Spotlight on Cattle Infectious Diseases

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: 15 May 2025 | Viewed by 12713

Special Issue Editor


E-Mail Website
Guest Editor
College of Veterinary Medicine, The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
Interests: cattle infectious diseases; vaccine; diagnosis; epidemiology; biosafety; zoonosis; tuberculosis; mycoplasmosis; BVDV; IBRV

Special Issue Information

Dear Colleagues,

The cattle industry is a pillar industry in animal husbandry, providing people with high-quality food, protein, and nutrition, such as milk and beef. However, infectious diseases are an important factor restricting the benefits of cattle farming and are also an important factor affecting food safety, public health, and the healthy and sustainable development of the cattle industry.

The journal Veterinary Sciences has launched a Special Issue on cattle infectious diseases, aiming to gather the latest research results in this field, promote the theoretical and technological progress of cattle infectious disease prevention and control, and promote the improvement of clinical prevention and control skills.

Prof. Dr. Aizhen Guo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cattle

  • infectious diseases
  • tuberculosis
  • mycoplasmosis
  • BVDV
  • IBRV

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

12 pages, 2815 KiB  
Article
High-Throughput Sequencing of Nontuberculous Mycobacterial Flora and Mycobacterium abscessus in Cattle
by Siqi Chen, Mengda Liu, Yan Li, Jiarui Zhang, Yanfang Li, Yan Liang, Xiaoxu Fan and Yonggang Qu
Vet. Sci. 2025, 12(3), 275; https://doi.org/10.3390/vetsci12030275 - 14 Mar 2025
Viewed by 442
Abstract
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic infections in humans and animals. Mycobacterium abscessus (Mab) is a rapidly growing Mycobacterium known for its resistance to multiple antibiotics and ability to cause respiratory, skin, and mucosal infections. Understanding the distribution and [...] Read more.
Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic infections in humans and animals. Mycobacterium abscessus (Mab) is a rapidly growing Mycobacterium known for its resistance to multiple antibiotics and ability to cause respiratory, skin, and mucosal infections. Understanding the distribution and prevalence of NTM, particularly Mab, in cattle farms and slaughterhouses is crucial for developing effective prevention and control measures. We collected environmental swabs from various surfaces (e.g., feed troughs, sinks, walls, floors, feces, and padding) in cattle farms and slaughterhouses across multiple provinces. High-throughput sequencing technology was utilized to analyze the 16S rDNA V3–V4 region of bacterial DNA extracted from the samples, and qPCR methods were employed to detect and quantify Mycobacterium abscessus in the collected samples. Bioinformatics analysis was performed to identify and classify the NTM species present in the samples. This study compared the abundance and diversity of NTM in different environments and assessed the potential zoonotic risk. A total of 1648 environmental swabs were collected from cattle farms and slaughterhouses in 12 provinces of China in 2023, of which 12 samples tested positive for Mab qPCR detection, yielding a detection rate of 0.73% (12/1648). Among them, the detection rate of environmental samples from cattle farms and slaughterhouses was 0.42% (3/720) and 0.87% (9/928), respectively. This study provides valuable information on the epidemiology of NTM in cattle farms and slaughterhouses, contributing to developing effective strategies for preventing and controlling NTM infections. It also enhances our understanding of the zoonotic potential of Mycobacterium abscessus and other NTM species. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

15 pages, 1979 KiB  
Article
Pathogen Detection in Early Phases of Experimental Bovine Tuberculosis
by Mitchell V. Palmer, Carly Kanipe, Soyoun Hwang, Tyler C. Thacker, Kimberly A. Lehman, Nicholas A. Ledesma, Kristophor K. Gustafson and Paola M. Boggiatto
Vet. Sci. 2024, 11(8), 357; https://doi.org/10.3390/vetsci11080357 - 7 Aug 2024
Cited by 1 | Viewed by 2018
Abstract
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin [...] Read more.
Bovine tuberculosis is caused by Mycobacterium bovis, a member of the M. tuberculosis complex of mycobacterial species that cause tuberculosis in humans and animals. Diagnosis of bovine tuberculosis has relied on examinations of cell-mediated immune responses to M. bovis proteins using tuberculin skin testing and/or interferon gamma release assays. Even when using these methods, disease detection during the earliest phases of infection has been difficult, allowing a window for cattle-to-cattle transmission to occur within a herd. Alternative means of diagnosis could include methods to detect M. bovis or M. bovis DNA in bodily fluids such as nasal secretions, saliva, or blood. During the first 8 weeks after experimental aerosol infection of 18 calves, M. bovis DNA was detected in nasal swabs from a small number of calves 5, 6, and 8 weeks after infection and in samples of saliva at 1, 7, and 8 weeks after infection. However, at no time could culturable M. bovis be recovered from nasal swabs or saliva. M. bovis DNA was not found in blood samples collected weekly and examined by real-time PCR. Interferon gamma release assays demonstrated successful infection of all calves, while examination of humoral responses using a commercial ELISA identified a low number of infected animals at weeks 4–8 after infection. Examination of disease severity through gross lesion scoring did not correlate with shedding in nasal secretions or saliva, and calves with positive antibody ELISA results did not have more severe disease than other calves. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

