Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Study Management
2.3. Measurements
2.4. Statistical Description
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sosnoskie, L.M.; Hanson, B.D.; Steckel, L.E. Field bindweed (Convolvulus arvensis): “all tied up”. Weed Technol. 2020, 34, 916–921. [Google Scholar] [CrossRef]
- Boldt, P.E.; Sobhian, R. Release and establishment of Aceria malherbae (Acari: Eriophyidae) for control of field bindweed in Texas. Environ. Entomol. 1993, 22, 234–237. [Google Scholar] [CrossRef]
- Davis, S.; Mangold, J.; Menalled, F.; Orloff, N.; Miller, Z.; Lehnhoff, E. A meta-analysis of field bindweed (Convolvulus arvensis) management in annual and perennial systems. Weed Sci. 2018, 66, 540–547. [Google Scholar] [CrossRef]
- Fanfarillo, E.; Latini, M.; Iberite, M.; Bonari, G.; Nicolella, G.; Rosati, L.; Salerno, G.; Abbate, G. The segetal flora of winter cereals and allied crops in Italy: Species inventory and chorological, structural and ecological features. Plant Biosyst. 2020, 154, 935–946. [Google Scholar] [CrossRef]
- Gaskin, J.F.; Cortat, G.; West, N.M. Vegetative versus sexual reproduction varies widely in Convolvulus arvensis across western North America. Biol. Invasions 2023, 25, 2219–2229. [Google Scholar] [CrossRef]
- Gomzhina, M.; Gasich, E. Axochyta erotica sp. nov. pathogenic on Convolvulus arvensis. Diversity 2024, 16, 246. [Google Scholar] [CrossRef]
- Gianoli, E. Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int. J. Plant Sci. 2004, 165, 825–832. [Google Scholar] [CrossRef]
- Hassan, M.S.; Naz, N.; Ali, H.; Ali, B.; Akram, M.; Iqbal, R.; Afmal, S.; Ali, B.; Ercisli, S.; Golokhvast, K.S.; et al. Response of Asphodelus tenuifoliu L. (wild onion) and Convolvulus arvensis L. (field bindweed) against shoot extract of Trianthema portulacastrum L. (horse purslane). Plants 2023, 12, 458. [Google Scholar] [CrossRef]
- Sotelo-Ceron, N.D.; Maldonado-Mendoza, I.E.; Leyva-Madrigal, K.Y.; Martinez-Alvarez, J.C. Isolation, selection, and identification of phytopathogenic fungi with bioherbicide potential for the control of field bindweed (Convolvulus arvensis L.). Weed Biol. Manag. 2023, 23, 99–109. [Google Scholar] [CrossRef]
- Stahler, L.M. Shade and soil moisture as factors in competition between selected crops and field bindweed, Convolvulus arvensis. J. Am. Soc. Agron. 1948, 40, 490–502. [Google Scholar] [CrossRef]
- Mitich, L.W. Field bindweed. Weed Technol. 1991, 5, 913–915. [Google Scholar] [CrossRef]
- Morrison, J.; Izquierdo, J.; Plaza, E.H.; Gonzalez-Andujar, J.L. The attractiveness of five common Mediterranean weeds to pollinators. Agronomy 2021, 11, 1314. [Google Scholar] [CrossRef]
- Daugaliyeva, S.; Daugaliyeva, A.; Amirova, K.; Yelubayeva, A.; Kapar, A.; Abiti, A.; Partipilo, T.; Toktarov, N.; Peletto, S. Forage honeybees from different ecological areas determined through melissopalynological analysis and DNA metabarcoding. Insects 2024, 15, 674. [Google Scholar] [CrossRef]
- Benizri, E.; Amiaud, B. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol. Biochem. 2005, 37, 2055–2064. [Google Scholar] [CrossRef]
- Westwood, J.H.; Tominage, T.; Weller, S.C. Characterization and breakdown of self-incompatibility in field bindweed (Convulvulus arvensis, L.). J. Hered. 1997, 88, 459–465. [Google Scholar] [CrossRef]
- Rosenthal, S.S. European organisms of interest for the biocontrol of Convolvulus arvensis in the United States. In Proceedings of the Fifth International Symposium on Biological Control of Weeds (E.S. Del Fosse, Ed.), Brisbane, Australia, 22–29 July 1980. [Google Scholar]
- Schutte, B.J.; Lauriault, L.M. Nutritive value of field bindweed (Convolvulus arvensis) roots as a potential livestock feed and the effect of Aceria malherbae on root components. Weed Technol. 2015, 29, 329–334. [Google Scholar] [CrossRef]
- Saad, M.M.G.; Saad, M.A.; Saad, B.S.; Zakaria, F.A.; Husain, A.-R.A.; Abdelgaleil, S.A.M. Bioremediation and microbial-assisted phytoremediation of heavy metals by endophytic Fusarium species isolated from Convolvulus arvensis. Bioremed. J. 2024, 28, 202–212. [Google Scholar] [CrossRef]
