Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds
Abstract
1. Introduction
2. Materials and Methods
2.1. Region Description
2.2. Site Description
2.3. Study Design Sampling Chronology
2.4. Soil Sampling and Analyses
2.5. Digital Elevation-Derived Landscape Variables
2.6. rDNA Extraction, Library Preparation, Sequencing, and Processing
2.7. Statistical Analysis
3. Results
3.1. Differences in Soil Physico-Chemistry and Landscape Parameters Among Sub-Watersheds and Land Uses
3.2. Bacterial Community Composition Among Sub-Watersheds and Land Uses
3.3. Soil Bacterial Community Richness and Diversity (α-Diversity) and Community Structure (β-Diversity)
3.4. Relationship Between Soil Physico-Chemistry Properties and Bacterial Community Composition
4. Discussion
4.1. Landscape Parameters and Soil Physical Properties
4.2. Bacterial Community Composition
4.3. Linking Bacterial Families to Soil Functions
4.4. Bacterial Families by Land Use
4.5. Drivers of Soil Bacterial Community Richness and Diversity (i.e., α-Diversity) and Community Structure (i.e., β-Diversity)
4.6. Inherent Soil Properties, Land Use, and the Bacterial Community
4.7. Evidence for a Space-for-Time Substitution Trajectory
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodrigues, A.F.; Latawiec, A.E.; Reid, B.J.; Solórzano, A.; Schuler, A.E.; Lacerda, C.; Fidalgo, E.C.C.; Scarano, F.R.; Tubenchlak, F.; Pena, I.; et al. Systematic Review of Soil Ecosystem Services in Tropical Regions. R. Soc. Open Sci. 2021, 8, 201584. [Google Scholar] [CrossRef] [PubMed]
- Osborne, P.L. Tropical Ecosystems and Ecological Concepts; Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139057868. [Google Scholar]
- Craswell, E.T.; Lefroy, R.D.B. The Role and Function of Organic Matter in Tropical Soils. Nutr. Cycl. Agroecosyst. 2001, 61, 7–18. [Google Scholar] [CrossRef]
- Camenzind, T.; Philipp Grenz, K.; Lehmann, J.; Rillig, M.C. Soil Fungal Mycelia Have Unexpectedly Flexible Stoichiometric C:N and C:P Ratios. Ecol. Lett. 2021, 24, 208–218. [Google Scholar] [CrossRef]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set That Amplifies Prokaryotic 16S RRNA Genes with a Low Possibility to Amplify Eukaryotic RRNA Genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef]
- Guerra, C.A.; Heintz-Buschart, A.; Sikorski, J.; Chatzinotas, A.; Guerrero-Ramírez, N.; Cesarz, S.; Beaumelle, L.; Rillig, M.C.; Maestre, F.T.; Delgado-Baquerizo, M.; et al. Blind Spots in Global Soil Biodiversity and Ecosystem Function Research. Nat. Commun. 2020, 11, 3870. [Google Scholar] [CrossRef] [PubMed]
- Carrión, O.; Curson, A.R.J.; Kumaresan, D.; Fu, Y.; Lang, A.S.; Mercadé, E.; Todd, J.D. A Novel Pathway Producing Dimethylsulphide in Bacteria Is Widespread in Soil Environments. Nat. Commun. 2015, 6, 6579. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.V.S.R.; Germida, J.J. Soil Aggregation: Influence on Microbial Biomass and Implications for Biological Processes. Soil Biol. Biochem. 2015, 80, A3–A9. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.; Qi, J.; Gao, J.; Wei, G. Linking Bacterial-Fungal Relationships to Microbial Diversity and Soil Nutrient Cycling. mSystems 2021, 6, e01052-20. [Google Scholar] [CrossRef]
- Expósito, R.G.; de Bruijn, I.; Postma, J.; Raaijmakers, J.M. Current Insights into the Role of Rhizosphere Bacteria in Disease Suppressive Soils. Front. Microbiol. 2017, 8, 2529. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A Global Atlas of the Dominant Bacteria Found in Soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Kim, M.; Singh, D.; Lee-Cruz, L.; Lai-Hoe, A.; Ainuddin, A.N.; Go, R.; Rahim, R.A.; Husni, M.H.A.; Chun, J.; et al. Tropical Soil Bacterial Communities in Malaysia: PH Dominates in the Equatorial Tropics Too. Microb. Ecol. 2012, 64, 474–484. [Google Scholar] [CrossRef]
- Evans, S.E.; Wallenstein, M.D. Climate Change Alters Ecological Strategies of Soil Bacteria. Ecol. Lett. 2014, 17, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Neufeld, J.D.; Walker, V.K.; Grogan, P. The Influence of Vegetation Type on the Dominant Soil Bacteria, Archaea, and Fungi in a Low Arctic Tundra Landscape. Soil Sci. Soc. Am. J. 2011, 75, 1756–1765. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, H.; Xu, C.; Hu, Y.; Xu, Z.; Zhang, D.; Li, A.; Wei, X.; Ge, T.; Wei, G. The Distribution of Aerobic Bacteria in Chinese Cropland Is Linked to the Soil Texture. Front. Microbiol. 2025, 16, 1541460. [Google Scholar] [CrossRef]
