Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Adsorbents
2.2. Characterization Method
2.3. Batch Adsorption Experiments
2.4. Isotherm Model and Kinetics
2.5. Regeneration Studies
3. Results and Discussion
3.1. Physicochemical Properties of Modified Biogas Residues
3.1.1. Physical Morphology
3.1.2. Chemical Compositions
3.2. Influence of Adsorption Process Parameters on the Removal Rate
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Comparison with Other Adsorbents
3.6. Reusability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manohara, H.M.; Nayak, S.S.; Franklin, G.; Nataraj, S.K.; Mondal, D. Progress in marine derived renewable functional materials and biochar for sustainable water purification. Green Chem. 2021, 23, 8305–8331. [Google Scholar] [CrossRef]
- Thottathil, S.; Puttaiahgowda, Y.M.; Selvaraj, R.; Elambalassery, J.G.; Vinayagam, R.; Varadavenkatesan, T. Experimental and DFT studies of Congo red and AB 113 dyes removal by adsorption and disinfection using novel triazine-based porous organic polymer. J. Mol. Liq. 2025, 429, 127628. [Google Scholar] [CrossRef]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X. Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresour. Technol. 2016, 207, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Obayomi, K.S.; Lau, S.Y.; Ibrahim, O.; Zhang, J.; Meunier, L.; Aniobi, M.M.; Atunwa, B.T.; Pramanik, B.K.; Rahman, M.M. Removal of Congo red dye from aqueous environment by zinc terephthalate metal organic framework decorated on silver nanoparticles-loaded biochar: Mechanistic insights of adsorption. Microporous Mesoporous Mater. 2023, 355, 112568. [Google Scholar] [CrossRef]
- Xiao, X.Z.; Dai, T.T.; Guo, J.; Wu, J.H. Flowerlike Brochantite Nanoplate Superstructures for Catalytic Wet Peroxide Oxidation of Congo Red. ACS Appl. Nano Mater. 2019, 2, 4159–4168. [Google Scholar] [CrossRef]
- Jankowska, K.; Su, Z.; Zdarta, J.; Jesionowski, T.; Pinelo, M. Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers. J. Hazard. Mater. 2022, 435, 129071. [Google Scholar] [CrossRef]
- Sun, H.; Liu, Z.; Liu, X.; Yu, C.; Wei, L. Preparation and characterization of Ppy/Bi2MoO6 microspheres with highly photocatalytic performance for removal of highly concentrated organic dyes. Mater. Today Sustain. 2022, 19, 100154. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Bamigboye, M.O.; Ogunbiyi, O.D.; Akano, M.T. Toxicity and decontamination strategies of Congo red dye. Groundw. Sustain. Dev. 2022, 19, 100844. [Google Scholar] [CrossRef]
- Solaiman, J.M.; Rajamohan, N.; Yusuf, M.; Kamyab, H. Nanocomposite ceramic membranes as novel tools for remediation of textile dye waste water—A review of current applications, machine learning based modeling and future perspectives. J. Environ. Chem. Eng. 2024, 12, 112353. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; He, Z.; Liang, J.; Zhang, W.; Cao, X.; Li, Y. A novel synthesis route of peach blossom-like Dawsonite adsorbent for ultra-efficient removal of Congo red and Cu2+: Adsorption behavior and mechanism study. Sep. Purif. Technol. 2025, 371, 133314. [Google Scholar] [CrossRef]
