Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Flour Production
2.3. Cracker Elaboration
2.4. Physical Measurements
2.5. Antioxidant Capacity
2.5.1. DPPH Assay
2.5.2. ABTS Assay
2.5.3. ORAC Assay
2.6. Total Phenolic Content
2.7. HPLC-DAD Analysis of β-Carotene
2.8. Proximate Composition
2.9. Sensory Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Physical Parameters
3.2. Antioxidant Activity
3.3. Total Phenolic Compounds
3.4. β-Carotene Content
3.5. Proximate Composition and Mineral Content
3.6. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
AAPH | 2,2′-Azobis(2-amidinopropane) dihydrochloride |
BI | Browning Index |
CIE | Commission Internationale de l’Éclairage (International Commission on Illumination) |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
GAE | Gallic Acid Equivalents |
HPLC-DAD | High-Performance Liquid Chromatography with Diode Array Detection |
L* | Lightness (in CIE color space) |
ORAC | Oxygen Radical Absorbance Capacity |
RAE | Retinol Activity Equivalents |
SPSS | Statistical Package for the Social Sciences |
TE | Trolox Equivalents |
TPA | Texture Profile Analysis |
References
- Tavill, G. Industry challenges and approaches to food waste. Physiol. Behav. 2020, 223, 112993. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Kono, S. Food Freezing. In Smart Food Industry: The Blockchain for Sustainable Engineering: Fundamentals, Technologies, and Management; Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M., Eds.; CRC Press: Boca Raton, FL, USA, 2023; Volume 1, pp. 149–167. [Google Scholar]
- Kitinoja, L. Use of cold chains for reducing food losses in developing countries. Population 2013, 6, 5–60. [Google Scholar]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M. Application of agri-food by-products in the food industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; de la Luz Cádiz-Gurrea, M.; Rodríguez-Pérez, C.; Segura-Carretero, A. Recent advances in extraction technologies of phytochemicals applied for the revaluation of agri-food by-products. In Functional and Preservative Properties of Phytochemicals; Prakash, A., Ed.; Academic Press: London, UK, 2020; pp. 209–239. [Google Scholar]
- George, R. Freezing proceseses used in the food industry. Trends Food Sci. Technol. 1993, 4, 134–138. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Sehar, S.; Sarwar, A.; Ashraf, A.H.; Jamil, M.A.; Noreen, S.; Rafique, A.; Iftikhar, K.; Quddoos, M.Y. A Comprehensive review of functional ingredients, especially bioactive compounds present in pumpkin peel, flesh and seeds, and their health benefits. Food Chem. Adv. 2022, 1, 100067. [Google Scholar] [CrossRef]
- Buzigi, E.; Pillay, K.; Siwela, M. Potential of pumpkin to combat vitamin A deficiency during complementary feeding in low and middle income countries: Variety, provitamin A carotenoid content and retention, and dietary reference intakes. Crit. Rev. Food Sci. Nutr. 2022, 62, 6103–6112. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A. The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Mohammadi, M.; Pezeshki, A.; Jafari, S.M. Beta-Carotene. In Handbook of Food Bioactive Ingredients: Properties and Applications; Mahdi Jafari, S., Rashidinejad, A., Simal-Gandara, J., Eds.; Springer: Cham, Switzerland, 2023; pp. 603–628. [Google Scholar]
