Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,344)

Search Parameters:
Keywords = Above-Ground Biomass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 (registering DOI) - 4 Aug 2025
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 - 3 Aug 2025
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

19 pages, 1721 KiB  
Article
Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
by Laura I. Ramos, Cecilia M. Prada and Pablo R. Stevenson
Forests 2025, 16(8), 1256; https://doi.org/10.3390/f16081256 - 1 Aug 2025
Viewed by 354
Abstract
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y [...] Read more.
Understanding species composition and forest dynamics is essential for predicting biomass productivity and informing conservation in tropical montane ecosystems. We evaluated floristic, demographic, and biomass changes in eighteen 0.1 ha permanent plots in the Colombian Sub-Andean forest, including both primary (ca. 60 y old) and secondary forests (ca. 30 years old). Two censuses of individuals (DBH ≥ 2.5 cm) were conducted over 7–13 years. We recorded 516 species across 202 genera and 89 families. Floristic composition differed significantly between forest types (PERMANOVA, p = 0.001), and black oak (Trigonobalanus excelsa Lozano, Hern. Cam. & Henao) forests formed distinct assemblages. Demographic rates were higher in secondary forests, with mortality (4.17% yr), recruitment (4.51% yr), and relative growth rate (0.02% yr) exceeding those of primary forests. The mean aboveground biomass accumulation and the rate of annual change were higher in primary forests (447.5 Mg ha−1 and 466.8 Mg ha−1 yr−1, respectively) than in secondary forests (217.2 Mg ha−1 and 217.2 Mg ha−1 yr−1, respectively). Notably, black oak forests showed the greatest biomass accumulation and rate of change in biomass. Annual net biomass production was higher in secondary forests (8.72 Mg ha−1 yr−1) than in primary forests (5.66 Mg ha−1 yr−1). These findings highlight the ecological distinctiveness and recovery potential of secondary Sub-Andean forests and underscore the value of multitemporal monitoring to understand forest resilience and assess vulnerability to environmental change. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 137
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 375
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

19 pages, 3546 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 225
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

27 pages, 7785 KiB  
Article
Estimation of Potato Growth Parameters Under Limited Field Data Availability by Integrating Few-Shot Learning and Multi-Task Learning
by Sen Yang, Quan Feng, Faxu Guo and Wenwei Zhou
Agriculture 2025, 15(15), 1638; https://doi.org/10.3390/agriculture15151638 - 29 Jul 2025
Viewed by 225
Abstract
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises [...] Read more.
Leaf chlorophyll content (LCC), leaf area index (LAI), and above-ground biomass (AGB) are important growth parameters for characterizing potato growth and predicting yield. While deep learning has demonstrated remarkable advancements in estimating crop growth parameters, the limited availability of field data often compromises model accuracy and generalizability, impeding large-scale regional applications. This study proposes a novel deep learning model that integrates multi-task learning and few-shot learning to address the challenge of low data in growth parameter prediction. Two multi-task learning architectures, MTL-DCNN and MTL-MMOE, were designed based on deep convolutional neural networks (DCNNs) and multi-gate mixture-of-experts (MMOE) for the simultaneous estimation of LCC, LAI, and AGB from Sentinel-2 imagery. Building on this, a few-shot learning framework for growth prediction (FSLGP) was developed by integrating simulated spectral generation, model-agnostic meta-learning (MAML), and meta-transfer learning strategies, enabling accurate prediction of multiple growth parameters under limited data availability. The results demonstrated that the incorporation of calibrated simulated spectral data significantly improved the estimation accuracy of LCC, LAI, and AGB (R2 = 0.62~0.73). Under scenarios with limited field measurement data, the multi-task deep learning model based on few-shot learning outperformed traditional mixed inversion methods in predicting potato growth parameters (R2 = 0.69~0.73; rRMSE = 16.68%~28.13%). Among the two architectures, the MTL-MMOE model exhibited superior stability and robustness in multi-task learning. Independent spatiotemporal validation further confirmed the potential of MTL-MMOE in estimating LAI and AGB across different years and locations (R2 = 0.37~0.52). These results collectively demonstrated that the proposed FSLGP framework could achieve reliable estimation of crop growth parameters using only a very limited number of in-field samples (approximately 80 samples). This study can provide a valuable technical reference for monitoring and predicting growth parameters in other crops. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