- Sun, D.; Lin, Q.; Angst, G.; Huang, L.; Anikó, C.; Emsens, W.J.; van Diggelen, R.; Vicena, J.; Cajthaml, T.; Frouz, J. Microbial Communities in Soil Macro-Aggregates with Less Connected Networks Respire Less across Successional and Geographic Gradients. Eur. J. Soil Biol. 2022, 108, 103378. [Google Scholar] [CrossRef]
- Du, M.; Xue, P.; Minasny, B.; McBratney, A.; Tang, Y. Patterns, Processes, and Predictions: Soil Bacteria Unique Habitats Along a Megametre Transect in Eastern Australia. Soil Ecol. Lett. 2025, 7, 250313. [Google Scholar] [CrossRef]
- Xue, P.; Minasny, B.; Román Dobarco, M.; Wadoux, A.M.J.C.; Padarian Campusano, J.; Bissett, A.; de Caritat, P.; McBratney, A. The Biogeography of Soil Bacteria in Australia Exhibits Greater Resistance to Climate Change Than Fungi. Glob. Change Biol. 2025, 31, e70268. [Google Scholar] [CrossRef]
- De Carvalho, T.S.; Da Conceição Jesus, E.; Barlow, J.; Gardner, T.A.; Soares, I.C.; Tiedje, J.M.; De Souza Moreira, F.M. Land Use Intensifcation in the Humid Tropics Increased Both Alpha and Beta Diversity of Soil Bacteria. Ecology 2016, 97, 2760–2771. [Google Scholar] [CrossRef] [PubMed]
- Tomazelli, D.; Klauberg-Filho, O.; Mendes, L.W.; Goss-Souza, D. The Impact of Land-Use Changes and Management Intensification on Bacterial Communities in the Last Decade: A Review. Appl. Environ. Microbiol. 2024, 90, e00309-24. [Google Scholar] [CrossRef]
- de Gannes, V.; Eudoxie, G.; Bekele, I.; Hickey, W.J. Relations of Microbiome Characteristics to Edaphic Properties of Tropical Soils from Trinidad. Front. Microbiol. 2015, 6, 146237. [Google Scholar] [CrossRef] [PubMed]
- De Gannes, V.; Bekele, I.; Dipchansingh, D.; Wuddivira, M.N.; De Cairies, S.; Boman, M.; Hickey, W.J. Microbial Community Structure and Function of Soil Following Ecosystem Conversion from Native Forests to Teak Plantation Forests. Front. Microbiol. 2016, 7, 224226. [Google Scholar] [CrossRef]
- Del Mar Gamboa, M.; Rodríguez, E.; Vargas, P. Diversity of Mesophilic Clostridia in Costa Rican Soils. Anaerobe 2005, 11, 322–326. [Google Scholar] [CrossRef]
- Lewis, D.E.; Chauhan, A.; White, J.R.; Overholt, W.; Green, S.J.; Jasrotia, P.; Wafula, D.; Jagoe, C. Microbial and Geochemical Assessment of Bauxitic Un-Mined and Post-Mined Chronosequence Soils from Mocho Mountains, Jamaica. Microb. Ecol. 2012, 64, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Pittl, E.; Innerebner, G.; Wanek, W.; Insam, H. Microbial Communities of Arboreal and Ground Soils in the Esquinas Rainforest, Costa Rica. Plant Soil 2010, 329, 65–74. [Google Scholar] [CrossRef]
- Hardy, F. Soil Classification in the Caribbean Region (A Review). In Technical Communication of the Commonwealth Bureau of Soil Science; No.46; Commonwealth Agricultural Bureau: Buckinghamshire, UK, 1949. [Google Scholar]
- Northern Range Assessment. In Report of an Assessment of the Northern Range, Trinidad and Tobago: People and the Northern Range; State of the Environment Report; Intergovernmental Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2005.
- Wuddivira, M.N.; Stone, R.J.; Ekwue, E.I. Clay, Organic Matter, and Wetting Effects on Splash Detachment and Aggregate Breakdown under Intense Rainfall. Soil Sci. Soc. Am. J. 2009, 73, 226–232. [Google Scholar] [CrossRef]
- Jenny, H. (Ed.) Factors of Soil Formation, a System of Quantitative Pedology; McGraw-Hill Book Company: New York, NY, USA, 1941. [Google Scholar]
- Pickett, S.T.A. Space-for-Time Substitution as an Alternative to Long-Term Studies. In Long-Term Studies in Ecology; Springer Nature: Berlin/Heidelberg, Germany, 1989; pp. 110–135. [Google Scholar] [CrossRef]
- Ditzler, C. Revision of the Classification of the Soils of Trinidad and Tobago; 2017; Available online: https://sta.uwi.edu/ffa/sites/default/files/ffa/USDA%20soil%20Taxonomy%20Upgrade-Trinidad%20and%20Tobago.pdf (accessed on 15 June 2025).