19 pages, 4804 KiB  
Article
Mapping Bovine Tuberculosis in Colombia, 2001–2019
by D. Katterine Bonilla-Aldana, S. Daniela Jiménez-Diaz, Carlos Lozada-Riascos, Kenneth Silva-Cajaleon and Alfonso J. Rodríguez-Morales
Vet. Sci. 2024, 11(5), 220; https://doi.org/10.3390/vetsci11050220 - 15 May 2024
Cited by 1 | Viewed by 3187
Abstract
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise [...] Read more.
Introduction: Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease’s behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise it; as such, we developed this study to describe the temporal–spatial distribution of bovine tuberculosis in Colombia over a period of 19 years. Methods: A retrospective cross-sectional descriptive study, based on reports by the Colombian Agricultural Institute (ICA), surveillance of tuberculosis on cattle farms in Colombia from 2001 to 2019 was carried out. The data were converted into databases using Microsoft Access 365®, and multiple epidemiological maps were generated with the QGIS® version 3.36 software coupled to shape files of all the country’s departments. Results: During the study period, 5273 bovine tuberculosis cases were identified in multiple different departments of Colombia (with a mean of 278 cases/year). Regarding its temporal distribution, the number of cases varied from a maximum of 903 cases (17.12% of the total) in 2015 to a minimum of 0 between 2001 and 2004 and between 2017 and 2019 (between 2005 and 2016, the minimum was 46 cases, 0.87%). Conclusions: GIS are essential for understanding the temporospatial behaviour of zoonotic diseases in Colombia, as is the case for bovine tuberculosis, with its potential implications for the Human and One Health approaches. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

