.O.B.; Eggersdorfer, M.; Navis, G.J.; et al. Vitamin B-6 deficiency is common and associated with poor long-term outcome in renal transplant recipients. Am. J. Clin. Nutr. 2017, 105, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Saka, Y.; Naruse, T.; Kato, A.; Tawada, N.; Noda, Y.; Mimura, T.; Watanabe, Y. Thiamine status in end-stage chronic kidney disease patients: A single-center study. Int. Urol. Nephrol. 2018, 50, 1913–1918. [Google Scholar] [CrossRef] [PubMed]
- Shahmiri, F.A.; Soares, M.J.; Zhao, Y.; Sherriff, J. High-dose thiamine supplementation improves glucose tolerance in hyperglycemic individuals: A randomized, double-blind cross-over trial. Eur. J. Nutr. 2013, 52, 1821–1824. [Google Scholar] [CrossRef] [PubMed]
- Alaei-Shahmiri, F.; Soares, M.J.; Zhao, Y.; Sherriff, J. The impact of thiamine supplementation on blood pressure, serum lipids and C-reactive protein in individuals with hyperglycemia: A randomised, double-blind cross-over trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Minović, I.; Kieneker, L.M.; Gansevoort, R.T.; Eggersdorfer, M.; Touw, D.J.; Voerman, A.J.; Connelly, M.A.; de Boer, R.A.; Hak, E.; Bos, J.; et al. Vitamin B6, Inflammation, and Cardiovascular Outcome in a Population-Based Cohort: The Prevention of Renal and Vascular End-Stage Disease (PREVEND) Study. Nutrients 2020, 12, 2711. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guan, Y.; Karamercan, M.A.; Ye, L.; Bhatti, T.; Becker, L.B.; Baur, J.A.; Sims, C.A. Resveratrol rescues kidney mitochondrial function following hemorrhagic shock. Shock 2015, 44, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Domínguez, B.; Aparicio-Trejo, O.E.; García-Arroyo, F.E.; León-Contreras, J.C.; Tapia, E.; Molina-Jijón, E.; Hernández-Pando, R.; Sánchez-Lozada, L.G.; Barrera-Oviedo, D.; Pedraza-Chaverri, J. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem. Toxicol. 2017, 107, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Attia, J.R.; Holliday, E.; Weaver, N.; Peel, R.; Fleming, K.C.; Hure, A.; Wiggers, J.; McEvoy, M.; Searles, A.; Reeves, P.; et al. The effect of zinc supplementation on glucose homeostasis: A randomised double-blind placebo-controlled trial. Acta Diabetol. 2022, 59, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Matsuda, S.; Matsuda, M.; Yamamoto, K.; Yoshii, Y. Association of Serum Zinc Level with severity of chronic kidney disease in diabetic patients: A cross-sectional study. BMC Nephrol. 2022, 23, 407. [Google Scholar] [CrossRef] [PubMed]
- Tokuyama, A.; Kanda, E.; Itano, S.; Kondo, M.; Wada, Y.; Kadoya, H.; Kidokoro, K.; Nagasu, H.; Sasaki, T.; Kashihara, N. Effect of zinc deficiency on chronic kidney disease progression and effect modification by hypoalbuminemia. PLoS ONE 2021, 16, e0251554. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Li, C.; Zhao, D.; Xu, L.; Kuang, M.; Yao, X.; Hu, H. The Impact of Zinc Supplementation on Critically Ill Patients with Acute Kidney Injury: A Propensity Score Matching Analysis. Front. Nutr. 2022, 9, 894572. [Google Scholar] [CrossRef] [PubMed]