- De Caires, S.A.; St. Martin, C.; Wuddivira, M.N.; Farrick, K.K.; Zebarth, B.J. Predicting Soil Depth in a Humid Tropical Watershed: A Comparative Analysis of Best-Fit Regression and Geospatial Models. Catena 2023, 222, 106843. [Google Scholar] [CrossRef]
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The Use of Chronosequences in Studies of Ecological Succession and Soil Development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- De Caires, S.A.; Wuddivira, M.N.; St Martin, C.; Roopnarine, R.; Gordon, A.; Zebarth, B.J. Multivariate Geospatial Analysis for Predicting Soil Variability along a Toposequence of a Watershed in the Humid Tropics. Catena 2022, 210, 105919. [Google Scholar] [CrossRef]
- Lesch, S.M.; Strauss, D.J.; Rhoades, J.D. Spatial Prediction of Soil Salinity Using Electromagnetic Induction Techniques: 1. Statistical Prediction Models: A Comparison of Multiple Linear Regression and Cokriging. Water Resour. Res. 1995, 31, 373–386. [Google Scholar] [CrossRef]
- De Caires, S.A.; Wuddivira, M.N.; Bramble, D.S.E.; Atwell, M.; Roopnarine, R.; Farrick, K.K. Soil Sampling Strategies for the Characterization of Spatial Variability Under Two Distinct Land Uses. Commun. Soil Sci. Plant Anal. 2021, 52, 2217–2240. [Google Scholar] [CrossRef]
- De Caires, S.A.; Wuddivira, M.N.; Bekele, I. Spatial Analysis for Management Zone Delineation in a Humid Tropic Cocoa Plantation. Precis. Agric. 2015, 16, 129–147. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. 2.4 Particle-Size Analysis. In Methods of Soil Analysis, Part 4: Physical Methods; Dane, J.H., Topp, C.G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 255–293. ISBN 9780891188933. [Google Scholar]
- Wuddivira, M.N.; Robinson, D.A.; Lebron, I.; Bréchet, L.; Atwell, M.; De Caires, S.; Oatham, M.; Jones, S.B.; Abdu, H.; Verma, A.K.; et al. Estimation of Soil Clay Content from Hygroscopic Water Content Measurements. Soil Sci. Soc. Am. J. 2012, 76, 1529–1535. [Google Scholar] [CrossRef]
- Mclean, E.O. Soil PH and Lime Requirement. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, 2nd ed.; Page, A.L., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1982; pp. 199–224. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall Inc.: Englewood Chiffs, NJ, USA, 1958. [Google Scholar]
- Thomas Sims, J. Lime Requirement. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 2018; pp. 491–515. ISBN 9780891188667. [Google Scholar]
- Amedee, G.; Peech, M. The Significance of KCl-Extractable Al (III) as an Index to Lime Requirement of Soils of the Humid Tropics. Soil Sci. 1976, 121, 227–233. [Google Scholar] [CrossRef]
- Storer, D.A. A Simple High Sample Volume Ashing Procedure for Determination of Soil Organic Matter. Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [Google Scholar] [CrossRef]
- Rohman, P.C.; Cox, F.R. Evaluation of the Modified Olsen Extracting Reagent for Copper, Zinc and Manganese. Commun. Soil Sci. Plant Anal. 1988, 19, 1859–1870. [Google Scholar] [CrossRef]
- Isaac, R.A.; Kerber, J.D. Atomic Absorption and Flame Photometry: Techniques and Uses in Soil, Plant, and Water Analysis. In Instrumental Methods for Analysis of Soils and Plant Tissue; Walsh, L.M., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 17–37. ISBN 9780891188766. [Google Scholar]
- Sarkar, D.; Sheikh, A.A.; Batabyal, K.; Mandal, B. Boron Estimation in Soil, Plant, and Water Samples Using Spectrophotometric Methods. Commun. Soil Sci. Plant Anal. 2014, 45, 1538–1550. [Google Scholar] [CrossRef]
- Fox, R.L.; Olson, R.A.; Rhoades, H.F. Evaluating the Sulfur Status of Soils by Plant and Soil Tests. Soil Sci. Soc. Am. J. 1964, 28, 243–246. [Google Scholar] [CrossRef]
- Mulvaney, R.L. Nitrogen—Inorganic Forms. In Methods of Soil Analysis, Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 1123–1184. ISBN 9780891188667. [Google Scholar]
- Coleman, N.T.; Weed, S.B.; McCracken, R.J. Cation-Exchange Capacity and Exchangeable Cations in Piedmont Soils of North Carolina. Soil Sci. Soc. Am. J. 1959, 23, 146–149. [Google Scholar] [CrossRef]
- Frothingham, K.M.; Rhoads, B.L. Three-Dimensional Flow Structure and Channel Change in an Asymmetrical Compound Meander Loop, Embarras River, Illinois. Earth Surf. Process Landf. 2003, 28, 625–644. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2′s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Robeson, M.S.; O’Rourke, D.R.; Kaehler, B.D.; Ziemski, M.; Dillon, M.R.; Foster, J.T.; Bokulich, N.A. RESCRIPt: Reproducible Sequence Taxonomy Reference Database Management. PLoS Comput. Biol. 2021, 17, e1009581. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; Version 4.3.3, R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.r-project.org/ (accessed on 15 June 2025).