- Wang, X.; Feng, J.; Cai, Y.; Fang, M.; Kong, M.; Alsaedi, A.; Hayat, T.; Tan, X. Porous biochar modified with polyethyleneimine (PEI) for effective enrichment of U(VI) in aqueous solution. Sci. Total Environ. 2020, 708, 134575. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Noreen, U.; Ali, R.; Ullah, A.; Naeem, A.; Aslam, M. Adsorptive removal of Congo red from aqueous phase using graphene-tin oxide composite as a novel adsorbent. Int. J. Environ. Sci. Technol. 2022, 19, 10275–10290. [Google Scholar] [CrossRef]
- Haoufazane, C.; Zaaboul, F.; El Monfalouti, H.; Sebbar, N.K.; Hefnawy, M.; El Hourch, A.; Kartah, B.E. A Sustainable Solution for the Adsorption of CI Direct Black 80, an Azoic Textile Dye with Plant Stems: Zygophyllum gaetulum in an Aqueous Solution. Molecules 2024, 29, 4806. [Google Scholar] [CrossRef]
- Hynes, N.R.J.; Kumar, J.S.; Kamyab, H.; Sujana, J.A.J.; Al-Khashman, O.A.; Kuslu, Y.; Ene, A.; Kumar, B.S. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector—A comprehensive review. J. Clean. Prod. 2020, 272, 122636. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zheng, Z.H.; Schäfer, F.; Stinner, W.; Yuan, X.F.; Wang, H.L.; Cui, Z.J.; Wang, X.F. A review about pretreatment of lignocellulosic biomass in anaerobic digestion: Achievement and challenge in Germany and China. J. Clean. Prod. 2021, 299, 126885. [Google Scholar] [CrossRef]
- Koszel, M.; Lorencowicz, E. Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agric. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef]
- Cao, B.; Li, M.; Zhang, T.; Gong, T.; Yang, T.; Xi, B.; Lu, H.; Wang, Z. Dynamics and mechanisms of atrazine adsorption on biogas-residue biochar with citric acid modification. Sep. Purif. Technol. 2024, 337, 126151. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B. Technology–Economy–Policy: Biochar in the Low-Carbon Energy Transition—A Review. Appl. Sci. 2025, 15, 5882. [Google Scholar] [CrossRef]
- Tu, S.-F.; Chu, Y.-M.; Chen, T.-L.; Hsi, H.-C.; Ma, H.-w.; Ting, Y.-C. Valorization of solid digestate through biochar production for toluene adsorption and enhanced energy recovery as solid recovered fuel. Waste Manag. 2025, 202, 114845. [Google Scholar] [CrossRef]
- Pan, J.; Gao, Y.; Gao, B.; Guo, K.; Xu, X.; Yue, Q. One-step synthesis of easily-recoverable carboxylated biogas residues for efficient removal of heavy metal ions from synthetic wastewater. J. Clean. Prod. 2019, 240, 118264. [Google Scholar] [CrossRef]
- Pan, J.; Gao, B.; Song, W.; Xu, X.; Yue, Q. Modified biogas residues as an eco-friendly and easily-recoverable biosorbent for nitrate and phosphate removals from surface water. J. Hazard. Mater. 2020, 382, 121073. [Google Scholar] [CrossRef]
- White, J. Top Value-Added Chemicals from Biomass Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin. Biomass Fuels 2007, 2, 61–63. [Google Scholar]
- Shan, R.; Shi, Y.; Gu, J.; Bi, J.; Yuan, H.; Luo, B.; Chen, Y. Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process. J. Environ. Chem. Eng. 2020, 8, 103885. [Google Scholar] [CrossRef]
- Kirchhecker, S.; Esposito, D. Amino acid based ionic liquids: A green and sustainable perspective. Curr. Opin. Green Sustain. Chem. 2016, 2, 28–33. [Google Scholar] [CrossRef]
