Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils
Abstract
1. Introduction
2. Podzolization as a Spatial Analogue of Ecosystem Aging
2.1. Life Begets Acid, Draws Down Parent P
2.2. Podzolization as a Vertical Analogue for the Weathering Process
3. Biogeochemistry of the Spodic Horizon: P Retention
3.1. Sorption to Fe and Al Oxides
3.2. Co-Precipitation During Collapse of the Organometal Complex
3.3. Implications for Vertical P Flux
4. Mechanisms of P Liberation from the Spodic Horizon
4.1. Redox
4.2. Ligand Exchange and Organic Complexation
4.3. Mycorrhizal and Root Mining of the Spodic Horizon
4.4. Physical Disruption and Profile Disturbance
5. Recycling and Competition: Organic P Cycling in the Surface Horizon
The Potential for a Vertical Stratification of Organic P in Podzols
6. Podzols as Useful Experimental Models Where Surface P Cycles Independently from Mineral Al/Fe Reserves
7. Considerations on Podzols as Reservoirs of Soil Fertility or Sources of Pollutant P
7.1. Natural P Reserves
7.2. Cryptic Contribution to Global Climate Crises
7.3. Challenges of Detection and Management
7.4. Toward Subsurface-Inclusive P Budgets
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- Leist, M.; Single, B.; Castoldi, A.F.; Kühnle, S.; Nicotera, P. Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis. J. Exp. Med. 1997, 185, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. Models of Photosynthesis. Plant Physiol. 2001, 125, 42–45. [Google Scholar] [CrossRef]
- Howard, J.B.; Rees, D.C. Structural Basis of Biological Nitrogen Fixation. Chem. Rev. 1996, 96, 2965–2982. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Adnan, M.; Fahad, S.; Saleem, M.H.; Lal, R. Sustainable phosphorus management in calcareous soils: Problems and prospects. J. Plant Nutr. 2025, 48, 2179–2200. [Google Scholar] [CrossRef]
- Hopkins, B.; Ellsworth, J. Phosphorus availability with alkaline/calcareous soil. In Proceedings of the Western Nutrient Management Conference, Reno, NV, USA, 9–11 March 2005; University of Idaho: Idaho Falls, ID, USA, 2005; pp. 83–93. Available online: https://www.spring-lake.net/pdfs/calcareous/phosp-availability-calcareous.pdf (accessed on 8 September 2025).
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- VITOUSEK, P.M.; FARRINGTON, H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 1997, 37, 63–75. [Google Scholar] [CrossRef]
- Chadwick, O.A.; Derry, L.A.; Vitousek, P.M.; Huebert, B.J.; Hedin, L.O. Changing sources of nutrients during four million years of ecosystem development. Nature 1999, 397, 491–497. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L.; Condron, L.M.; Richardson, S.J.; Peltzer, D.A.; Allison, V.J. Soil Organic Phosphorus Transformations During Pedogenesis. Ecosystems 2007, 10, 1166–1181. [Google Scholar] [CrossRef]
- Reed, S.C.; Wood, T.E. Soil phosphorus cycling in tropical soils: An ultisol and oxisol perspective. In Soil phosphorus; CRC Press: Boca Raton, FL, USA, 2016; pp. 247–284. Available online: https://api.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.1201/9781315372327-11&type=chapterpdf (accessed on 8 September 2025).