- RStudio Integrated Development Environment (IDE) Version 2024.12.1+56. Available online: https://posit.co/download/rstudio-desktop/ (accessed on 15 June 2025).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Peddada, S. Das Analysis of Compositions of Microbiomes with Bias Correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef]
- Wickham, H. Data Analysis. In ggplot2 Elegant Graphics for Data Analysis; Springer: Cham, Switzerland, 2016; pp. 189–201. ISBN 978-3-319-24277-4. [Google Scholar]
- Gloor, G.B.; Wu, J.R.; Pawlowsky-Glahn, V.; Egozcue, J.J. It’s All Relative: Analyzing Microbiome Data as Compositions. Ann. Epidemiol. 2016, 26, 322–329. [Google Scholar] [CrossRef]
- Liu, H.; Han, H.; Zhang, C.; Yu, X.; Nie, W.; Shao, Q.; Yang, P.; Li, X.; Yang, Y.; Cao, H. Patterns of Bacterial Distance Decay and Community Assembly in Different Land-Use Types as Influenced by Tillage Management and Soil Layers. Ecotoxicol. Environ. Saf. 2023, 266, 115595. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package, R Package Version 2.6-4; CRAN: Contributed Packages; CRAN: Vienna, Australia, 2025. [Google Scholar]
- Iturbe-Espinoza, P.; Brandt, B.W.; Braster, M.; Bonte, M.; Brown, D.M.; van Spanning, R.J.M. Effects of DNA Preservation Solution and DNA Extraction Methods on Microbial Community Profiling of Soil. Folia Microbiol. 2021, 66, 597–606. [Google Scholar] [CrossRef]
- Portch, S.; Hunter, A.H. A Systematic Approach to Soil Fertility Evaluation and Improvement (PPI/PPIC China Program Special Publication No. 5), Modern Agriculture and Fertilizers; Canpotex Limited: Hong Kong, China, 2002. [Google Scholar]
- Tian, Q.; Taniguchi, T.; Shi, W.Y.; Li, G.; Yamanaka, N.; Du, S. Land-Use Types and Soil Chemical Properties Influence Soil Microbial Communities in the Semiarid Loess Plateau Region in China. Sci. Rep. 2017, 7, 45289. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.E.; Youngblut, N.D.; Buckley, D.H. Soil Characteristics and Land-Use Drive Bacterial Community Assembly Patterns. FEMS Microbiol. Ecol. 2020, 96, 194. [Google Scholar] [CrossRef]
- Brandt, L.; Stache, F.; Poll, C.; Bramble, D.S.; Schöning, I.; Schrumpf, M.; Ulrich, S.; Kaiser, K.; Mikutta, R.; Mikutta, C.; et al. Mineral Type and Land-Use Intensity Control Composition and Functions of Microorganisms Colonizing Pristine Minerals in Grassland Soils. Soil Biol. Biochem. 2023, 182, 109037. [Google Scholar] [CrossRef]
- Yokobe, T.; Hyodo, F.; Tateno, R.; Tokuchi, N. Soil Mineral Fraction Influences the Bacterial Abundance: Evidence from a Mineral and Plant Materials Incubation Study. Biogeochemistry 2022, 161, 273–287. [Google Scholar] [CrossRef]
- Wuddivira, M.N.; Ekwue, E.I.; Stone, R.J. Modelling Slaking Sensitivity to Assess the Degradation Potential of Humid Tropic Soils under Intense Rainfall. Land. Degrad. Dev. 2010, 21, 48–57. [Google Scholar] [CrossRef]
- Dully, V.; Rech, G.; Wilding, T.A.; Lanzén, A.; MacKichan, K.; Berrill, I.; Stoeck, T. Comparing Sediment Preservation Methods for Genomic Biomonitoring of Coastal Marine Ecosystems. Mar. Pollut. Bull. 2021, 173, 113129. [Google Scholar] [CrossRef]
- Liu, J.; Cui, X.; Liu, Z.; Guo, Z.; Yu, Z.; Yao, Q.; Sui, Y.; Jin, J.; Liu, X.; Wang, G. The Diversity and Geographic Distribution of Cultivable Bacillus-like Bacteria across Black Soils of Northeast China. Front. Microbiol. 2019, 10, 459320. [Google Scholar] [CrossRef]
- Thomas-Barry, G.; St. Martin, C.C.G.; Lynch, M.D.J.; Ramsubhag, A.; Rouse-Miller, J.; Charles, T.C. Driving Factors Influencing the Rhizobacteriome Community Structure of Plants Adapted to Multiple Climatic Stressors in Edaphic Savannas. Sci. Total Environ. 2021, 769, 145214. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Zhang, Z.; Wang, X.; Zhou, Z.; Chen, D.; Zeng, H.; Zhao, S.; Chen, L.; Hu, Y.; Zhang, C.; et al. Diversity and Contributions to Nitrogen Cycling and Carbon Fixation of Soil Salinity Shaped Microbial Communities in Tarim Basin. Front. Microbiol. 2018, 9, 317810. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Kong, H.G.; Song, G.C.; Ryu, C.M. Disruption of Firmicutes and Actinobacteria Abundance in Tomato Rhizosphere Causes the Incidence of Bacterial Wilt Disease. ISME J. 2020, 15, 330–347. [Google Scholar] [CrossRef]