- Jia, Y.; Nian, S.; Zhao, W.X.; Fu, L.; Zhang, X.K.; Beadham, I.; Zhao, S.C.; Zhang, C.B.; Deng, Y. Pretreatment of wastepaper with an aqueous solution of amino acid-derived ionic liquid for biochar production as adsorbent. J. Environ. Manag. 2024, 360, 121195. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wu, W.; Tian, S.; He, Y.; Wang, S.; Zheng, B.; Xin, K.; Zhou, Z.; Tang, L. Composite adsorbents of aminated chitosan @ZIF-8 MOF for simultaneous efficient removal of Cu(II) and Congo Red: Batch experiments and DFT calculations. Chem. Eng. J. 2024, 479, 147634. [Google Scholar] [CrossRef]
- Tao, G.; He, L.; Sun, N.; Kou, Y. New generation ionic liquids: Cations derived from amino acids. Chem. Commun. 2005, 36, 3562–3564. [Google Scholar] [CrossRef] [PubMed]
- Modenbach, A.A.; Nokes, S. Effects of sodium hydroxide pretreatment on structural components of biomass. Trans. ASABE 2014, 57, 1187–1198. [Google Scholar] [CrossRef]
- Usino, D.O.; Sar, T.; Ylitervo, P.; Richards, T. Effect of Acid Pretreatment on the Primary Products of Biomass Fast Pyrolysis. Energies 2023, 16, 2377. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Z. Chem. Ind. Kolloide 1907, 2, 15. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470. [Google Scholar] [CrossRef]
- Han, J.Z.; Wang, X.D.; Yue, J.R.; Gao, S.Q.; Xu, G.W. Catalytic upgrading of coal pyrolysis tar over char-based catalysts. Fuel Process. Technol. 2014, 122, 98–106. [Google Scholar] [CrossRef]
- Velmurugan, R.; Kuhad, R.C.; Gupta, R.; Chakraborty, S.; Ashokkumar, V.; Incharoensakdi, A. Ionic liquid under alkaline aqueous conditions improves corncob delignification, polysaccharide recovery, enzymatic hydrolysis and ethanol fermentation. Biomass Bioenergy 2023, 178, 106980. [Google Scholar] [CrossRef]
- Tan, H.T.; Lee, K.T. Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem. Eng. J. 2012, 183, 448–458. [Google Scholar] [CrossRef]
- Rabideau, B.D.; Agarwal, A.; Ismail, A.E. Observed Mechanism for the Breakup of Small Bundles of Cellulose Iα and Iβ in Ionic Liquids from Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117, 3469–3479. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, X.; Hillestad, M.; He, X. Computational prediction of cellulose solubilities in ionic liquids based on COSMO-RS. Fluid Phase Equilib. 2018, 475, 25–36. [Google Scholar] [CrossRef]
- Ma, H.; Li, T.F.; Wu, S.B.; Zhang, X.H. Effect of the interaction of phenolic hydroxyl with the benzene rings on lignin pyrolysis. Bioresour. Technol. 2020, 309, 123351. [Google Scholar] [CrossRef]
- Shadhin, M.; Jayaraman, R.; Mann, D.; Chen, Y.; Sadrmanesh, V.; Niu, Y.; Rogiewicz, A.; Rahman, M. Upcycling Canola: Closed-Loop Water Retting System for Sustainable Fiber Production from Waste Canola Stalks. Adv. Sustain. Syst. 2025, 9, 2401002. [Google Scholar] [CrossRef]
- Hao, J.Y.; Wang, Y.Q.; Sheng, K.; Li, W.Z.; Liu, Y.; Tian, Z.L.; Yang, Y.H.; Li, J. Doubling Micropore of Carbon Skeleton via Regulating Molecular Structure of Carbohydrate for Oxygen Reduction Reaction. J. Electrochem. Soc. 2022, 169, 046510. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of Acid- and Alkali-Modified Biochar for Removal of Methylene Blue Pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Wu, Z.; Xiang, H.; Kim, T.; Chun, M.-S.; Lee, K. Surface properties of submicrometer silica spheres modified with aminopropyltriethoxysilane and phenyltriethoxysilane. J. Colloid Interface Sci. 2006, 304, 119–124. [Google Scholar] [CrossRef]
- Vimonses, V.; Lei, S.M.; Jin, B.; Chow, C.W.K.; Saint, C. Adsorption of congo red by three Australian kaolins. Appl. Clay Sci. 2009, 43, 465–472. [Google Scholar] [CrossRef]