- Santos, D.P.; Santos, G.G.; de Oliveira, V.Á.; da Silva, G.C.; Flores, R.A.; Azevedo, A.C.; de Souza Júnior, V.S.; Pereira, M.G. Chemical and mineralogical constitution of redoximorphic features and mechanism of formation of Plinthosols from the Araguaia River plain, Brazil. Rev. Bras. Ciênc. Solo 2024, 48, e0230115. [Google Scholar] [CrossRef]
- Takenaka, K.; Koala, J.; Yamadera, Y. Characteristics of the root system of four tree species planted on Plinthosols in Burkina Faso: Application of the soil-briquette method. J. Arid Land Stud. 2024, 34, 17–33. [Google Scholar] [CrossRef]
- Eze, P.; Udeigwe, T.; Meadows, M. Plinthite and Its Associated Evolutionary Forms in Soils and Landscapes: A Review. Pedosphere 2014, 24, 153–166. [Google Scholar] [CrossRef]
- Martins, A.P.B.; Santos, G.G.; de Oliveira, V.Á.; Maranhão, D.D.C.; Collier, L.S. Hardening and Stability of Plinthic Materials of the Araguaia River Floodplain under Different Drying Treatments. Rev. Bras. Ciênc. Solo 2018, 42, e0170190. [Google Scholar] [CrossRef]
- Bloomfield, C. A Study of Podzolization. J. Soil Sci. 1954, 5, 39–45. [Google Scholar] [CrossRef]
- Lundström, U.S.; van Breemen, N.; Bain, D. The podzolization process. A review. Geoderma 2000, 94, 91–107. [Google Scholar] [CrossRef]
- Alva, A.K.; Huang, B.; Paramasivam, S.; Sajwan, K.S. Evaluation of Root Growth Limiting Factors in Spodic Horizons of Spodosols. J. Plant Nutr. 2002, 25, 2001–2014. [Google Scholar] [CrossRef]
- McKeague, J.A.; DeConinck, F.; Franzmeier, D.P. Chapter 6 Spodosols1. In Developments in Soil Science; Wilding, L.P., Smeck, N.E., Hall, G.F., Eds.; Pedogenesis and Soil Taxonomy; Elsevier: Amsterdam, The Netherlands, 1983; Volume 11, pp. 217–252. [Google Scholar]
- Graetz, D.A.; Nair, V.D. Fate of phosphorus in Florida Spodosols contaminated with cattle manure. Ecol. Eng. 1995, 5, 163–181. [Google Scholar] [CrossRef]
- Gerke, J.; Meyer, U. Phosphate aquisition by red clover and black mustard on a humic podzol. J. Plant Nutr. 1995, 18, 2409–2429. [Google Scholar] [CrossRef]
- Gerke, J. Humic (Organic Matter)-Al(Fe)-Phosphate Complexes: An Underestimated Phosphate Form in Soils and Source of Plant-Available Phosphate. Soil Sci. 2010, 175, 417. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B.; Cole, C.V. Pathways of Phosphorus Transformations in Soils of Differing Pedogenesis. Soil Sci. Soc. Am. J. 1984, 48, 853–858. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Kasmerchak, C.; Samonil, P.; Baish, C.; Hadden, M.; Rothstein, D. Acidification and weathering associated with deep tongues in sandy Spodosols, Michigan, USA. Geoderma Reg. 2020, 23, e00332. [Google Scholar] [CrossRef]
- Chakraborty, D.; Nair, V.D.; Chrysostome, M.; Harris, W.G. Soil phosphorus storage capacity in manure-impacted Alaquods: Implications for water table management. Agric. Ecosyst. Environ. 2011, 142, 167–175. [Google Scholar] [CrossRef]
- De Coninck, F. Major mechanisms in formation of spodic horizons. Geoderma 1980, 24, 101–128. [Google Scholar] [CrossRef]
- Mantel, S.; Dondeyne, S.; Deckers, S. World Reference Base for Soil Resources (WRB). Encycl. Soils Environ. 2023, 4, 206–217. [Google Scholar]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water balance creates a threshold in soil pH at the global scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef]
- Bloom, P.R. Phosphorus Adsorption by an Aluminum-Peat Complex. Soil Sci. Soc. Am. J. 1981, 45, 267–272. [Google Scholar] [CrossRef]