- Lange, L.; Klimek, L.; Beyer, K.; Blümchen, K.; Novak, N.; Hamelmann, E.; Bauer, A.; Merk, H.; Rabe, U.; Jung, K.; et al. White paper on peanut allergy—Part 1: Epidemiology, burden of disease, health economic aspects. Allergo J. Int. 2021, 30, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Garland, V.; Herlitz, L.; Regunathan-Shenk, R. Diet-induced oxalate nephropathy from excessive nut and seed consumption. BMJ Case Rep. 2020, 13, e237212. [Google Scholar] [CrossRef] [PubMed]
- Brinkley, L.R.D.; MgGuire, J.M.D.; Gregory, J.M.D.; Pak, C.Y.C. Bioavailability of oxalate in foods. Urology 1981, 17, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Noonan, S.C.; Savage, G.P. Oxalate content of foods and its effect on humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public Health Impacts of Foodborne Mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Sá, S.V.M.; Fernandes, J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol. 2018, 114, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Sidiq, T.; Sunooj, K.V.; Siddiqui, M.W.; Marszałek, K.; Khaneghah, A.M. Recent developments for controlling microbial contamination of nuts. Crit. Rev. Food Sci. Nutr. 2023, 63, 6710–6722. [Google Scholar] [CrossRef] [PubMed]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Emadi, A.; Jayedi, A.; Mirmohammadkhani, M.; Abdolshahi, A. Aflatoxin reduction in nuts by roasting, irradiation and fumigation: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 5056–5066. [Google Scholar] [CrossRef] [PubMed]
- Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. A 2008, 25, 203–208. [Google Scholar] [CrossRef] [PubMed]
- van der Plas, W.Y.; Neto, A.W.G.; Berger, S.P.; Pol, R.A.; Kruijff, S.; Bakker, S.J.L.; de Borst, M.H. Association of time-updated plasma calcium and phosphate with graft and patient outcomes after kidney transplantation. Am. J. Transplant. 2021, 21, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Merhi, B.; Shireman, T.; Carpenter, M.A.; Kusek, J.W.; Jacques, P.; Pfeffer, M.; Rao, M.; Foster, M.C.; Kim, S.J.; Pesavento, T.E.; et al. Serum Phosphorus and Risk of Cardiovascular Disease, All-Cause Mortality, or Graft Failure in Kidney Transplant Recipients: An Ancillary Study of the FAVORIT Trial Cohort. Am. J. Kidney Dis. 2017, 70, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.D.; Westphal, S.G. Electrolyte disorders in kidney transplantation. Clin. J. Am. Soc. Nephrol. 2020, 15, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.A.; Filipowicz, R.; Baird, B.C.; Wei, G.; Greene, T.; Beddhu, S. Dietary phosphorus intake and mortality in moderate chronic kidney disease: NHANES III. Nephrol. Dial. Transplant. 2012, 27, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Selamet, U.; Tighiouart, H.; Sarnak, M.J.; Beck, G.; Levey, A.S.; Block, G.; Ix, J.H. Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3–5: The Modification of Diet in Renal Disease Study. Kidney Int. 2016, 89, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Salvadó, J.S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Neale, E.P.; Tran, G.; Brown, R.C. Barriers and Facilitators to Nut Consumption: A Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 9127. [Google Scholar] [CrossRef] [PubMed]