- Hashmi, I.; Bindschedler, S.; Junier, P. Firmicutes. In Beneficial Microbes in Agro-Ecology; Amaresan, N., Annapurna, K., Sankaranarayanan, A., Kumar, M.S., Kumar, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 363–396. ISBN 978-0-12-823414-3. [Google Scholar]
- Liu, X.; Huang, Z.; Havrilla, C.A.; Liu, Y.; Wu, G.L. Plant Litter Crust Role in Nutrients Cycling Potentials by Bacterial Communities in a Sandy Land Ecosystem. Land. Degrad. Dev. 2021, 32, 3194–3203. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Negassa, W.C.; Guber, A.K.; Hildebrandt, B.; Marsh, T.L.; Rivers, M.L. Intra-Aggregate Pore Structure Influences Phylogenetic Composition of Bacterial Community in Macroaggregates. Soil Sci. Soc. Am. J. 2014, 78, 1924–1939. [Google Scholar] [CrossRef]
- McEldowney, S.; Fletcher, M. The Effect of Temperature and Relative Humidity on the Survival of Bacteria Attached to Dry Solid Surfaces. Lett. Appl. Microbiol. 1988, 7, 83–86. [Google Scholar] [CrossRef]
- Setlow, P.; Johnson, E.A. Spores and Their Significance. In Food Microbiology: Fundamentals and Frontiers; Doyle, M.P., Diez-Gonzalez, F., Hill, C., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 23–63. ISBN 9781683670476. [Google Scholar]
- Chen, M.; Alexander, M. Survival of Soil Bacteria during Prolonged Desiccation. Soil Biol. Biochem. 1973, 5, 213–221. [Google Scholar] [CrossRef]
- Navarro Llorens, J.M.; Tormo, A.; Martínez-García, E. Stationary Phase in Gram-Negative Bacteria. FEMS Microbiol. Rev. 2010, 34, 476–495. [Google Scholar] [CrossRef]
- Kappler, U.; Davenport, K.; Beatson, S.; Lucas, S.; Lapidus, A.; Copeland, A.; Berry, K.W.; Del Rio, T.G.; Hammon, N.; Dalin, E.; et al. Complete Genome Sequence of the Facultatively Chemolithoautotrophic and Methylotrophic Alpha Proteobacterium Starkeya Novella Type Strain (ATCC 8093T). Stand. Genom. Sci. 2012, 7, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, F.; Yu, S.; Qin, S.; Wang, G. Impacts of Mariculture on the Diversity of Bacterial Communities Within Intertidal Sediments in the Northeast of China. Microb. Ecol. 2013, 66, 861–870. [Google Scholar] [CrossRef]
- Sangwan, P.; Chen, X.; Hugenholtz, P.; Janssen, P.H. Chthoniobacter flavus Gen. Nov., Sp. Nov., the First Pure-Culture Representative of Subdivision Two, Spartobacteria Classis Nov., of the Phylum Verrucomicrobia. Appl. Environ. Microbiol. 2004, 70, 5875–5881. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, B.; Müller, H.; Smalla, K.; Mpiira, S.; Tumuhairwe, J.B.; Staver, C.; Berg, G. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae. Appl. Environ. Microbiol. 2012, 78, 4933–4941. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Ruppel, S.; Remus, R. Enterobacter radicincitans Sp. Nov., a Plant Growth Promoting Species of the Family Enterobacteriaceae. Syst. Appl. Microbiol. 2005, 28, 213–221. [Google Scholar] [CrossRef]
- Ryan, R.P.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.B.; Berg, G.; van der Lelie, D.; Dow, J.M. The Versatility and Adaptation of Bacteria from the Genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef]
- Roquigny, R.; Novinscak, A.; Biessy, A.; Filion, M. Pseudomonadaceae: From Biocontrol to Plant Growth Promotion. In Rhizotrophs: Plant Growth Promotion to Bioremediation; Springer: Singapore, 2017; Volume 2, pp. 39–68. ISBN 978-981-10-4862-3. [Google Scholar]
- Suleiman, A.K.A.; Manoeli, L.; Boldo, J.T.; Pereira, M.G.; Roesch, L.F.W. Shifts in Soil Bacterial Community after Eight Years of Land-Use Change. Syst. Appl. Microbiol. 2013, 36, 137–144. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Schwab, A.P. The Chemistry of Iron in Soils and Its Availability to Plants. J. Plant Nutr. 1982, 5, 821–840. [Google Scholar] [CrossRef]
- Galantini, J.A.; Senesi, N.; Brunetti, G.; Rosell, R. Influence of Texture on Organic Matter Distribution and Quality and Nitrogen and Sulphur Status in Semiarid Pampean Grassland Soils of Argentina. Geoderma 2004, 123, 143–152. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, M.; Cong, J.; Qi, Q.; Xiao, Y.; Cong, W.; Deng, Y.; Zhou, J.; Zhang, Y. Soil PH Exerts Stronger Impacts than Vegetation Type and Plant Diversity on Soil Bacterial Community Composition in Subtropical Broad-Leaved Forests. Plant Soil 2020, 450, 273–286. [Google Scholar] [CrossRef]
- Johnson, E.A.; Miyanishi, K. Testing the Assumptions of Chronosequences in Succession. Ecol. Lett. 2008, 11, 419–431. [Google Scholar] [CrossRef]