- Borggaard, O.K.; Jdrgensen, S.S.; Moberg, J.P.; Raben-Lange, B. Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils. J. Soil Sci. 1990, 41, 443–449. [Google Scholar] [CrossRef]
- Peña, F.; Torrent, J. Predicting phosphate sorption in soils of mediterranean regions. Fertil. Res. 1990, 23, 173–179. [Google Scholar] [CrossRef]
- Singh, B.; Gilkes, R. Phosphorus sorption in relation to soil properties for the major soil types of South-Western Australia. Soil Res. 1991, 29, 603. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Sanford, R.L. Nutrient Cycling in Moist Tropical Forest. Annu. Rev. Ecol. Syst. 1986, 17, 137–167. [Google Scholar] [CrossRef]
- Turner, B.L.; Laliberté, E. Soil Development and Nutrient Availability Along a 2 Million-Year Coastal Dune Chronosequence Under Species-Rich Mediterranean Shrubland in Southwestern Australia. Ecosystems 2015, 18, 287–309. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B. Low-Molecular-Weight Organic Acids in Selected Forest Soils of the Southeastern USA. Soil Sci. Soc. Am. J. 1990, 54, 1139–1144. [Google Scholar] [CrossRef]
- Pohlman, A.A.; McColl, J.G. Soluble Organics from Forest Litter and their Role in Metal Dissolution. Soil Sci. Soc. Am. J. 1988, 52, 265–271. [Google Scholar] [CrossRef]
- Jansen, B.; Nierop, K.G.J.; Verstraten, J.M. Mobilization of dissolved organic matter, aluminium and iron in podzol eluvial horizons as affected by formation of metal-organic complexes and interactions with solid soil material. Eur. J. Soil Sci. 2004, 55, 287–297. [Google Scholar] [CrossRef]
- Lundström, U.; Öhman, L.-O. Dissolution of feldspars in the presence of natural, organic solutes. J. Soil Sci. 1990, 41, 359–369. [Google Scholar] [CrossRef]
- McKeague, J.A.; Brydon, J.E.; Miles, N.M. Differentiation of Forms of Extractable Iron and Aluminum in Soils. Soil Sci. Soc. Am. J. 1971, 35, 33–38. [Google Scholar] [CrossRef]
- Schnitzer, M.; Desjardins, J.G. Molecular and Equivalent Weights of the Organic Matter of a Podzol. Soil Sci. Soc. Am. J. 1962, 26, 362–365. [Google Scholar] [CrossRef]
- Schnitzer, M.; Skinner, S.I.M. Organo-metallic interactions in soils. Soil Sci. 1963, 96, 86–93. [Google Scholar] [CrossRef]
- Anderson, H.A.; Berrow, M.L.; Farmer, V.C.; Hepburn, A.; Russell, J.D.; Walker, A.D. A reassessment of podzol formation processes. J. Soil Sci. 1982, 33, 125–136. [Google Scholar] [CrossRef]
- McKeague, J.A.; Kodama, H. Imogolite in cemented horizons of some British Columbia soils. Geoderma 1981, 25, 189–197. [Google Scholar] [CrossRef]
- Boudot, J.P.; Bel Hadj^Brahim, A.; Steiman, R.; Seigle-Murandi, F. Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol. Biochem. 1989, 21, 961–966. [Google Scholar] [CrossRef]
- Gustafsson, J.P.; Bhattacharya, P.; Bain, D.C.; Fraser, A.R.; McHardy, W.J. Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma 1995, 66, 167–184. [Google Scholar] [CrossRef]
- Bazilevskaya, E.; Archibald, D.D.; Martínez, C.E. Mineral colloids mediate organic carbon accumulation in a temperate forest Spodosol: Depth-wise changes in pore water chemistry. Biogeochemistry 2018, 141, 75–94. [Google Scholar] [CrossRef]
- Prasetyo, B.H. Mineralogical and chemical characteristics of Spodosols in Toba highland, North Sumatra. Indones. J. Agric. Sci. 2016, 10, 54–64. [Google Scholar] [CrossRef]
- Van Ranst, E.; Wilson, M.A.; Righi, D. Chapter 22—Spodic Materials. In Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.; Stoops, G., Marcelino, V., Mees, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 633–662. ISBN 978-0-444-63522-8. [Google Scholar]
