Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work Setup
2.3. Sampling Representativeness and Spatial Autocorrelation
2.4. Demographic Rates
2.5. Aboveground Biomass Estimation
2.6. Productivity Estimation
2.7. Statistical Analysis
3. Results
3.1. Species Turnover
3.2. Forest Dynamics
3.3. Aboveground Biomass Stocks
3.4. Productivity, Loss, and Rate of Change in Biomass
3.5. Relative Growth Rate
4. Discussion
4.1. Species Turnover in Primary and Secondary Forests
4.2. Dynamics in Primary and Secondary Forests
4.3. AGB, Biomass Change Rate, and Productivity
4.4. Black Oak Forests Future
4.5. Caveats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Rahbek, C.; Borregaard, M.K.; Antonelli, A.; Colwell, R.K.; Holt, B.G.; Nogues-Bravo, D.; Ø Rasmussen, C.M.; Richardson, K.; Rosing, M.T.; Whittaker, R.J.; et al. Building Mountain biodiversity: Geological and evolutionary processes. Science 2019, 365, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Rahbek, C.; Borregaard, M.K.; Colwell, R.K.; Dalsgaard, B.; Holt, B.G.; Morueta-Holme, N.; Nogues-Bravo, D.; Whittaker, R.J.; Fjeldså, J. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 2019, 365, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Homeier, J.; Breckle, S.W.; Günter, S.; Rollenbeck, R.T.; Leuschner, C. Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 2010, 42, 140–148. [Google Scholar] [CrossRef]
- López, W.; Duque, Á. Patrones de diversidad alfa en tres fragmentos de bosques montanos en la región norte de los Andes, Colombia. Rev. Biol. Trop. 2010, 58, 483–498. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Colwell, R.K.; Brehm, G.; Cardelus, C.L.; Gilman, A.C.; Longino, J.T. Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science 2008, 322, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, A.; Touval, J.L.; Schmitz, M.C.; Sotomayor, L.; Hyman, G.G. Assessment of threats to ecosystems in South America. J. Nat. Conserv. 2010, 18, 180–188. [Google Scholar] [CrossRef]
- He, X.; Spracklen, D.V.; Holden, J.; Zeng, Z. Tropical montane forest loss dominated by increased 1–10 hectare-sized patches. Environ. Res. Lett. 2025, 20, 024039. [Google Scholar] [CrossRef]
- Duque, A.; Stevenson, P.R.; Feeley, K.J. Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc. Natl. Acad. Sci. USA 2015, 112, 10744–10749. [Google Scholar] [CrossRef] [PubMed]
- Enquist, C.A.F. Predicted regional impacts of climate change on the geographical distribution and diversity of tropical forests in Costa Rica. J. Biogeogr. 2002, 29, 519–534. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Muller-Landau, H.C.; Thomas, S.C.; Ashton, P.S.; Bunyavejchewin, S.; Co, L.L.; Dattaraja, H.S.; Davies, S.J.; Esufali, S.; et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 2008, 6, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Terrer, C.; Jackson, R.B.; Prentice, I.C.; Keenan, T.F.; Kaiser, C.; Vicca, S.; Fisher, J.B.; Reich, P.B.; Stocker, B.D.; Hungate, B.A.; et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 2019, 9, 684–689. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.S.; Cabral, G.A.L.; et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Bongers, F.; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; Broadbent, E.N.; Chazdon, R.L.; et al. Biomass resilience of Neotropical secondary forests. Nature 2016, 530, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Mariscal, A.; Thomas, D.C.; Haffenden, A.; Manobanda, R.; Defas, W.; Chinchero, M.A.; Larco, J.D.S.; Jaramillo, E.; Roy, B.A.; Peck, M. Evidence for Alternate Stable States in an Ecuadorian Andean Cloud Forest. Forests 2022, 13, 875. [Google Scholar] [CrossRef]
- Prada, C.M.; Stevenson, P.R. Plant composition associated with environmental gradients in tropical montane forests (Cueva de Los Guacharos National Park, Huila, Colombia). Biotropica 2016, 48, 568–576. [Google Scholar] [CrossRef]
- Norden, N.; Chazdon, R.L.; Chao, A.; Jiang, Y.H.; Vílchez-Alvarado, B. Resilience of tropical rain forests: Tree community reassembly in secondary forests. Ecol. Lett. 2009, 12, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Swenson, N.G.; Enquist, B.J.; Pither, J.; Kerkhoff, A.J.; Boyle, B.; Weiser, M.D.; Elser, J.J.; Fagan, W.F.; Forero-Montaña, J.; Fyllas, N.; et al. The biogeography and filtering of woody plant functional diversity in North and South America. Glob. Ecol. Biogeogr. 2012, 21, 798–808. [Google Scholar] [CrossRef]