- Barakat, H.; Hassan, M.F. Chemical, nutritional, rheological, and organoleptical characterizations of stirred pumpkin-yoghurt. Food Nutr. Sci. 2017, 8, 746–759. [Google Scholar] [CrossRef]
- Patel, A.; Bariya, A.; Ghodasara, S.; Chavda, J.; Patil, S. Total carotene content and quality characteristics of pumpkin flavoured buffalo milk. Heliyon 2020, 6, e04509. [Google Scholar] [CrossRef] [PubMed]
- ElKhatib, S.; Muhieddine, M. Nutritional profile and medicinal properties of pumpkin fruit pulp. In The Health Benefits of Foods-Current Knowledge and Further Development; Salanță, L.C., Ed.; IntechOpen: London, UK, 2020; pp. 79–98. [Google Scholar]
- Men, X.; Choi, S.-I.; Han, X.; Kwon, H.-Y.; Jang, G.-W.; Choi, Y.-E.; Park, S.-M.; Lee, O.-H. Physicochemical, nutritional and functional properties of Cucurbita moschata. Food Sci. Biotechnol. 2021, 30, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Tiwari, A.; Kataria, A.; Chauhan, K. Crackers. In Cereal-Based Food Products; Shah, M.A., Sunooj, K.V., Mir, S.A., Eds.; Springer: Cham, Switzerland, 2023; pp. 147–167. [Google Scholar]
- Martínez, C.; Santa Cruz, M.J.; Hough, G.; Vega, M.J. Preference mapping of cracker type biscuits. Food Qual. Prefer. 2002, 13, 535–544. [Google Scholar] [CrossRef]
- Chatziharalambous, D.; Papagianni, O.; Potsaki, P.; Almpounioti, K.; Koutelidakis, A.E. Effect of Acute Consumption of Crackers Enriched with Grape Seed Flour or Barley Flour with Added β-Glucan on Biomarkers of Postprandial Glycemia, Lipidemia, and Oxidative Stress: A Crossover Study. Appl. Sci. 2024, 14, 4591. [Google Scholar] [CrossRef]
- Batista, A.P.; Niccolai, A.; Bursic, I.; Sousa, I.; Raymundo, A.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae as functional ingredients in savory food products: Application to wheat crackers. Foods 2019, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- Ujong, A.E.; Emelike, N.J.T.; Woka, F.I.; Jnr, F.O. Formulation of fiber enriched crackers biscuit: Effect on nutritional composition, physical and sensory properties. Heliyon 2023, 9, e15941. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y. CIE fundamentals for color measurements. NIP Digit. Fabr. Conf. 2000, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, M.A.; Vieira Júnior, W.G.; Martínez-Navarro, M.E.; Álvarez-Ortí, M.; Zied, D.C.; Pardo, J.E. Impact of button mushroom stem residue as a functional ingredient for improving nutritional characteristics of pizza dough. Molecules 2024, 29, 5140. [Google Scholar] [CrossRef] [PubMed]
- Giannoutsos, K.; Zalidis, A.P.; Koukoumaki, D.I.; Menexes, G.; Mourtzinos, I.; Sarris, D.; Gkatzionis, K. Production of functional crackers based on non-conventional flours. Study of the physicochemical and sensory properties. Food Chem. Adv. 2023, 2, 100194. [Google Scholar] [CrossRef]