- Fukami, T.; Wardle, D.A. Long-Term Ecological Dynamics: Reciprocal Insights from Natural and Anthropogenic Gradients. Proc. R. Soc. B Biol. Sci. 2005, 272, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fan, R.; Bai, Z.; Wang, S.; Wang, L.; Shi, J. Biosorption Characteristics of Bacillus gibsonii S-2 Waste Biomass for Removal of Lead (II) from Aqueous Solution. Environ. Sci. Pollut. Res. 2013, 20, 1367–1373. [Google Scholar] [CrossRef]
- Batool, R.; ur Rehman, S.; Rafique, M.; Ali, J.; Mukhtar, T.; Mahmood, S.; Sultan, T.; Hussain Munis, F.; Javed Chaudhary, H. Biocontrol Potential of Bacillus gibsonii and Brevibacterium frigoritolerans in Suppression of Fusarium Stalk Rot of Maize: A Sustainable Approach. Asian J. Agric. Biol. 2019, 7, 320–333. [Google Scholar]
- Bello-Morales, R.; Andreu, S.; Ruiz-Carpio, V.; Ripa, I.; López-Guerrero, J.A. Extracellular Polymeric Substances: Still Promising Antivirals. Viruses 2022, 14, 1337. [Google Scholar] [CrossRef]
- Shao, T.; Gu, X.; Zhu, T.; Pan, X.; Zhu, Y.; Long, X.; Shao, H.; Liu, M.; Rengel, Z. Industrial Crop Jerusalem artichoke Restored Coastal Saline Soil Quality by Reducing Salt and Increasing Diversity of Bacterial Community. Appl. Soil Ecol. 2019, 138, 195–206. [Google Scholar] [CrossRef]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current Knowledge and Perspectives of Paenibacillus: A Review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef]
- Slobodkin, A. The Family Peptostreptococcaceae. In The Prokaryotes: Firmicutes and Tenericutes; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 291–302. ISBN 978-3-642-30120-9. [Google Scholar]
- Oren, A. The Family Xanthobacteraceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 9783642301971, pp. 709–726. ISBN 978-3-642-30197-1. [Google Scholar]
- Barea, J.M.; Toro, M.; Orozco, M.O.; Campos, E.; Azcón, R. The Application of Isotopic (32P and 15N) Dilution Techniques to Evaluate the Interactive Effect of Phosphate-Solubilizing Rhizobacteria, Mycorrhizal Fungi and Rhizobium to Improve the Agronomic Efficiency of Rock Phosphate for Legume Crops. Nutr. Cycl. Agroecosystems 2002, 63, 35–42. [Google Scholar] [CrossRef]
- Hyde, E.R.; Haarmann, D.P.; Petrosino, J.F.; Lynne, A.M.; Bucheli, S.R. Initial Insights into Bacterial Succession during Human Decomposition. Int. J. Leg. Med. 2015, 129, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Neu, A.T.; Allen, E.E.; Roy, K. Defining and Quantifying the Core Microbiome: Challenges and Prospects. Proc. Natl. Acad. Sci. USA 2021, 118, e2104429118. [Google Scholar] [CrossRef] [PubMed]
- Ghashghavi, M.; Hester, E.R.; Oliver, V.; Lüke, C.; Jetten, M.S.M.; Lücker, S. Comparison of the Bacterial and Methanotrophic Diversities between an Italian Paddy Field and Its Neighboring Meadow. bioRxiv 2019, 535229. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, Y.; Mo, M. Phylogenetic Analysis on the Soil Bacteria Distributed in Karst Forest. Braz. J. Microbiol. 2009, 40, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Dedysh, S.N. Bryobacteraceae. In Bergey’s Manual of Systematics of Archaea and Bacteria; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Goswami, A.; Adkins-Jablonsky, S.J.; Barreto Filho, M.M.; Shilling, M.D.; Dawson, A.; Heiser, S.; O’Connor, A.; Walker, M.; Roberts, Q.; Morris, J.J. Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Microbiol. Spectr. 2023, 11, e02426-22. [Google Scholar] [CrossRef]
- Asaf, S.; Numan, M.; Khan, A.L.; Al-Harrasi, A. Sphingomonas: From Diversity and Genomics to Functional Role in Environmental Remediation and Plant Growth. Crit. Rev. Biotechnol. 2020, 40, 138–152. [Google Scholar] [CrossRef]
- Tao, J.; Wang, J.; Zheng, X.; Jia, A.; Zou, M.; Zhang, J.; Tao, X. Effects of Tetracycline and Copper on Water Spinach Growth and Soil Bacterial Community. Processes 2022, 10, 1135. [Google Scholar] [CrossRef]
- Jiang, Z.M.; Mou, T.; Sun, Y.; Su, J.; Yu, L.Y.; Zhang, Y.Q. Environmental Distribution and Genomic Characteristics of Solirubrobacter, with Proposal of Two Novel Species. Front. Microbiol. 2023, 14, 1267771. [Google Scholar] [CrossRef]
- Górska, E.B.; Stępien, W.; Cunha, A.; Sierra-Garcia, I.N.; Szyszkowska, K.; Gozdowski, D.; Gworek, B.; Sas-Paszt, L.; Lisek, A.; Hewelke, E.; et al. Microbial Diversity as an Indicator of a Diversified Cropping System for Luvisoils in a Moderate Climate. Case Study—Long Term Experiments from Poland. Ecol. Indic. 2022, 141, 109133. [Google Scholar] [CrossRef]