- Orloff, N.; Mangold, J.; Miller, Z.; Menalled, F. A meta-analysis of field bindweed (Convolvulus arvensis L.) and Canada thistle (Cirsium arvense L.) management in organic agricultural systems. Agric. Ecosyst. Environ. 2018, 254, 264–272. [Google Scholar] [CrossRef]
- Lubben, M.; Erschbamer, B. Long term changes of the inner-alpine steppe vegetation: The dry grassland communities of the Vinschgau (South Tyrol, Italy) 40–50 years after the first vegetation mapping. Veg. Classif. Surv. 2021, 2, 117–131. [Google Scholar] [CrossRef]
- Haidar, M.A.; Gharif, C.; Sleiman, F.T. Survival of weed seeds subjected to sheep rumen digestion. Weed Res. 2010, 50, 467–471. [Google Scholar] [CrossRef]
- Oveisi, M.; Ojaghi, A.; Mashhadi, H.R.; Muller-Scharer, H.; Yazdi, K.R.; Kaleibar, B.P.; Soltani, E. Potential for endozoochorous seed dispersal by sheep and goats: Risk of seed transport via animal faeces. Weed Res. 2021, 61, 1–12. [Google Scholar] [CrossRef]
- Gelbard, J.L.; Harrison, S. Roadless habitats as refuges for native grasslands: Interactions with soil, aspect, and grazing. Ecol. Appl. 2003, 13, 404–415. [Google Scholar] [CrossRef]
- Hassan, M.S.; Naz, N.; Ali, H. Evaluation of the allelopathic potential of Trianthema portulacastrum L. on Convolvulus arvensis. Biochem. Syst. Ecol. 2022, 104, 104491. [Google Scholar] [CrossRef]
- McClay, A.S.; De Clerck-Floate, R.A. Chapter 66, Convolvulus arvensis L., field bindweed (Convolvulaceae). In Biological Control Programmes in Canada, 1981–2000; Mason, P.G., Huber, J.T., Eds.; CAB International: Wallingford, UK, 2002; pp. 331–337. [Google Scholar]
- Stahler, L.M.; Carlson, A.E. Controlling field bindweed by grazing with sheep. J. Am. Soc. Agron. 1947, 39, 5964. [Google Scholar] [CrossRef]
- Jurado-Exposito, M.; Lopez-Granados, F.; Gonzalez-Andujar, J.L.; Garcia-Torres, L. Spatial and temporal analysis of Convolvulus arvensis L. populations over four growing seasons. Eur. J. Agron. 2004, 21, 287–296. [Google Scholar] [CrossRef]
- Leishman, M.R.; Masters, G.J.; Clarke, I.P.; Brown, V.K. Seed bank dynamics: The role of fungal pathogens and climate change. Funct. Ecol. 2000, 14, 293–299. [Google Scholar] [CrossRef]
- Liu, T.; Wang, M.; Awasthi, M.K.; Chen, H.; Awasthi, S.K.; Duan, Y.; Zhang, Z. Measurement of cow manure compost toxicity and maturity based on weed seed germination. J. Clean. Prod. 2020, 245, 118894. [Google Scholar] [CrossRef]
- Lehnhoff, E.A.; Neher, P.; Indacochea, A.; Beck, L. Electricity as an effective weed control tool in non-crop areas. Weed Res. 2022, 62, 149–159. [Google Scholar] [CrossRef]
- Martelloni, L.; Frasconi, C.; Sportelli, M.; Fontanelli, M.; Raffaelli, M.; Peruzzi, A. Flaming, glyphosate, hot foam, and nonanoic acid for weed control: A comparison. Agronomy 2020, 10, 129. [Google Scholar] [CrossRef]
- Kremer, R.J.; Li, J. Developing weed-suppressive soils through improved soil quality. Soil Tillage Res. 2003, 72, 193–202. [Google Scholar] [CrossRef]
- Nojadeh, M.S.; Pouresmaeil, M.; Younessi-Hamzekhanlu, M.; Venditti, A. Phytochemical profile of fennel essential oils and possible applications for natural antioxidant and controlling Convolvulus arvensis. Nat. Prod. Res. 2021, 35, 4164–4168. [Google Scholar] [CrossRef]
- McClay, A.S.; De Clerck-Floate, R.A. Chapter 45 Convolvulus arvensis L. field bindweed (Convolvulaceae). Biological Control Programmes in Canada, 2001–2012; Mason, P.G., Gillespie, D.R., Eds.; CAB International: Wallingford, UK, 2013; pp. 307–309. [Google Scholar]
- Smith, L.; de Lillo, E.; Amrine, J.W., Jr. Effectiveness of eriophid mites for biological control of weedy plants and challenges for future research. Exp. Appl. Acarol. 2010, 51, 115–149. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Kleeschulte, J.; Michels, G.K.; Thompson, D. First report of Aceria malherbae gall mites for control of field bindweed in Missouri. Southwest Entomol. 2013, 38, 353–356. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Thompson, D.; Pierce, J.; Bennett, A.; Schutte, B.; Beck, L.; Sutherland, C.; Jimenez, D.; Hamilton, W. Circular 600, Managing Aceria Malherbae Gall Mites for Control of Field Bindweed; New Mexico State University: Las Cruces, NM, USA, 2018; p. 12. Available online: https://pubs.nmsu.edu/_circulars/CR600/index.html (accessed on 26 July 2025).