11 pages, 244 KiB  
Article
Individual- and Herd-Level Milk ELISA Test Status and Incidence for Paratuberculosis in Hubei Province, China
by Yingyu Chen, Liyue Hou, Abdul Karim Khalid, Ian Duncan Robertson, Yuhao Zhao, Xi Chen and Aizhen Guo
Vet. Sci. 2024, 11(5), 202; https://doi.org/10.3390/vetsci11050202 - 7 May 2024
Cited by 2 | Viewed by 1722
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is responsible for the persistent infectious illness known as bovine paratuberculosis, which is one of the most easily overlooked diseases in China amid a lack of epidemiological data. In this study, we evaluated the agreement of milk and [...] Read more.
Mycobacterium avium subsp. paratuberculosis (MAP) is responsible for the persistent infectious illness known as bovine paratuberculosis, which is one of the most easily overlooked diseases in China amid a lack of epidemiological data. In this study, we evaluated the agreement of milk and blood antibody tests for paratuberculosis and showed an overall agreement of 92.0%, with a 95.0% negative coincidence rate and a 78.6% positive coincidence rate. The milk test was then used to examine the prevalence and incidence of dairy cows in Hubei Province, China. We found that, at the individual level, the highest lacto-prevalence reached up to 22.9%; the farm-level prevalence was as high as 92.3% (12/13) and 84.6% (11/13) in January and April 2018, respectively. The total incidence risk of all farms was 6% per three months. We also found that large-scale farms had a significantly lower prevalence and incidence than small-scale farms. Finally, the correlation between paratuberculosis and milk quality was evaluated, and we confirmed that MAP can significantly alter milk quality and raise somatic cell counts in the milk. This study provides valuable information for assessing the prevalence and incidence risk of paratuberculosis in China. It further provides an essential basis for calling for the prevention and control of paratuberculosis in China. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
13 pages, 2582 KiB  
Article
Comparative Proteomic Analysis of Secretory Proteins of Mycoplasma bovis and Mycoplasma mycoides subsp. mycoides Investigates Virulence and Discovers Important Diagnostic Biomarkers
by Ali Sobhy Dawood, Gang Zhao, Yujia He, Doukun Lu, Shujuan Wang, Hui Zhang, Yingyu Chen, Changmin Hu, Huanchun Chen, Elise Schieck and Aizhen Guo
Vet. Sci. 2023, 10(12), 685; https://doi.org/10.3390/vetsci10120685 - 1 Dec 2023
Cited by 2 | Viewed by 3063
Abstract
The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several [...] Read more.
The most important pathogenic Mycoplasma species in bovines are Mycoplasma bovis (M. bovis) and Mycoplasma mycoides subsp. mycoides (Mmm). Mmm causes contagious bovine pleuropneumonia (CBPP), which is a severe respiratory disease widespread in sub-Saharan Africa but eradicated in several countries, including China. M. bovis is an important cause of the bovine respiratory disease complex (BRD), characterized worldwide by pneumonia, arthritis, and mastitis. Secreted proteins of bacteria are generally considered virulence factors because they can act as toxins, adhesins, and virulent enzymes in infection. Therefore, this study performed a comparative proteomic analysis of the secreted proteins of M. bovis and Mmm in order to find some virulence-related factors as well as discover differential diagnostic biomarkers for these bovine mycoplasmas. The secretome was extracted from both species, and liquid chromatography-tandem mass spectrometry was used, which revealed 55 unique secreted proteins of M. bovis, 44 unique secreted proteins of Mmm, and 4 homologous proteins. In the M. bovis secretome, 19 proteins were predicted to be virulence factors, while 4 putative virulence factors were identified in the Mmm secretome. In addition, five unique secreted proteins of Mmm were expressed and purified, and their antigenicity was confirmed by Western blotting assay and indirect ELISA. Among them, Ts1133 and Ts0085 were verified as potential candidates for distinguishing Mmm infection from M. bovis infection. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

Other

Jump to: Research

10 pages, 2487 KiB  
Case Report
Subclinical Mastitis Related to Streptococcus canis Infection in Dairy Cattle
by Alessio Sposato, Laura Del Sambro, Stefano Castellana, Elisabetta Catalano, Michela Galgano, Antonella Castellana, Annamaria Caffò, Viviana Manzulli, Marta Caruso, Leonardo Marino, Angelica Milano and Luciana Addante
Vet. Sci. 2025, 12(3), 286; https://doi.org/10.3390/vetsci12030286 - 19 Mar 2025
Viewed by 416
Abstract
In the present study, we isolated S. canis from milk samples in a dairy farm with suspicions of subclinical mastitis. Milk samples testing positive on California Mastitis Test (CMT) were collected from different cows for bacteriological and genomic analyses to identify the causative [...] Read more.
In the present study, we isolated S. canis from milk samples in a dairy farm with suspicions of subclinical mastitis. Milk samples testing positive on California Mastitis Test (CMT) were collected from different cows for bacteriological and genomic analyses to identify the causative pathogen, and somatic cell counts (SCC) were determined. A multiplex qPCR assay was conducted to detect 15 potential pathogens, and all samples showed negative results. Conventional bacteriology procedures were performed; DNA of the bacterial strains was extracted, sequenced, and submitted to bioinformatic analysis. Three CMT positive milk samples showed SCC > 200 × 103 cell/mL. However, these same three samples were positive for bacteria phenotypically identified as Streptococci, and the strains were confirmed as S. canis using MS MALDI-TOF methodology. In susceptibility testing, resistance against tetracycline was detected, revealing a potential chronic infection in one cow, while the presence of the same bacteria was observed in two other cows. Genomic DNA from four S. canis isolates, obtained in the first and second sampling, was sequenced. Genetic relationships revealed a unique sequence type (ST24). The gene (tetM) related with resistance to TE was highlighted. Although the association between S. canis and mastitis is not routinely detected, early diagnosis of bacterial infections and the study of the antimicrobial profile are crucial for effective therapy. Pets could act as a potential reservoir, so improving hygienic conditions is needed to prevent new infections. Full article
(This article belongs to the Special Issue Spotlight on Cattle Infectious Diseases)
Show Figures

Figure 1

Back to TopTop