- Myster, R.W. Disturbance and Response in the Andean Cloud Forest: A Conceptual Review. Bot. Rev. 2020, 86, 119–135. [Google Scholar] [CrossRef]
- Freud, C.A.; Silman, M.R. Developing a More Complete Understanding of Tropical Montane Forest Disturbance Ecology through Landslide Research. Front. For. Glob. Change 2023, 6, 1091387. [Google Scholar] [CrossRef]
- Miyamoto, K.; Sato, T.; Arana Olivos, E.A.; Clostre Orellana, G.; Stornaiuolo, C.M.R. Variation in Tree Community Composition and Carbon Stock under Natural and Human Disturbances in Andean Forests, Peru. Forests 2018, 9, 390. [Google Scholar] [CrossRef]
- Castillo-Figueroa, D.; Gonzalez-Melo, A.; Posada, J.M. Wood Density Is Related to Aboveground Biomass and Productivity along a Successional Gradient in Upper Andean Tropical Forests. Front. Plant Sci. 2023, 14, 1276424. [Google Scholar] [CrossRef] [PubMed]
- Prada, C.M.; Heineman, K.D.; Pardo, M.J.; Piponiot, C.; Dalling, J.W. Soil and Biomass Carbon Storage Is Much Higher in Central American than Andean Montane Forests. EGUsphere, 2024; preprint. [Google Scholar] [CrossRef]
- Samper, C.K.; Vallejo, M.I. Estructura y dinámica de poblaciones de plantas en un bosque andino. Rev. Acad. Colomb. Cienc. 2007, 31, 57–68. [Google Scholar] [CrossRef]
- Velásquez, R.J.O.; Maniguaje, N.L.; Duque, Á.J. Diversidad y dinámica de un bosque subandino de altitud en la región norte de los Andes colombianos. Rev. Biol. Trop. 2012, 60, 943–952. [Google Scholar] [CrossRef][Green Version]
- Chazdon, R.L. Chance and determinism in tropical forest succession. In Tropical Forest Community Ecology; Carson, W.P., Schnitzer, S.A., Eds.; Wiley-Blackwell: Oxford, UK, 2008; pp. 384–408. [Google Scholar]
- Rodriguez, Í.; Velásquez, H.; Herrera, G.; Trujillo, F. Plan de Manejo Parque Nacional Natural Cueva de los Guácharos 2022–2027 Colombia. 2021. Available online: https://www.parquesnacionales.gov.co/wp-content/uploads/2022/09/plan-de-manejo-pnn-cueva-de-los-guacharos_adop-res-142_2022.pdf (accessed on 2 June 2025).
- Dávila, D.E.; Alvis, J.F.; Ospina, R. Distribución espacial, estructura y volumen de los bosques de Roble negro (Colombobalanus excelsa (Lozano, Hern. Cam. & Henao, J.E.) Nixon & Crepet) en el Parque Nacional Natural Cueva de los Guácharos. Colomb. For. 2012, 15, 207. [Google Scholar] [CrossRef][Green Version]
- Phillips, O.L.; Baker, T.R.; Feldpausch, T.R.; Brienen, R.J.W. RAINFOR Field Manual for Plot Establishment and Remeasurement. 2021. Available online: https://forestplots.net/upload/manualsenglish/rainfor_field_manual_en.pdf (accessed on 2 June 2025).
- Vallejo, M.; Londoño, A.; López, R.; Galeano, G.; Álvarez, E.; Devia, W. Establecimiento de Parcelas Permanentes en Bosques de Colombia: Volumen I; Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá, Colombia, 2005; Available online: https://www.researchgate.net/publication/326882544_ESTABLECIMIENTO_DE_PARCELAS_PERMANENTES_EN_BOSQUES_DE_COLOMBIA (accessed on 2 June 2025).
- Sheil, D.; Burslem, D.F.; Alder, D. The interpretation and misinterpretation of mortality rate measures. J. Ecol. 1995, 83, 331–333. [Google Scholar] [CrossRef]
- Álvarez, E.; Duque, A.; Saldarriaga, J.; Cabrera, K.; de las Salas, G.; del Valle, I.; Lema, A.; Moreno, F.; Orrego, S.; Rodríguez, L. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. For. Ecol. Manag. 2012, 267, 297–308. [Google Scholar] [CrossRef]
- Goodman, R.C.; Phillips, O.L.; Del Castillo Torres, D.; Freitas, L.; Cortese, S.T.; Monteagudo, A.; Baker, T.R. Amazon palm biomass and allometry. For. Ecol. Manag. 2013, 310, 994–1004. [Google Scholar] [CrossRef]
- Schnitzer, S.A.; DeWalt, S.J.; Chave, J. Censusing and measuring lianas: A quantitative comparison of the common methods. Biotropica 2006, 38, 581–591. [Google Scholar] [CrossRef]
- Camargo, G.J.C.; Arango, A.A.M.; Trinh, L. The potential of bamboo forests as a carbon sink and allometric equations for estimating their aboveground biomass. Environ. Dev. Sustain. 2023, 26, 20159–20187. [Google Scholar] [CrossRef]
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Global Wood Density Database. 2009. Available online: https://datadryad.org/stash/dataset/doi:10.5061/dryad.234 (accessed on 2 June 2025).