- SAS Institute. The SAS 9.4 for Windows; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; pp. 1243–1246. [Google Scholar]
- Ramsey, F.L.; Schafer, D.W. The Statistical Sleuth: A Course in Methods of Data Analysis, 2nd ed.; Duxbury: Pacific Grove, CA, USA, 2002; p. 42. [Google Scholar]
- Ziska, L.H. Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide. J. Exp. Bot. 2003, 54, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Allison, C.D. Factors affecting forage intake by range ruminants: A review. Rangel. Ecol. Manag. 1985, 38, 305. [Google Scholar] [CrossRef]
Year | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sep. | Oct. | Nov. | Dec. | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, °C | |||||||||||||
2017 | 3.7 | 9.7 | 6.4 | 14.4 | 17.8 | 25.3 | 27.8 | 23.9 | 21.1 | 15.6 | 11.9 | 4.8 | 15.2 |
2018 | 3.3 | 6.1 | 11.1 | 13.3 | 22.2 | 27.2 | 27.2 | 25.6 | 22.2 | 13.9 | 6.7 | 3.3 | 15.2 |
2019 | 3.9 | 5.6 | 8.9 | 14.4 | 17.2 | 23.9 | 29.0 | 25.9 | 23.9 | 15.4 | 7.6 | 4.7 | 15.0 |
Long-term | 3.5 | 5.6 | 9.5 | 14.2 | 19.1 | 24.3 | 26.3 | 25.3 | 21.6 | 15.2 | 8.6 | 4.0 | 14.8 |
Precipitation, mm | |||||||||||||
2017 | 26 | 4 | 55 | 69 | 46 | 25 | 40 | 165 | 67 | 92 | 0 | 0 | 590 |
2018 | 0 | 1 | 4 | 13 | 46 | 14 | 29 | 92 | 20 | 108 | 14 | 16 | 357 |
2019 | 4 | 1 | 6 | 24 | 47 | 31 | 48 | 86 | 1 | 50 | 7 | 0 | 305 |
Long-term | 10 | 12 | 19 | 28 | 47 | 47 | 67 | 68 | 39 | 34 | 17 | 16 | 404 |
Field Bindweed | |||||
---|---|---|---|---|---|
Effect | Biomass | Plants | Plant Wt. | Other Weed Biomass | Grass Biomass |
g m−2 | m−2 | g plant−1 | g m−2 | g m−2 | |
Year | |||||
2018 | 66.86 | 87.0 | 0.90 | 49.22 | 58.23 |
2019 | 36.50 | 78.4 | 0.45 | 148.86 | 93.42 |
SE | 11.30 | 8.7 | 0.08 | 36.08 | 35.62 |
Mgt | |||||
Ungrazed | 61.68 | 108.5 | 0.56 | 126.89 | 83.75 |
Grazed | 41.67 | 56.8 | 0.78 | 71.19 | 67.90 |
SE | 8.28 | 8.7 | 0.07 | 27.02 | 31.23 |
p-values | |||||
Year | 0.1979 | 0.5225 | 0.0644 | 0.1901 | 0.5571 |
Mgt | 0.0437 | 0.0137 | 0.0721 | 0.0886 | 0.7096 |
Year × Mgt | 0.9890 | 0.1204 | 0.0311 | 0.1713 | 0.3453 |
Year | ||||
---|---|---|---|---|
Management | 2018 | 2019 | ||
Ungrazed | 0.614 | B | 0.512 | B |
Grazed | 1.179 | A | 0.386 | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Schutte, B.J.; Darapuneni, M.K.; Martinez, G.K. Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures. Agronomy 2025, 15, 1832. https://doi.org/10.3390/agronomy15081832
Lauriault LM, Schutte BJ, Darapuneni MK, Martinez GK. Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures. Agronomy. 2025; 15(8):1832. https://doi.org/10.3390/agronomy15081832
Chicago/Turabian StyleLauriault, Leonard M., Brian J. Schutte, Murali K. Darapuneni, and Gasper K. Martinez. 2025. "Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures" Agronomy 15, no. 8: 1832. https://doi.org/10.3390/agronomy15081832
APA StyleLauriault, L. M., Schutte, B. J., Darapuneni, M. K., & Martinez, G. K. (2025). Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures. Agronomy, 15(8), 1832. https://doi.org/10.3390/agronomy15081832