- Pacwa-Płociniczak, M.; Biniecka, P.; Bondarczuk, K.; Piotrowska-Seget, Z. Metagenomic Functional Profiling Reveals Differences in Bacterial Composition and Function During Bioaugmentation of Aged Petroleum-Contaminated Soil. Front. Microbiol. 2020, 11, 559027. [Google Scholar] [CrossRef]
- Proença, D.N.; Whitman, W.B.; Varghese, N.; Shapiro, N.; Woyke, T.; Kyrpides, N.C.; Morais, P.V. Arboriscoccus pini gen. nov., sp. nov., an Endophyte from a Pine Tree of the Class Alphaproteobacteria, Emended Description of Geminicoccus roseus, and Proposal of Geminicoccaceae fam. nov. Syst. Appl. Microbiol. 2018, 41, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.A.; Zhang, Q.; Acuña, J.J.; Rilling, J.I.; Ruiz, T.; Carrazana, E.; Reyno, C.; Hollenback, A.; Gray, K.; Jaisi, D.P.; et al. Structure and Functional Properties of Bacterial Communities in Surface Sediments of the Recently Declared Nutrient-Saturated Lake Villarrica in Southern Chile. Microb. Ecol. 2023, 86, 1513–1533. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Fu, J.; Jiang, T.; Zhang, C.; Cao, G. Polyphosphate Metabolic Gene Expression Analyses Reveal Mechanisms of Phosphorus Accumulation and Release in Microlunatus phosphovorus Strain JN459. FEMS Microbiol. Lett. 2018, 365, fny034. [Google Scholar] [CrossRef] [PubMed]
- Miksch, S.; Meiners, M.; Meyerdierks, A.; Probandt, D.; Wegener, G.; Titschack, J.; Jensen, M.A.; Ellrott, A.; Amann, R.; Knittel, K. Bacterial Communities in Temperate and Polar Coastal Sands Are Seasonally Stable. ISME Commun. 2021, 1, 29. [Google Scholar] [CrossRef]
- Huber, K.J.; Overmann, J. Vicinamibacteraceae fam. nov., the First Described Family within the Subdivision 6 Acidobacteria. Int. J. Syst. Evol. Microbiol. 2018, 68, 2331–2334. [Google Scholar] [CrossRef]







| Watershed | Land Use | Landform Parameters | Physical Properties (g kg−1) | Water Content (g g−1) | Soil Texture | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Slope Gradient (°) | Curvature (m−1) | Sand | Silt | Clay | WSA | θh | θg | |||||
| (a) Robust two-way ANOVA (n = 18) | ||||||||||||
| Maracas | 10.4 (±2.0) a | 1.5 (±1.8) a | 600 (±29) b | 227 (±20) a | 173 (±16) a | 236 (±28) b | 0.009 (±0.0007) a | 0.29 (±0.01) a | Sandy loam | |||
| Tacarigua | 14.1 (±1.6) a | −0.5 (±1.6) a | 814 (±19) a | 98 (±14) b | 88 (±8) b | 211 (±36) b | 0.009 (±0.0002) a | 0.26 (±0.02) a | Loamy sand | |||
| Arouca | 7.9 (±1.1) b | −1.3 (±2.4) a | 774 (±16) a | 203 (±13) a | 24 (±8) c | 521 (±41) a | 0.010 (±.0007) a | 0.26 (±0.01) a | Loamy sand | |||
| (b) Nested ANOVA (n = 54) | ||||||||||||
| Maracas | Agri | 6.3 c | −13.2 a | 658 b | 235 ab | 106 cd | 273 b | 0.009 bc | 0.35 a | Sandy loam | ||
| For | 6.1 c | −2.7 a | 464 c | 299 a | 237 a | 144 b | 0.0113 b | 0.30 ab | Loam | |||
| Gra | 18.9 ab | 2.9 a | 678 b | 147 b | 175 bc | 291 b | 0.007 c | 0.28 ab | Sandy loam | |||
| Tacarigua | Agri | 7.7 c | −1.1 a | 843 a | 84 c | 73 cde | 237 b | 0.0078 c | 0.20 b | Loamy sand | ||
| For | 10.8 b | 2.5 a | 746 ab | 138 bc | 117 bc | 177 b | 0.0088 bc | 0.32 ab | Sandy loam | |||
| Gra | 22.1 a | −3.0 a | 854 a | 72 c | 74 cde | 219 b | 0.0093 bc | 0.25 ab | Loamy sand | |||
| Arouca | Agri | 5.5 c | −0.9 a | 840 a | 158 b | 3 f | 560 a | 0.0082 bc | 0.24 ab | Loamy sand | ||
| For | 9.2 c | −3.4 a | 718 b | 237 ab | 45 def | 437 a | 0.0133 a | 0.26 ab | Sandy loam | |||
| Gras | 8.8 c | −0.4 a | 763 ab | 213 ab | 23 ef | 565 a | 0.0093 bc | 0.27 ab | Loamy sand | |||
| Watershed | Land Use | Ca | Mg | K | AA | N | P | S | B | Cu | Fe | Mn | Zn | CEC | SS | ECas | OM | pH | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (meq 100 cm−3) | (μg cm−3) | (meq 100 cm−3) | (ppm) | (mS m−1) | (g kg−1) | |||||||||||||||
| (a) Robust two-way ANOVA (n = 18) | ||||||||||||||||||||
| Maracas | 3.2 (±0.4) a | 0.6 (±0.05) a | 0.13 (±0.01) a | 0.2 (±0.06) a | 4 (±0.2) b | 8 (±1) b | 67 (±8) a | 0.5 (±0.02) b | 8 (±1) a | 76 (±22) b | 23 (±6) b | 7.3 (±1.4) a | 4 (±0.4) a | 8 (±0.9) b | 6.3 (±0.6) a | 31 (±3) a | 6.1 (±0.2) a | |||
| Tacarigua | 2.2 (±0.1) a | 0.4 (±0.01) a | 0.1 (±0.01) b | 0.5 (±0.07) a | 4 (±0.2) b | 12 (±3) b | 42 (±3) a | 0.5 (±0.02) a | 5 (±1) a | 193 (±20) a | 14 (±2) b | 5.6 (±2.6) b | 3.2 (±0.1) a | 8.4 (±0.5) b | 2.4 (±0.2) a | 25 (±4) a | 5.3 (±0.2) b | |||