- Dawood, S.; Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Liang, C.; Wu, H.; Chen, J.; Wei, Y. Mechanistic insights into the interfacial adsorption behaviors of Cr(VI) on ferrihydrite: Effects of pH and naturally coexisting anions in the environment. Ecotoxicol. Environ. Saf. 2023, 249, 114474. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Yang, Z.; Si, M.; Zhu, F.; Yang, W.; Zhao, F.; Shi, Y. Application of biochars in the remediation of chromium contamination: Fabrication, mechanisms, and interfering species. J. Hazard. Mater. 2021, 407, 124376. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, H.; Ye, Z.; Xiong, G. Efficient removal of anionic dye congo red by Chitosan/Poly (dimethyl diallyl ammonium chloride-co-acrylamide) composite hydrogel. Int. J. Biol. Macromol. 2025, 294, 139462. [Google Scholar] [CrossRef]
- Debnath, S.; Ballav, N.; Maity, A.; Pillay, K. Development of a polyaniline-lignocellulose composite for optimal adsorption of Congo red. Int. J. Biol. Macromol. 2015, 75, 199–209. [Google Scholar] [CrossRef]
- Santamaría, L.; Korili, S.A.; Gil, A. Solketal Removal from Aqueous Solutions Using Activated Carbon and a Metal-Organic Framework as Adsorbents. Materials 2021, 14, 6852. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Abdullah, M.; Lim, L.L.P.; Yeo, T.H.C. Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments. J. Appl. Sci. Environ. Proc. Eng. 2017, 4, 186–194. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Sudarsan, S.; Murugesan, G.; Varadavenkatesan, T.; Vinayagam, R.; Selvaraj, R. Efficient adsorptive removal of Congo Red dye using activated carbon derived from Spathodea campanulata flowers. Sci. Rep. 2025, 15, 1831. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.G.; Sharma, A. Azadirachta indica leaf powder as an effective biosorbent for dyes: A case study with aqueous Congo Red solutions. J. Environ. Manag. 2004, 71, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Shahnaz, T.; Padmanaban, V.C.; Narayanasamy, S. Surface modification of nanocellulose using polypyrrole for the adsorptive removal of Congo red dye and chromium in binary mixture. Int. J. Biol. Macromol. 2020, 151, 322–332. [Google Scholar] [CrossRef]
- Harja, M.; Lupu, N.; Chiriac, H.; Herea, D.-D.; Buema, G. Studies on the Removal of Congo Red Dye by an Adsorbent Based on Fly-Ash@Fe3O4 Mixture. Magnetochemistry 2022, 8, 125. [Google Scholar] [CrossRef]
- Wu, K.; Pan, X.; Zhang, J.; Zhang, X.; Salah Zene, A.; Tian, Y. Biosorption of Congo Red from Aqueous Solutions Based on Self-Immobilized Mycelial Pellets: Kinetics, Isotherms, and Thermodynamic Studies. ACS Omega 2020, 5, 24601–24612. [Google Scholar] [CrossRef] [PubMed]
- Farghali, M.A.; Selim, A.M.; Khater, H.F.; Bagato, N.; Alharbi, W.; Alharbi, K.H.; Taha Radwan, I. Optimized adsorption and effective disposal of Congo red dye from wastewater: Hydrothermal fabrication of MgAl-LDH nanohydrotalcite-like materials. Arab. J. Chem. 2022, 15, 104171. [Google Scholar] [CrossRef]
- Vieira, S.S.; Magriotis, Z.M.; Santos, N.A.V.; Cardoso, M.d.G.; Saczk, A.A. Macauba palm (Acrocomia aculeata) cake from biodiesel processing: An efficient and low cost substrate for the adsorption of dyes. Chem. Eng. J. 2012, 183, 152–161. [Google Scholar] [CrossRef]