9 pages, 237 KiB  
Communication
Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures
by Leonard M. Lauriault, Brian J. Schutte, Murali K. Darapuneni and Gasper K. Martinez
Agronomy 2025, 15(8), 1832; https://doi.org/10.3390/agronomy15081832 - 29 Jul 2025
Viewed by 182
Abstract
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To [...] Read more.
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To test this hypothesis, a two-year study was conducted in two adjacent, privately owned, irrigated, warm-season perennial grass pastures (replicates) that were heavily infested with field bindweed. Study sites were near Tucumcari, NM, USA. The fields were grazed with exclosures to evaluate ungrazed management. Aboveground biomass of field bindweed, other weeds, and perennial grass were measured, and field bindweed plants were counted in May of 2018 and 2019. There was no difference between years for any variable. Other weed biomass and field bindweed biomass and plant numbers were reduced (p < 0.05) by grazing (61.68 vs. 41.67 g bindweed biomass m−2 for ungrazed and grazed management, respectively, and 108.5 and 56.8 bindweed plants m−2 for ungrazed and grazed management, respectively). Otherwise, perennial grass production was unaffected by either year or management. These results indicate that grazing can be an effective tool to reduce field bindweed competition in warm-season perennial grass pastures. Full article
(This article belongs to the Section Weed Science and Weed Management)
16 pages, 4347 KiB  
Technical Note
Combining TanDEM-X Interferometry and GEDI Space LiDAR for Estimation of Forest Biomass Change in Tanzania
by Svein Solberg, Belachew Gizachew, Laura Innice Duncanson and Paromita Basak
Remote Sens. 2025, 17(15), 2623; https://doi.org/10.3390/rs17152623 - 28 Jul 2025
Viewed by 508
Abstract
The background for this study is the limitations of the conventional approach of using deforestation area multiplied by biomass densities or emission factors. We demonstrated how TanDEM-X and GEDI data can be combined to estimate forest Above Ground Biomass (AGB) change at the [...] Read more.
The background for this study is the limitations of the conventional approach of using deforestation area multiplied by biomass densities or emission factors. We demonstrated how TanDEM-X and GEDI data can be combined to estimate forest Above Ground Biomass (AGB) change at the national scale for Tanzania. The results can be further recalculated to estimate CO2 emissions and removals from the forest. We used repeated short wavelength, InSAR DEMs from TanDEM-X to derive changes in forest canopy height and combined this with GEDI data to convert such height changes to AGB changes. We estimated AGB change during 2012–2019 to be −2.96 ± 2.44 MT per year. This result cannot be validated, because the true value is unknown. However, we corroborated the results by comparing with other approaches, other datasets, and the results of other studies. In conclusion, TanDEM-X and GEDI can be combined to derive reliable temporal change in AGB at large scales such as a country. An important advantage of the method is that it is not required to have a representative field inventory plot network nor a full coverage DTM. A limitation for applying this method now is the lack of frequent and systematic InSAR elevation data. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

18 pages, 853 KiB  
Article
Elucidating Genotypic Variation in Quinoa via Multidimensional Agronomic, Physiological, and Biochemical Assessments
by Samreen Nazeer and Muhammad Zubair Akram
Plants 2025, 14(15), 2332; https://doi.org/10.3390/plants14152332 - 28 Jul 2025
Viewed by 304
Abstract
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes [...] Read more.
Quinoa (Chenopodium quinoa Willd.) has emerged as a climate-resilient, nutrient-dense crop with increasing global popularity because of its adaptability under current environmental variations. To address the limited understanding of quinoa’s genotypic performance under local agro-environmental conditions, this study hypothesized that elite genotypes would exhibit significant variation in agronomic, physiological, and biochemical traits. This study aimed to elucidate genotypic variability among 23 elite quinoa lines under field conditions in Faisalabad, Pakistan, using a multidimensional framework that integrated phenological, physiological, biochemical, root developmental, and yield-related attributes. The results revealed that significant variation was observed across all measured parameters, highlighting the diverse adaptive strategies and functional capacities among the tested genotypes. More specifically, genotypes Q4, Q11, Q15, and Q126 demonstrated superior agronomic potential and canopy-level physiological efficiencies, including high biomass accumulation, low infrared canopy temperatures and sustained NDVI values. Moreover, Q9 and Q52 showed enhanced accumulation of antioxidant compounds such as phenolics and anthocyanins, suggesting potential for functional food applications and breeding program for improving these traits in high-yielding varieties. Furthermore, root trait analysis revealed Q15, Q24, and Q82 with well-developed root systems, suggesting efficient resource acquisition and sufficient support for above-ground plant parts. Moreover, principal component analysis further clarified genotype clustering based on trait synergistic effects. These findings support the use of multidimensional phenotyping to identify ideotypes with high yield potential, physiological efficiency and nutritional value. The study provides a foundational basis for quinoa improvement programs targeting climate adaptability and quality enhancement. Full article
Show Figures