- dos Santos, C.C.; Souza de Lima Ferraz Junior, A.; Oliveira Sá, S.; Andrés Muñoz Gutiérrez, J.; Braun, H.; Sarrazin, M.; Brossard, M.; Desjardins, T. Soil carbon stock and Plinthosol fertility in smallholder land-use systems in the eastern Amazon, Brazil. Carbon Manag. 2018, 9, 655–664. [Google Scholar] [CrossRef]
- Mezenner, N.Y.; Bensmaili, A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 2009, 147, 87–96. [Google Scholar] [CrossRef]
- Parfitt, R.L. Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil Sci. 1989, 40, 359–369. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Tang, Y.; Yang, P.; Feng, X.; Xu, W.; Zhu, M. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environ. Sci. Nano 2017, 4, 2193–2204. [Google Scholar] [CrossRef]
- Nair, V.D.; Villapando, R.R.; Graetz, D.A. Phosphorus Retention Capacity of the Spodic Horizon under Varying Environmental Conditions. J. Environ. Qual. 1999, 28, 1308–1313. [Google Scholar] [CrossRef]
- Graetz, D.A.; Nair, V.D.; Portier, K.M.; Voss, R.L. Phosphorus accumulation in manure-impacted Spodosols of Florida. Agric. Ecosyst. Environ. 1999, 75, 31–40. [Google Scholar] [CrossRef]
- Li, X.; Sheng, A.; Ding, Y.; Liu, J. A model towards understanding stabilities and crystallization pathways of iron (oxyhydr)oxides in redox-dynamic environments. Geochim. Cosmochim. Acta 2022, 336, 92–103. [Google Scholar] [CrossRef]
- Villapando, R.R.; Graetz, D.A. Phosphorus Sorption and Desorption Properties of the Spodic Horizon from Selected Florida Spodosols. Soil Sci. Soc. Am. J. 2001, 65, 331–339. [Google Scholar] [CrossRef]
- Nair, V.D.; Graetz, D.A.; Reddy, K.R. Dairy Manure Influences on Phosphorus Retention Capacity of Spodosols. J. Environ. Qual. 1998, 27, 522–527. [Google Scholar] [CrossRef]
- Shenker, M.; Seitelbach, S.; Brand, S.; Haim, A.; Litaor, M.I. Redox reactions and phosphorus release in re-flooded soils of an altered wetland. Eur. J. Soil Sci. 2005, 56, 515–525. [Google Scholar] [CrossRef]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- Fox, T.R.; Comerford, N.B.; McFee, W.W. Phosphorus and Aluminum Release from a Spodic Horizon Mediated by Organic Acids. Soil Sci. Soc. Am. J. 1990, 54, 1763–1767. [Google Scholar] [CrossRef]
- Obour, A.K.; Silveira, M.L.; Vendramini, J.M.B.; Sollenberger, L.E.; O’Connor, G.A. Fluctuating water table effect on phosphorus release and availability from a Florida Spodosol. Nutr. Cycl. Agroecosyst. 2011, 91, 207–217. [Google Scholar] [CrossRef]
- Fritzsche, A.; Bosch, J.; Sander, M.; Schröder, C.; Byrne, J.M.; Ritschel, T.; Joshi, P.; Maisch, M.; Meckenstock, R.U.; Kappler, A.; et al. Organic Matter from Redoximorphic Soils Accelerates and Sustains Microbial Fe(III) Reduction. Environ. Sci. Technol. 2021, 55, 10821–10831. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.M.; Odum, W.E. Porewater oxidation, dissolved phosphate and the iron curtain. Biogeochemistry 1990, 10, 37–52. [Google Scholar] [CrossRef]
- Dijkstra, N.; Hagens, M.; Egger, M.; Slomp, C.P. Post-depositional formation of vivianite-type minerals alters sediment phosphorus records. Biogeosciences 2018, 15, 861–883. [Google Scholar] [CrossRef]
- Heiberg, L.; Koch, C.B.; Kjaergaard, C.; Jensen, H.S.; Hans Christian, B.H. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils. J. Environ. Qual. 2012, 41, 938–949. [Google Scholar] [CrossRef]
- Ligaba, A.; Shen, H.; Shibata, K.; Yamamoto, Y.; Tanakamaru, S.; Matsumoto, H. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus). Physiol. Plant. 2004, 120, 575–584. [Google Scholar] [CrossRef]