| Sample | BET Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
|---|---|---|---|
| BR0 | 4.14 | 0.011 | 6.86 |
| BR-HCl | 12.05 | 0.027 | 6.58 |
| BR-IL | 11.15 | 0.018 | 6.61 |
| BR-NaOH | 6.01 | 0.010 | 6.63 |
| Material | Element Content | |||
|---|---|---|---|---|
| C (%) | H (%) | N (%) | O (%) | |
| BR0 | 44.18 | 4.96 | 5.24 | 24.02 |
| BR-HCl | 40.12 | 4.89 | 5.12 | 28.27 |
| BR-IL | 41.45 | 4.92 | 5.19 | 26.84 |
| BR-NaOH | 42.76 | 4.81 | 5.15 | 25.68 |
| Material | Pseudo-First-Order Kinetics Model | Pseudo-Second-Order Kinetics Model | ||||||
|---|---|---|---|---|---|---|---|---|
| qe,exp (mg/g) | qe,cal (mg/g) | k1 (mg/(g·min)) | R2 | qe,exp (mg/g) | qe,cal (mg/g) | k2 (mg/(g·min)) | R2 | |
| BR-HCl | 94.036 | 5.9602 | 0.0052 | 0.9571 | 94.036 | 100.3009 | 0.0003 | 0.9995 |
| BR-IL | 57.476 | 3.9519 | 0.0041 | 0.8489 | 57.476 | 58.8928 | 0.0011 | 0.9997 |
| BR-NaOH | 39.436 | 2.8950 | 0.0038 | 0.8385 | 39.436 | 41.0172 | 0.0019 | 0.9996 |
| Material | Intra particle diffusion model | |||||||
| qe,exp (mg/g) | C1 (mg/g) | Kd1 (mg/(g·min1/2)) | R2 | qe,exp (mg/g) | C1 (mg/g) | Kd1 (mg/(g·min)) | R2 | |
| BR-HCl | 94.036 | 2.5134 | 8.1885 | 0.9472 | 94.036 | 76.4213 | 0.860 | 0.8230 |
| BR-IL | 57.476 | 8.1410 | 4.7153 | 0.9015 | 57.476 | 50.1567 | 0.323 | 0.9677 |
| BR-NaOH | 39.436 | 6.9345 | 3.2157 | 0.9013 | 39.436 | 36.9543 | 0.136 | 0.7170 |
| Langmuir Model | Freundlich Model | ||||||
|---|---|---|---|---|---|---|---|
| R2 | KL | Qm (mg/g) | R2 | KF | 1/n | ||
| 25 °C | 0.9694 | 0.2992 | 105.8204 | 0.7461 | 44.5807 | 0.1727 | |
| 35 °C | 0.9829 | 0.3166 | 114.1245 | 0.7742 | 45.8774 | 0.1888 | |
| 45 °C | 0.9773 | 0.3458 | 120.2169 | 0.7943 | 48.0825 | 0.1940 | |
| Temkin Model | |||||||
| R2 | KT | bT | |||||
| 298.15 K | 0.9416 | 9.86 | 168.28 | ||||
| 308.15 K | 0.9253 | 4.21 | 137.15 | ||||
| 318.15 K | 0.9634 | 89.47 | 210.43 | ||||
| Adsorbent | qmax (mg/g) | Reference |
|---|---|---|
| BR-HCl (This study) | 120.21 | Present study |
| Spathodea campanulata biochar | 59.27 | [55] |
| Rice husk activated carbon | 11.84 | [55] |
| Neem leaf powder | 41.2–28.3 | [56] |
| cellulose | 74.87 | [57] |
| Bamboo Hydrochars | 75.16 | [3] |
| Magnetic fly ash | 154.00 | [58] |
| Nanozeolite X | 110.24 | [58] |
| Mycelial pellets | 316.46 | [59] |
| MgAl-LDH | 769.23 | [60] |
| Macauba palm cake | 32.00 | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Luo, X.; Zhao, W.; Fu, L.; Deng, Y.; Xue, W.; Zhang, C.; Beadham, I.; Lu, Z.; Liu, Y.; Bi, F.; et al. Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes. Toxics 2026, 14, 64. https://doi.org/10.3390/toxics14010064
Luo X, Zhao W, Fu L, Deng Y, Xue W, Zhang C, Beadham I, Lu Z, Liu Y, Bi F, et al. Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes. Toxics. 2026; 14(1):64. https://doi.org/10.3390/toxics14010064
Chicago/Turabian StyleLuo, Xin, Wenxia Zhao, Lin Fu, Yun Deng, Weijie Xue, Changbo Zhang, Ian Beadham, Zhongyan Lu, Yuyao Liu, Fanshu Bi, and et al. 2026. "Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes" Toxics 14, no. 1: 64. https://doi.org/10.3390/toxics14010064
APA StyleLuo, X., Zhao, W., Fu, L., Deng, Y., Xue, W., Zhang, C., Beadham, I., Lu, Z., Liu, Y., Bi, F., & Wang, Q. (2026). Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes. Toxics, 14(1), 64. https://doi.org/10.3390/toxics14010064