- Pinna, N.; Abbou, S.B.; Ianni, F.; Flores, G.A.; Pietercelie, A.; Perretti, G.; Blasi, F.; Angelini, P.; Cossignani, L. Phenolic compounds from pumpkin pulp: Extraction optimization and biological properties. Food Chem. X 2024, 23, 101628. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Navarro, M.E.; Kaparakou, E.H.; Kanakis, C.D.; Cebrián-Tarancón, C.; Alonso, G.L.; Salinas, M.R.; Tarantilis, P.A. Quantitative determination of the main phenolic compounds, antioxidant activity, and toxicity of aqueous extracts of olive leaves of Greek and Spanish genotypes. Horticulturae 2023, 9, 55. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Gupta, P.; Sreelakshmi, Y.; Sharma, R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods 2015, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- AOAC International; Latimer, G.W., Jr. Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. Determination of minerals in soft and hard cheese varieties by ICP-OES: A comparison of digestion methods. Molecules 2023, 28, 3988. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced properties of gluten-free cookies, cakes, and crackers: A review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Salma, N.; Setiyoko, A.; Sari, Y.P.; Rahmadian, Y. Effect of wheat flour and yellow pumpkin flour ratios on the physical, chemical properties, and preference level of cookies. J. Agric.-Food Sci. Technol. 2023, 4, 59–70. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Netreba, N.; Balan, G.; Cojocari, D.; Boestean, O.; Bulgaru, V.; Gurev, A.; Popescu, L.; Deseatnicova, O.; Resitca, V. Effect of bioactive compounds from pumpkin powder on the quality and textural properties of shortbread cookies. Foods 2023, 12, 3907. [Google Scholar] [CrossRef] [PubMed]
- Alija, D.; Olędzki, R.; Nikolovska Nedelkoska, D.; Wojciechowicz-Budzisz, A.; Xhabiri, G.; Pejcz, E.; Alija, E.; Harasym, J. The Addition of Pumpkin Flour Impacts the Functional and Bioactive Properties of Soft Wheat Composite Flour Blends. Foods 2025, 14, 243. [Google Scholar] [CrossRef] [PubMed]
- Purlis, E. Browning development in bakery products—A review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Acrylamide content in starch based commercial foods by using high performance liquid chromatography and its association with browning index. Curr. Res. Food Sci. 2022, 5, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Tóth, M.; Kaszab, T.; Meretei, A. Texture profile analysis and sensory evaluation of commercially available gluten-free bread samples. Eur. Food Res. Technol. 2022, 248, 1447–1455. [Google Scholar] [CrossRef]
- Young, L. Applications of texture analysis to dough and bread. In Breadmaking, 2nd ed.; Cauvain, S.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 562–579. [Google Scholar]
- Jonkers, N.; Van Dommelen, J.; Geers, M. Intrinsic mechanical properties of food in relation to texture parameters. Mech. Time-Depend. Mater. 2022, 26, 323–346. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Zhang, Y.-R.; Yang, Y.-Y.; Shen, J.-Q.; Zhang, Q.-M.; Zhang, G.-Z. Effect of wheat gluten addition on the texture, surface tackiness, protein structure, and sensory properties of frozen cooked noodles. LWT 2022, 161, 113348. [Google Scholar] [CrossRef]