- Murimi, M.W.; Kanyi, M.; Mupfudze, T.; Amin, M.R.; Mbogori, T.; Aldubayan, K. Factors Influencing Efficacy of Nutrition Education Interventions: A Systematic Review. J. Nutr. Educ. Behav. 2017, 49, 142–165.e1. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Oda, K.; Ros, E. Nut consumption and blood lipid levels: A pooled analysis of 25 intervention trials. Arch. Intern. Med. 2010, 170, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.; Zhang, Z.; Li, D.; Luo, F.; Wu, Q.; Lu, F.; Dai, Z.; Nie, M.; Xu, Y.; Feng, L.; et al. Evaluation of the digestibility and antioxidant activity of protein and lipid after mixing nuts based on in vitro and in vivo models. Food Chem. 2023, 414, 135706. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
Nutrients, per 100 g | Almonds, Unsalted | Brazil Nuts | Cashews, Unsalted | Hazelnuts | Macadamia Nuts | Peanuts, Unsalted | Pecans, Unsalted | Pine Nuts | Pistachio, Unsalted | Walnuts |
---|---|---|---|---|---|---|---|---|---|---|
Energy, kcal (kJ) | 607 (2540) | 659 (2760) | 583 (2440) | 628 (2630) | 716 (3000) | 587 (2460) | 697 (2920) | 673 (2820) | 581 (2430) | 654 (2740) |
Protein, g | 20.3 | 14.3 | 14.9 | 15.0 | 7.80 | 24.4 | 8.9 | 13.7 | 20.4 | 15.2 |
Carbohydrate, g | 20.4 | 11.7 | 31.7 | 16.7 | 12.8 | 21.3 | 13.4 | 13.1 | 27.4 | 13.7 |
Total sugars, g | 4.7 | 2.3 | 4.9 | 4.3 | 4.1 | 4.9 | 3.9 | 3.6 | 7.5 | 2.6 |
Total dietary fiber, g | 10.6 | 7.5 | 2.9 | 9.7 | 8.0 | 8.4 | 9.3 | 3.7 | 10.0 | 6.7 |
Total fat, g | 54.0 | 67.1 | 48.0 | 60.8 | 76.1 | 49.7 | 72.8 | 68.4 | 47.4 | 65.2 |
Saturated fat, g | 4.4 | 16.1 | 9.3 | 4.5 | 11.9 | 7.7 | 6.4 | 4.9 | 5.9 | 6.1 |
Monounsaturated fat, g | 33.3 | 23.9 | 27.8 | 45.7 | 59.3 | 26.2 | 40.8 | 18.8 | 25.1 | 8.9 |
Polyunsaturated fat, g | 13.8 | 24.4 | 8.8 | 7.9 | 1.5 | 9.8 | 22.2 | 34.1 | 14.2 | 47.2 |
Water, g | 2.3 | 3.4 | 1.7 | 5.3 | 1.6 | 1.8 | 3.4 | 2.3 | 1.8 | 4.1 |
Vitamin A, RAE (μg RAE) | 0 | 0 | 0 | 1.0 | 0 | 0 | 3.0 | 1.0 | 13.0 | 1.0 |
α-Carotene, μg | 0 | 0 | 0 | 3.00 | 0 | 0 | 0 | 0 | 0 | 0 |
β-Carotene, μg | 1.0 | 0 | 0 | 11.0 | 0 | 0 | 28.0 | 17.0 | 154 | 12.0 |
β-Cryptoxanthin, μg | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
Lutein + zeaxanthin, μg | 1 | 0 | 22 | 92 | 0 | 0 | 16 | 9 | 1125 | 9 |
Thiamin, mg | 0.075 | 0.617 | 0.194 | 0.643 | 0.710 | 0.152 | 0.640 | 0.364 | 0.674 | 0.341 |
Riboflavin, mg | 1.161 | 0.035 | 0.194 | 0.113 | 0.087 | 0.197 | 0.126 | 0.227 | 0.227 | 0.150 |
Niacin, mg | 3.53 | 0.30 | 1.36 | 1.80 | 2.28 | 14.40 | 1.13 | 4.39 | 1.33 | 1.13 |
Vitamin B-6, mg | 0.13 | 0.10 | 0.25 | 0.56 | 0.36 | 0.47 | 0.20 | 0.09 | 1.09 | 0.54 |
Total folate, μg | 53 | 22 | 67 | 113 | 10 | 97 | 21 | 34 | 49 | 98 |
Total choline, mg | 50.5 | 28.8 | 59.2 | 45.6 | 44.6 | 64.6 | 39.3 | 55.8 | 69.3 | 39.2 |
Vitamin C, mg | 0 | 0.7 | 0 | 6.3 | 0.7 | 0 | 1.1 | 0.8 | 2.9 | 1.3 |
Vitamin E (α-tocopherol), mg | 23.5 | 5.7 | 1.2 | 15.0 | 0.6 | 4.9 | 1.7 | 9.3 | 2.5 | 0.7 |
Vitamin K, μg | 3.5 | 0 | 37.2 | 14.2 | 0 | 0 | 6.9 | 53.9 | 16.3 | 2.7 |
Calcium, mg | 260 | 160 | 44 | 114 | 70 | 58 | 68 | 16 | 104 | 98 |
Phosphorus, mg | 457 | 725 | 475 | 290 | 198 | 363 | 269 | 575 | 455 | 346 |
Magnesium, mg | 271 | 376 | 252 | 163 | 118 | 178 | 117 | 251 | 106 | 158 |