- Réjou-Méchain, M.; Tanguy, A.; Piponiot, C.; Chave, J.; Hérault, B. biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 2017, 8, 1163–1167. [Google Scholar] [CrossRef]
- Baia, A.L.P.; Nascimento, H.E.M.; Guedes, M.; Hilário, R.; Toledo, J.J. Tree Height-Diameter Allometry and Implications for Biomass Estimates in Northeastern Amazonian Forests. PeerJ 2025, 13, e18974. [Google Scholar] [CrossRef] [PubMed]
- Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; et al. Height-Diameter Allometry of Tropical Forest Trees. Biogeosciences 2011, 8, 1081–1106. [Google Scholar] [CrossRef]
- Kohyama, T.S.; Kohyama, T.I.; Sheil, D. Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. For. Ecol. Manag. 2019, 433, 729–740. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 2 June 2025).
- Oksanen, J.; Simpson, G.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-8. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 2 June 2025).
- Golicher, D.; Newton, A.C. Applying succession models to the conservation of tropical montane forest. In Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America; Newton, A.C., Ed.; CABI Publishing: Wallingford, UK, 2007; pp. 200–222. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Lehmann, T.; Escobar, S.; Donoso, D.; Endara, M.J.; Guevara-Andino, J.E.; Blüthgen, N. Recovery of Forest Structural Complexity during Secondary Succession in the Tropics. EcoEvoRxiv 2024, preprint. [CrossRef]
- Wong, M.Y.; Wurzburger, N.; Hall, J.S.; Wright, S.J.; Tang, W.; Hedin, L.O.; Saltonstall, K.; van Breugel, M.; Batterman, S.A. Trees adjust nutrient acquisition strategies across tropical forest secondary succession. New Phytol. 2024, 243, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Finegan, B. Pattern and process in neotropical secondary rain forests: The first 100 years of succession. Trends Ecol. Evol. 1996, 11, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Letcher, S.G.; Chazdon, R.L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 2009, 41, 608–617. [Google Scholar] [CrossRef]
- Phillips, O.L.; Hall, P.; Gentry, A.H.; Sawyer, S.A.; Vásquez, R. Dynamics and species richness of tropical rain forests. Proc. Natl. Acad. Sci. USA 1994, 91, 2805–2809. [Google Scholar] [CrossRef] [PubMed]
- Peña-Claros, M.; Fredericksen, T.S.; Alarcón, A.; Blate, G.M.; Choque, U.; Leaño, C.; Licona, J.C.; Mostacedo, B.; Pariona, W.; Villegas, Z.; et al. Beyond reduced-impact logging: Silvicultural treatments to increase growth rates of tropical trees. For. Ecol. Manag. 2012, 256, 1458–1467. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Righelato, R. Carbon storage and sequestration of re-growing montane forests in southern Ecuador. For. Ecol. Manag. 2016, 364, 139–144. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2004, 359, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-term decline of the Amazon carbon sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Acosta, N.; Parra Aldana, C.A.; Botero, J.E. Trigonobalanus excelsa. The IUCN Red List of Threatened Species 2020: e.T32076A137102918. Available online: https://www.iucnredlist.org/species/32076/137102918 (accessed on 30 May 2025).