- Matos, M.E.; Rosell, C.M. Understanding gluten-free dough for reaching breads with physical quality and nutritional balance. J. Sci. Food Agric. 2015, 95, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Naqash, F.; Gani, A.; Gani, A.; Masoodi, F. Gluten-free baking: Combating the challenges-A review. Trends Food Sci. Technol. 2017, 66, 98–107. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of healthy protein-rich crackers using Tenebrio molitor flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Linter, B.R.; Foster, T.J. Effects of psyllium seed husk powder, methylcellulose, pregelatinised starch, and cold water swelling starch on the production of gluten free crackers. Food Funct. 2021, 12, 7773–7786. [Google Scholar] [CrossRef] [PubMed]
- Maisont, S.; Samutsri, W.; Phae-Ngam, W.; Limsuwan, P. Development and characterization of crackers substitution of wheat flour with jellyfish. Front. Nutr. 2021, 8, 772220. [Google Scholar] [CrossRef] [PubMed]
- Koukoumaki, D.I.; Giannoutsos, K.; Devanthi, P.V.P.; Karmiris, P.; Bourni, S.; Monemvasioti, A.; Psimouli, V.; Sarris, D.; Gkatzionis, K. Effect of wheat replacement by pulse flours on the texture, color, and sensorial characteristics of crackers: Flash profile analysis. Int. J. Food Sci. 2022, 2022, 2354045. [Google Scholar] [CrossRef] [PubMed]
- Düşkün, B.; Kutlu, G.; Akman, P.K.; Bekiroğlu, H.; Tornuk, F. Formulation of Fiber-Enriched Crackers with Oleaster Powder: Effect on Functional, Textural, and Sensory Attributes. Plant Food Hum. Nutr. 2025, 80, 82. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D.; Krajewska, A.; Findura, P. Particle size as an indicator of wheat flour quality: A review. Processes 2024, 12, 2480. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, X.; Guo, R.; Zhu, L.; Qiu, X.; Yu, X.; Chai, J.; Gu, C.; Feng, Z. Insights into the effects of extractable phenolic compounds and Maillard reaction products on the antioxidant activity of roasted wheat flours with different maturities. Food Chem. X 2023, 17, 100548. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Yoon, N.; Lee, Y.J.; Woo, K.S.; Kim, H.Y.; Lee, J.; Jeong, H.S. Influence of thermal processing on free and bound forms of phenolics and antioxidant capacity of rice hull (Oryza sativa L.). Prev. Nutr. Food Sci. 2020, 25, 310. [Google Scholar] [CrossRef] [PubMed]
- Pinna, N.; Ianni, F.; Selvaggini, R.; Urbani, S.; Codini, M.; Grispoldi, L.; Cenci-Goga, B.T.; Cossignani, L.; Blasi, F. Valorization of pumpkin byproducts: Antioxidant activity and carotenoid characterization of extracts from peel and filaments. Foods 2023, 12, 4035. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E. Evaluation of phenolic acid, total phenolic content, antioxidant capacity and in-vitro simulated bioaccessibility of healthy snack: Aromatized pumpkin chips. Emir. J. Food Agric. 2022, 34, 98–106. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Okishima, N.; Sumida, S.; Okamura, K.; Doi, T.; Kishino, Y. β-carotene supplementation enhances lymphocyte proliferation with mitogens in human peripheral blood lymphocytes. Nutr. Res. 1996, 16, 211–218. [Google Scholar] [CrossRef]