Iron, mg | 3.62 | 2.43 | 5.82 | 4.70 | 2.65 | 1.58 | 2.46 | 5.53 | 3.91 | 2.91 |
Zinc, mg | 3.21 | 4.06 | 5.43 | 2.45 | 1.29 | 2.77 | 4.39 | 6.45 | 2.27 | 3.09 |
Copper, mg | 1.07 | 1.74 | 2.15 | 1.73 | 0.57 | 0.43 | 1.16 | 1.32 | 1.25 | 1.59 |
Selenium, μg | 1.9 | 1920.0 | 11.3 | 2.4 | 11.7 | 9.30 | 3.7 | 0.7 | 9.7 | 4.9 |
Potassium, mg | 692 | 659 | 548 | 680 | 363 | 634 | 398 | 597 | 977 | 441 |
Sodium, mg | 3 | 3 | 16 | 0 | 353 | 6 | 0 | 2 | 6 | 2 |
SFAs | ||||||||||
6:0, g | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8:0, g | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
10:0, g | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
12:0, g | 0.00 | 0.00 | 0.76 | 0.00 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
14:0, g | 0.018 | 0.046 | 0.337 | 0.00 | 0.668 | 0.016 | 0.00 | 0.00 | 0.012 | 0.00 |
16:0, g | 3.54 | 9.63 | 4.51 | 3.10 | 5.93 | 3.98 | 4.53 | 3.21 | 5.14 | 4.40 |
18:0, g | 0.78 | 6.24 | 2.98 | 1.27 | 2.28 | 1.20 | 1.79 | 1.39 | 0.64 | 1.66 |
20:0, g | <0.2 | 0.3 | 0.7 | <0.2 | 2.6 | 1.7 | <0.2 | 0.4 | <0.2 | <0.2 |
22:0, g | <0.2 | <0.2 | <0.2 | - | 0.7 | 3.0 | - | <0.2 | <0.2 | <0.2 |
24:0, g | - | - | <0.2 | - | <0.2 | 1.7 | - | - | - | - |
MUFAs | ||||||||||
16:1, g | 0.26 | 0.21 | 0.32 | 0.12 | 12.70 | 0.03 | 0.01 | 0.02 | 0.46 | 0.00 |
18:1, g | 33.0 | 23.6 | 27.2 | 45.4 | 44.4 | 25.4 | 40.6 | 17.9 | 24.4 | 8.8 |
20:1, g | 0.02 | 0.03 | 0.15 | 0.13 | 1.93 | 0.63 | 0.21 | 0.80 | 0.12 | 0.13 |
22:1, g | 0.000 | 0.000 | 0.000 | 0.000 | 0.237 | 0.055 | 0.000 | 0.000 | 0.005 | 0.000 |
PUFAs | ||||||||||
18:2, g | 13.6 | 24.4 | 8.5 | 7.8 | 1.3 | 9.7 | 21.1 | 33.2 | 13.8 | 38.1 |
18:3, g | 0.162 | 0.036 | 0.308 | 0.087 | 0.196 | 0.026 | 1.110 | 0.164 | 0.358 | 9.080 |
20:4, g | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.000 | 0.005 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kremer, D.; Vogelpohl, F.A.; van der Veen, Y.; Doorenbos, C.S.E.; Yepes-Calderón, M.; Knobbe, T.J.; Post, A.; Corpeleijn, E.; Navis, G.; Berger, S.P.; et al. Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research. Nutrients 2025, 17, 2419. https://doi.org/10.3390/nu17152419
Kremer D, Vogelpohl FA, van der Veen Y, Doorenbos CSE, Yepes-Calderón M, Knobbe TJ, Post A, Corpeleijn E, Navis G, Berger SP, et al. Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research. Nutrients. 2025; 17(15):2419. https://doi.org/10.3390/nu17152419
Chicago/Turabian StyleKremer, Daan, Fabian A. Vogelpohl, Yvonne van der Veen, Caecilia S. E. Doorenbos, Manuela Yepes-Calderón, Tim J. Knobbe, Adrian Post, Eva Corpeleijn, Gerjan Navis, Stefan P. Berger, and et al. 2025. "Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research" Nutrients 17, no. 15: 2419. https://doi.org/10.3390/nu17152419
APA StyleKremer, D., Vogelpohl, F. A., van der Veen, Y., Doorenbos, C. S. E., Yepes-Calderón, M., Knobbe, T. J., Post, A., Corpeleijn, E., Navis, G., Berger, S. P., & Bakker, S. J. L. (2025). Potential Health Benefits of Dietary Tree Nut and Peanut Enrichment in Kidney Transplant Recipients—An In-Depth Narrative Review and Considerations for Future Research. Nutrients, 17(15), 2419. https://doi.org/10.3390/nu17152419