- Matsuo, T.; Poorter, L.; van der Sande, M.T.; Abdul, S.M.; Koyiba, D.W.; Opoku, J.; de Wit, B.; Kuzee, T.; Amissah, L. Drivers of Biomass Stocks and Productivity of Tropical Secondary Forests. Ecology 2024, 105, e4488. [Google Scholar] [CrossRef] [PubMed]
- Tuomisto, H.; Ruokolainen, K.; Yli-Halla, M. Dispersal, environment, and floristic variation of western Amazonian forests. Science 2003, 299, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Peres, C.A.; Dent, D.; Sheil, D.; Lugo, A.E.; Lamb, D.; Stork, N.E.; Miller, S.E. The potential for species conservation in tropical secondary forests. Conserv. Biol. 2009, 23, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
Plot | Forest | t (y) | m (% y) | r (% y) | γ (% y) | RGR (% y) | AGBt1 (Mg ha−1) | Bw (Mg ha−1 y−1) | P (Mg ha−1 y−1) | L (Mg ha−1 y−1) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBH ≥ 2.5 cm | DBH ≥ 10 cm | DBH ≥ 2.5 cm | DBH ≥ 10 cm | DBH ≥ 2.5 cm | DBH ≥ 10 cm | DBH ≥ 2.5 cm | DBH ≥ 10 cm | |||||||
1 | Primary | 7 | 2.258 | 2.424 | 0.166 | 0.018 | 324.46 | 301.11 | 292.44 | 269.72 | 14.38 | 13.52 | 6.58 | 5.89 |
4 | Primary | 12 | 3.360 | 4.042 | 0.681 | 0.011 | 204.71 | 190.73 | 254.02 | 239.04 | −0.54 | −1.14 | 7.52 | 6.78 |
5 | Primary | 11 | 2.378 | 2.976 | 0.597 | 0.015 | 426.21 | 410.44 | 504.67 | 488.54 | 13.24 | 12.57 | 26.94 | 26.23 |
8 | Primary | 12 | 2.856 | 2.658 | −0.198 | 0.004 | 293.31 | 278.39 | 289.75 | 272.89 | 5.08 | 4.71 | 4.53 | 3.86 |
9 | Primary | 12 | 3.351 | 2.917 | −0.433 | 0.014 | 261.95 | 243.68 | 258.10 | 240.37 | 6.23 | 5.48 | 5.64 | 4.97 |
11 | Primary | 13 | 2.045 | 2.045 | 0.000 | 0.012 | 456.31 | 437.14 | 442.70 | 422.07 | 5.62 | 5.40 | 3.69 | 3.27 |
13 | Primary | 12 | 5.036 | 2.090 | −2.946 | 0.013 | 203.87 | 185.39 | 190.76 | 168.18 | 6.43 | 5.54 | 4.45 | 2.97 |
15 | Primary | 13 | 2.505 | 1.937 | −0.568 | 0.013 | 276.30 | 255.53 | 281.37 | 256.01 | 3.27 | 3.42 | 4.00 | 3.49 |
17 | Primary | 13 | 2.412 | 3.236 | 0.825 | 0.015 | 206.87 | 183.75 | 211.76 | 189.67 | 2.68 | 1.66 | 3.39 | 2.52 |
19-oak f. 1 | Primary | 12 | 1.519 | 2.483 | 0.963 | 0.010 | 936.88 | 920.25 | 1075.53 | 1050.02 | 0.98 | 2.10 | 23.16 | 22.82 |
3-oak f. 1 | Primary | 12 | 1.714 | 0.812 | −0.902 | 0.004 | 1331.66 | 1307.31 | 1333.44 | 1296.73 | 4.88 | 6.14 | 5.15 | 4.52 |
2 | Secondary | 12 | 5.832 | 7.374 | 1.542 | 0.026 | 189.82 | 172.77 | 168.46 | 153.99 | 12.29 | 10.89 | 9.11 | 8.09 |
6 | Secondary | 8 | 5.118 | 2.908 | −2.210 | 0.022 | 231.77 | 220.28 | 249.04 | 235.24 | 6.81 | 6.41 | 10.72 | 9.79 |
10 | Secondary | 12 | 5.354 | 6.324 | 0.969 | 0.028 | 146.55 | 130.58 | 190.63 | 174.91 | 8.05 | 6.35 | 15.36 | 13.75 |
12 | Secondary | 12 | 4.155 | 3.659 | −0.496 | 0.016 | 297.23 | 275.05 | 267.25 | 243.45 | 12.08 | 11.09 | 7.61 | 6.40 |
14 | Secondary | 13 | 3.364 | 5.197 | 1.833 | 0.018 | 172.85 | 154.22 | 186.38 | 170.68 | 7.14 | 5.74 | 9.12 | 8.16 |
16 | Secondary | 13 | 3.412 | 3.436 | 0.024 | 0.030 | 185.48 | 162.88 | 187.17 | 168.22 | 8.70 | 7.08 | 8.94 | 7.85 |
18 | Secondary | 12 | 1.964 | 2.694 | 0.730 | 0.012 | 296.98 | 281.18 | 269.92 | 252.47 | 5.94 | 5.63 | 1.88 | 1.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, L.I.; Prada, C.M.; Stevenson, P.R. Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests. Forests 2025, 16, 1256. https://doi.org/10.3390/f16081256
Ramos LI, Prada CM, Stevenson PR. Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests. Forests. 2025; 16(8):1256. https://doi.org/10.3390/f16081256
Chicago/Turabian StyleRamos, Laura I., Cecilia M. Prada, and Pablo R. Stevenson. 2025. "Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests" Forests 16, no. 8: 1256. https://doi.org/10.3390/f16081256
APA StyleRamos, L. I., Prada, C. M., & Stevenson, P. R. (2025). Demography and Biomass Productivity in Colombian Sub-Andean Forests in Cueva de los Guácharos National Park (Huila): A Comparison Between Primary and Secondary Forests. Forests, 16(8), 1256. https://doi.org/10.3390/f16081256