| Arouca | 3.4 (±0.4) a | 0.5 (±0.04) a | 0.1 (±0.01) b | 0(±0.00) b | 6 (±0.7) a | 22 (±2) a | 44 (±10) a | 0.5 (±0.02) a | 11 (±2) a | 42 (±8) b | 98 (±6) a | 7.6 (±1.0) a | 4.0 (±0.4) a | 18.2 (±2.2) a | 3.4 (±1.9) a | 27 (±3) a | 6.6 (±0.1) a | |||
| (b) Nested ANOVA (n = 54) | ||||||||||||||||||||
| Maracas | Agri | 5.7 a | 0.763 a | 0.13 a | 0.0 b | 4.3 ab | 9 bc | 72 abc | 0.47 a | 5 b | 36 cd | 11 b | 12 a | 6.6 a | 10 a | 10 a | 17 c | 6.65 ab | ||
| For | 2.0 b | 0.432 b | 0.11 ab | 0.5 a | 3.7 b | 6 c | 110 a | 0.50 a | 10 ab | 152 b | 44 b | 2 a | 3.0 b | 7 a | 5 a | 44 a | 5.18 d | |||
| Gra | 3.0 b | 0.495 ab | 0.13 a | 0.0 b | 4.1 ab | 8 bc | 45 abc | 0.39 a | 8 b | 41 cd | 14 b | 8 a | 3.6 b | 7 a | 5 a | 32 abc | 6.58 abc | |||
| Tacarigua | Agri | 2.1 b | 0.430 b | 0.11 ab | 0.2 b | 5.8 ab | 26 a | 45 abc | 0.47 a | 13 ab | 274 a | 19 b | 19 a | 2.7 b | 26 a | 2 a | 16 c | 6.08 c | ||
| For | 2.5 b | 0.447 b | 0.11 ab | 0.7 a | 3.8 b | 4 c | 36 bc | 0.48 a | 2 b | 139 bc | 12 b | 3 a | 3.7 b | 8 a | 3 a | 40 a | 4.85 d | |||
| Gra | 2.1 b | 0.403 b | 0.09 ab | 0.5 a | 3.7 b | 8 bc | 48 abc | 0.45 a | 5 b | 165 ab | 13 b | 2 a | 3.1 b | 8 a | 2 a | 21 bc | 4.48 d | |||
| Arouca | Agri | 2.5 b | 0.442 b | 0.10 b | 0.0 b | 4.3 ab | 28 a | 36 bc | 0.48 a | 24 a | 78 bcd | 91 a | 8 a | 3.1 b | 10 a | 2 a | 37 ab | 6.12 bc | ||
| For | 4.1 ab | 0.587 ab | 0.10 b | 0.0 b | 7.8 a | 17 ab | 102 ab | 0.51 a | 4 b | 20 d | 86 a | 4 a | 4.9 ab | 27 a | 5 a | 18 bc | 6.97 a | |||
| Gra | 3.5 ab | 0.543 ab | 0.11 ab | 0.0 b | 6.8 ab | 20 a | 26 c | 0.38 a | 10 ab | 29 cd | 118 a | 18 a | 4.1 ab | 18 a | 3 a | 26 abc | 6.72 a | |||
| Observed | Chao1 | Shannon | ||||
|---|---|---|---|---|---|---|
| F Value | Pr (>F) | F Value | Pr (>F) | F Value | Pr (>F) | |
| Watershed | 6.06 | 0.005 | 6.00 | 0.005 | 12.59 | <0.001 |
| Watershed: Land use | 1.60 | 0.170 | 1.62 | 0.163 | 0.33 | 0.912 |
| Watershed Comparisons | Observed | Chao | Shannon |
|---|---|---|---|
| p-Value (adj.) | |||
| Tacarigua—Arouca | 0.003 | 0.003 | <0.001 |
| Tacarigua—Maracas | 0.265 | 0.253 | 0.014 |
| Arouca—Maracas | 0.151 | 0.164 | 0.111 |
| Df | R2 | F | Pr (>F) | |
|---|---|---|---|---|
| Watershed | 2 | 0.279 | 5.507 | 0.001 |
| Watershed:LandUse | 6 | 0.204 | 1.713 | 0.001 |
| Watershed Comparison | R2 | p | Adjusted p |
|---|---|---|---|
| Tacarigua:Maracas | 0.153 | 0.001 | 0.003 |
| Tacarigua:Arouca | 0.324 | 0.001 | 0.003 |
| Maracas:Arouca | 0.180 | 0.001 | 0.003 |
| Land use comparison | R2 | p | Adjusted p |
| Forest:Agriculture | 0.066 | 0.015 | 0.045 |
| Forest:Grass | 0.038 | 0.169 | 0.284 |
| Agriculture:Grass | 0.038 | 0.142 | 0.284 |
| Soil Property | R2 | F | Pr (>F) |
|---|---|---|---|
| pH | 0.059 | 10.50 | 0.001 |
| Mn (μg cm−3) | 0.026 | 4.13 | 0.001 |
| Fe (μg cm−3) | 0.015 | 2.34 | 0.005 |
| Clay (%) | 0.014 | 2.30 | 0.009 |
| θh (g g−1) | 0.013 | 2.11 | 0.011 |
| P (μg cm−3) | 0.011 | 1.69 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Caires, S.A.; Reinsch, S.; Saravanakumar, D.; Martin, C.S.; Wuddivira, M.N.; Zebarth, B.J.; Kaya, F.; Liu, M.; Chinthalapudi, D.P.M.; Shanmugam, S.G.; et al. Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds. Soil Syst. 2025, 9, 112. https://doi.org/10.3390/soilsystems9040112
De Caires SA, Reinsch S, Saravanakumar D, Martin CS, Wuddivira MN, Zebarth BJ, Kaya F, Liu M, Chinthalapudi DPM, Shanmugam SG, et al. Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds. Soil Systems. 2025; 9(4):112. https://doi.org/10.3390/soilsystems9040112
Chicago/Turabian StyleDe Caires, Sunshine A., Sabine Reinsch, Duraisamy Saravanakumar, Chaney St. Martin, Mark N. Wuddivira, Bernie J. Zebarth, Fuat Kaya, Mengying Liu, Durga P. M. Chinthalapudi, Shankar Ganapathi Shanmugam, and et al. 2025. "Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds" Soil Systems 9, no. 4: 112. https://doi.org/10.3390/soilsystems9040112
APA StyleDe Caires, S. A., Reinsch, S., Saravanakumar, D., Martin, C. S., Wuddivira, M. N., Zebarth, B. J., Kaya, F., Liu, M., Chinthalapudi, D. P. M., Shanmugam, S. G., & Helgason, B. (2025). Land Use Modifies the Inherent Effect of Soil Properties on Soil Bacterial Communities in Humid Tropical Watersheds. Soil Systems, 9(4), 112. https://doi.org/10.3390/soilsystems9040112