- Thorne-Lyman, A.L.; Fawzi, W.W. Vitamin A and carotenoids during pregnancy and maternal, neonatal and infant health outcomes: A systematic review and meta-analysis. Paediatr. Perinat. Epidemiol. 2012, 26, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel of Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2002.
- EFSA Panel on Dietetic Products, Nutrition, Allergies. Scientific opinion on dietary reference values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, M.A.; Jamil, M.A.; Noreen, S.; Rehman, H.u.; Shabbir, H.; Ramzan, M.A. Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process Preserv. 2021, 45, e15542. [Google Scholar] [CrossRef]
- Ninčević Grassino, A.; Rimac Brnčić, S.; Badanjak Sabolović, M.; Šic Žlabur, J.; Marović, R.; Brnčić, M. Carotenoid content and profiles of pumpkin products and by-products. Molecules 2023, 28, 858. [Google Scholar] [CrossRef] [PubMed]
- Gavril, R.N.; Stoica, F.; Lipșa, F.D.; Constantin, O.E.; Stănciuc, N.; Aprodu, I.; Râpeanu, G. Pumpkin and pumpkin by-Products: A comprehensive overview of phytochemicals, extraction, health benefits, and food applications. Foods 2024, 13, 2694. [Google Scholar] [CrossRef] [PubMed]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Lucini, L.; Lorenzo, J.M. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef] [PubMed]
Product | Wheat Flour | Pumpkin Flour 1 | Salt | Baking Powder | Olive Oil | Water |
---|---|---|---|---|---|---|
Control (wheat) | 50 | 1.5 | 2.5 | 5 | 25 | |
10% pumpkin cracker | 45 | 5 | 1.5 | 2.5 | 5 | 25 |
20% pumpkin cracker | 40 | 10 | 1.5 | 2.5 | 5 | 25 |
Product | Thickness Expansion Factor | Linear Expansion Index | |
---|---|---|---|
Control (wheat) | 2.14 ± 0.33 a | −10.73 ± 1.73 a | |
Dehydrated | 10% pumpkin flour | 1.69 ± 0.27 b | −10.22 ± 2.65 a |
20% pumpkin flour | 1.72 ± 0.10 b | −8.88 ± 2.09 ab | |
Freeze-dried | 10% pumpkin flour | 2.01 ± 0.27 a | −8.77 ± 2.43 ab |
20% pumpkin flour | 2.04 ± 0.22 a | −6.63 ± 2.57 b |
L* | BI | |
---|---|---|
Control | 75.8 ± 4.44 a | 40.57 ± 3.2 c |
D-10% | 60.4 ± 4.45 b | 179.39 ± 6.7 b |
D-20% | 53.0 ± 4.70 c | 203.77 ± 7.9 a |
FD-10% | 61.2 ± 4.55 b | 140.44 ± 5.4 b |
FD-20% | 52.4 ± 8.32 c | 220.52 ± 9.8 a |
Dough | Hardness (N) | Cohesiveness | Springiness |
---|---|---|---|
Control | 31.12 ± 3.77 c | 0.44 ± 0.02 a | 0.40 ± 0.10 a |
D-10% | 48.63 ± 3.93 ab | 0.33 ± 0.02 b | 0.19 ± 0.02 b |
D-20% | 56.27 ± 4.52 a | 0.31 ± 0.02 b | 0.19 ± 0.04 b |
FD-10% | 32.66 ± 0.81 c | 0.32 ± 0.01 b | 0.20 ± 0.01 b |
FD-20% | 42.64 ± 5.31 b | 0.30 ± 0.02 b | 0.17 ± 0.00 b |
Cracker | Fracturability (mm) | Hardness (N) | Toughness (J) |
---|---|---|---|
Control | 1.761 ± 0.77 a | 40.802 ± 12.99 b | 21.184 ± 5.64 b |
D-10% | 0.789 ± 0.59 b | 65.488 ± 17.29 a | 49.422 ± 15.51 a |
D-20% | 1.261 ± 0.46 ab | 64.086 ± 9.55 a | 49.576 ± 20.73 a |
FD-10% | 0.616 ± 0.23 b | 47.168 ± 11.05 ab | 31.157 ± 18.69 ab |
FD-20% | 0.825 ± 0.07 b | 70.393 ± 7.85 a | 58.032 ± 22.65 a |
Protein g/100 g | Fat g/100 g | Carbohydrates g/100 g | Sugars g/100 g | Fiber g/100 g | Energy Value kCal/100 g | |
---|---|---|---|---|---|---|
Flours | ||||||
Wheat Flour | 9.80 ± 0.07 b | 1.43 ± 0.13 a | 76.63 ± 1.78 a | 5.80 ± 0.90 b | 0.21 ± 0.14 c | 358.33 ± 6.66 a |
Dehydrated Pumpkin Flour | 10.53 ± 0.25 a | 0.83 ± 0.14 b | 58.47 ± 1.26 c | 40.97 ± 4.36 a | 11.93 ± 0.96 a | 283.67 ± 5.03 c |