Figure 1

17 pages, 2895 KiB  
Article
Trade-Offs of Plant Biomass by Precipitation Regulation Across the Sanjiangyuan Region of Qinghai–Tibet Plateau
by Mingxue Xiang, Gang Fu, Junxi Wu, Yunqiao Ma, Tao Ma, Kai Zheng, Zhaoqi Wang and Xinquan Zhao
Plants 2025, 14(15), 2325; https://doi.org/10.3390/plants14152325 - 27 Jul 2025
Viewed by 285
Abstract
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, [...] Read more.
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, and (2) precipitation-mediated AGB-BGB allocation strategies. To address this, we conducted a large-scale field survey across precipitation gradients (400–700 mm/y) in the Sanjiangyuan alpine grasslands, Qinghai–Tibet Plateau. During the 2024 growing season, a total of 63 sites (including 189 plots and 945 quadrats) were sampled along five aridity classes: <400, 400–500, 500–600, 600–700, and >700 mm/y. Our findings revealed precipitation as the dominant driver of biomass dynamics: AGB exhibited equal growth rates relative to BGB within the 600–700 mm/y range, but accelerated under drier/wetter conditions. This suggests preferential allocation to aboveground parts under most precipitation regimes. Precipitation explained 31.71% of AGB–BGB trade-off variance (random forest IncMSE), surpassing contributions from AGB (17.61%), specific leaf area (SLA, 13.87%), and BGB (12.91%). Structural equation modeling confirmed precipitation’s positive effects on SLA (β = 0.28, p < 0.05), AGB (β = 0.53, p < 0.05), and BGB (β = 0.60, p < 0.05), with AGB-mediated cascades (β = 0.33, p < 0.05) dominating trade-off regulation. These results advance our understanding of mechanistic drivers governing allometric AGB–BGB relationships across climatic gradients in alpine ecosystems of the Sanjiangyuan Region on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 365
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

23 pages, 4324 KiB  
Article
Monitoring Nitrogen Uptake and Grain Quality in Ponded and Aerobic Rice with the Squared Simplified Canopy Chlorophyll Content Index
by Gonzalo Carracelas, John Hornbuckle and Carlos Ballester
Remote Sens. 2025, 17(15), 2598; https://doi.org/10.3390/rs17152598 - 25 Jul 2025
Viewed by 431
Abstract
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs [...] Read more.
Remote sensing tools have been proposed to assist with rice crop monitoring but have been developed and validated on ponded rice. This two-year study was conducted on a commercial rice farm with irrigation automation technology aimed to (i) understand how canopy reflectance differs between high-yielding ponded and aerobic rice, (ii) validate the feasibility of using the squared simplified canopy chlorophyll content index (SCCCI2) for N uptake estimates, and (iii) explore the SCCCI2 and similar chlorophyll-sensitive indices for grain quality monitoring. Multispectral images were collected from an unmanned aerial vehicle during both rice-growing seasons. Above-ground biomass and nitrogen (N) uptake were measured at panicle initiation (PI). The performance of single-vegetation-index models in estimating rice N uptake, as previously published, was assessed. Yield and grain quality were determined at harvest. Results showed that canopy reflectance in the visible and near-infrared regions differed between aerobic and ponded rice early in the growing season. Chlorophyll-sensitive indices showed lower values in aerobic rice than in the ponded rice at PI, despite having similar yields at harvest. The SCCCI2 model (RMSE = 20.52, Bias = −6.21 Kg N ha−1, and MAPE = 11.95%) outperformed other models assessed. The SCCCI2, squared normalized difference red edge index, and chlorophyll green index correlated at PI with the percentage of cracked grain, immature grain, and quality score, suggesting that grain milling quality parameters could be associated with N uptake at PI. This study highlights canopy reflectance differences between high-yielding aerobic (averaging 15 Mg ha−1) and ponded rice at key phenological stages and confirms the validity of a single-vegetation-index model based on the SCCCI2 for N uptake estimates in ponded and non-ponded rice crops. Full article
Show Figures

Figure 1

12 pages, 1608 KiB  
Brief Report
Combining Grass-Legume Mixtures with Soil Amendments Boost Aboveground Productivity on Engineering Spoil Through Selection and Compensation Effects
by Zhiquan Zhang, Faming Ye, Hanghang Tuo, Yibo Wang, Wei Li, Yongtai Zeng and Hao Li
Diversity 2025, 17(8), 513; https://doi.org/10.3390/d17080513 - 25 Jul 2025
Viewed by 166
Abstract
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to [...] Read more.
The arid-hot valleys of Sichuan Province contain extensive engineered gravel deposits, where ecological restoration has become the predominant remediation strategy. Accelerating vegetation recovery and continuously improving productivity are important prerequisites for the protection of regional biodiversity. We employed fertilization and sowing cultivation to facilitate ecological restoration. We have conducted continuous ecological experiments for two years using the following experimental treatments, covering indigenous soil, adding organic fertilizer, and applying compound fertilizer and organic fertilizer, with six types of sowing established under each soil treatment: monoculture and pairwise mixed cropping utilizing Elymus dahuricus (EDA), Dactylis glomerata (DGL), and Medicago sativa (MSA). Through the analysis of variance and the calculation of effect factors, our results indicated that compound fertilizer and organic fertilizer adding significantly improved vegetation cover and increased aboveground biomass, and the highest productivity was observed in the mixed sowing treatment of EDA and MSA. The effect coefficient model analysis further showed that the combination of EDA and MSA resulted in the highest selection and compensation effects on aboveground productivity. Two potential mechanisms drive enhanced productivity in mixed grasslands: the strengthening of the selection effect via increased legume nitrogen fixation, and the enhancement of the compensation effect through niche differentiation among species. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Graphical abstract

18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 - 24 Jul 2025
Viewed by 309
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

Back to TopTop