Freeze-dried Pumpkin Flour | 10.60 ± 0.30 a | 0.82 ± 0.26 b | 62.57 ± 0.64 b | 46.93 ± 3.25 a | 10.21 ± 0.34 b | 300.00 ± 1.00 b |
Crackers | ||||||
Control | 8.19 ± 0.53 | 7.07 ± 0.97 | 73.53 ± 4.44 | 2.42 ± 0.48 c | 0.52 ± 0.09 e | 390.67 ± 10.41 |
D-10% | 8.43 ± 0.27 | 6.44 ± 0.64 | 72.03 ± 4.01 | 5.27 ± 1.56 b | 2.00 ± 0.07 c | 379.67 ± 22.12 |
D-20% | 8.42 ± 0.17 | 6.47 ± 0.48 | 69.87 ± 2.66 | 8.83 ± 0.65 a | 3.63 ± 0.13 a | 371.33 ± 6.81 |
FD-10% | 8.63 ± 0.33 | 5.60 ± 1.61 | 76.17 ± 3.59 | 5.34 ± 1.00 b | 1.63 ± 0.13 d | 389.67 ± 3.05 |
FD-20% | 8.79 ± 0.09 | 6.95 ± 0.63 | 71.47 ± 1.21 | 8.71 ± 1.49 a | 2.56 ± 0.12 b | 383.67 ± 10.69 |
Flours | Crackers | |||||||
---|---|---|---|---|---|---|---|---|
Wheat | Dehydrated Pumpkin | Freeze-Dried Pumpkin | Control | D-10 | D-20 | FD-10 | FD-20 | |
Na | 17.8 ± 0.6 c | 76.7 ± 11.4 b | 100.3 ± 7.7 a | 487.0 ± 191.5 | 557.0 ± 352.9 | 501.3 ± 152.4 | 388.0 ± 209.9 | 713.7 ± 374.9 |
K | 4.4 ± 0.6 b | 585.7 ± 163.3 a | 491.7 ± 7.5 a | 26.3 ± 7.8 β | 34.1 ± 8.6 β | 20.5 ± 4.7 β | 62.8 ± 19.6 αβ | 139.3 ± 33.6 α |
Ca | 6.5 ± 2.3 b | 271.3 ± 17.6 a | 271.0 ± 13.2 a | 42.5 ± 10.4 αβ | 26.4 ± 9.9 β | 52.1 ± 23.6 αβ | 53.8 ± 14.1 αβ | 109.7 ± 47.8 α |
Mg | <0.02 b | 113.00 ± 8.00 a | 106.77 ± 7.40 a | 7.03 ± 1.27 b | 9.12 ± 2.00 b | 18.22 ± 11.54 ab | 25.70 ± 2.85 a | 32.23 ± 1.12 a |
Mn | <0.02 b | 0.06 ± 0.01 a | 0.05 ± 0.02 a | <0.02 | <0.02 | <0.02 | <0.02 | <0.02 |
Fe | 2.1 ± 0.6 b | 5.0 ± 0.8 a | 3.6 ± 1.0 ab | 2.9 ± 0.7 | 10.1 ± 10.7 | 2.5 ± 0.2 | 8.4 ± 9.9 | 3.3 ± 0.9 |
Cu | <0.02 b | 0.42 ± 0.04 a | 0.39 ± 0.06 a | 0.07 ± 0.06 | 0.21 ± 0.09 | 0.14 ± 0.03 | 0.13 ± 0.06 | 0.14 ± 0.04 |
Ni | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
P | 67.6 ± 9.4 b | 215.7 ± 12.9 a | 212.0 ± 10.5 a | 477.0 ± 97.3 | 531.7 ± 131.1 | 542.0 ± 126.0 | 554.0 ± 134.9 | 539.7 ± 72.3 |
Pb | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 |
S | 34.6 ± 27.1 b | 100.6 ± 14.8 a | 93.4 ± 6.0 a | 25.4 ± 7.4 | 28.1 ± 4.6 | 28.2 ± 1.7 | 32.0 ± 4.6 | 31.0 ± 0.6 |
Zn | 1.7 ± 0.6 b | 6.4 ± 1.5 a | 3.2 ± 1.1 b | 1.5 ± 0.6 | 0.9 ± 0.3 | 0.8 ± 0.1 | 0.7 ± 0.2 | 1.3 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallardo, M.A.; Martínez-Navarro, M.E.; García Panadero, I.; Pardo, J.E.; Álvarez-Ortí, M. Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry. Foods 2025, 14, 2548. https://doi.org/10.3390/foods14142548
Gallardo MA, Martínez-Navarro ME, García Panadero I, Pardo JE, Álvarez-Ortí M. Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry. Foods. 2025; 14(14):2548. https://doi.org/10.3390/foods14142548
Chicago/Turabian StyleGallardo, Miguel A., M. Esther Martínez-Navarro, Irene García Panadero, José E. Pardo, and Manuel Álvarez-Ortí. 2025. "Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry" Foods 14, no. 14: 2548. https://doi.org/10.3390/foods14142548
APA StyleGallardo, M. A., Martínez-Navarro, M. E., García Panadero, I., Pardo, J. E., & Álvarez-Ortí, M. (2025). Nutritional Enhancement of Crackers Through the Incorporation of By-Products from the Frozen Pumpkin Industry. Foods, 14(14), 2548. https://doi.org/10.3390/foods14142548