- Lipton, D.S.; Blanchar, R.W.; Blevins, D.G. Citrate, Malate, and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L. Seedlings. Plant Physiol. 1987, 85, 315–317. [Google Scholar] [CrossRef]
- López-Bucio, J.; de la Vega, O.M.; Guevara-García, A.; Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 2000, 18, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, Z.; Shenker, M.; Romheld, V.; Marschner, H.; Hadar, Y.; Chen, Y. The Role of Ligand Exchange in the Uptake of Iron from Microbial Siderophores by Gramineous Plants. Plant Physiol. 1996, 112, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Xu, T.; Chen, J.; Yang, H.; Liu, X.; Zhuo, R.; Peng, Y.; Tang, W.; Wang, R.; Chen, L.; et al. Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J. Clean. Prod. 2022, 367, 133110. [Google Scholar] [CrossRef]
- Hayes, J.E.; Richardson, A.E.; Simpson, R.J. Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol. Fertil. Soils 2000, 32, 279–286. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Claassen, N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol. Fertil. Soils 1988, 5, 308–312. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Jungk, A. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 1987, 3, 199–204. [Google Scholar] [CrossRef]
- Phillips, D.H.; FitzPatrick, E.A. Biological influences on the morphology and micromorphology of selected Podzols (Spodosols) and Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Geoderma 1999, 90, 327–364. [Google Scholar] [CrossRef]
- Vermeire, M.-L.; Cornélis, J.-T.; Van Ranst, E.; Bonneville, S.; Doetterl, S.; Delvaux, B. Soil Microbial Populations Shift as Processes Protecting Organic Matter Change During Podzolization. Front. Environ. Sci. 2018, 6, 70. [Google Scholar] [CrossRef]
- Gerke, J.; Römer, W.; Jungk, A. The excretion of citric and malic acid by proteoid roots of Lupinus albus L.; effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z. Für Pflanzenernähr. Bodenkd. 1994, 157, 289–294. [Google Scholar] [CrossRef]
- Lan, M.; Comerford, N.B.; Fox, T.R. Organic Anions’ Effect on Phosphorus Release from Spodic Horizons. Soil Sci. Soc. Am. J. 1995, 59, 1745–1749. [Google Scholar] [CrossRef]
- Nair, V.D.; Nair, P.K.R.; Kalmbacher, R.S.; Ezenwa, I.V. Reducing nutrient loss from farms through silvopastoral practices in coarse-textured soils of Florida, USA. Ecol. Eng. 2007, 29, 192–199. [Google Scholar] [CrossRef]
- Schaetzl, R.J. Effects of treethrow microtopography on the characteristics and genesis of Spodosols, Michigan, USA. CATENA 1990, 17, 111–126. [Google Scholar] [CrossRef]
- Turner, B.L.; Engelbrecht, B.M.J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 2011, 103, 297–315. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Dunbabin, V.; Diggle, A.; Rengel, Z. Is there an optimal root architecture for nitrate capture in leaching environments? Plant Cell Environ. 2003, 26, 835–844. [Google Scholar] [CrossRef]
- Ehdaie, B.; Merhaut, D.J.; Ahmadian, S.; Hoops, A.C.; Khuong, T.; Layne, A.P.; Waines, J.G. Root System Size Influences Water-Nutrient Uptake and Nitrate Leaching Potential in Wheat. J. Agron. Crop Sci. 2010, 196, 455–466. [Google Scholar] [CrossRef]
- Abdala, D.B.; Ghosh, A.K.; da Silva, I.R.; de Novais, R.F.; Alvarez Venegas, V.H. Phosphorus saturation of a tropical soil and related P leaching caused by poultry litter addition. Agric. Ecosyst. Environ. 2012, 162, 15–23. [Google Scholar] [CrossRef]
- Backnäs, S.; Laine-Kaulio, H.; Kløve, B. Phosphorus Forms and Related Soil Chemistry in Preferential Flowpaths and the Soil Matrix of a Forested Podzolic Till Soil Profile. Geoderma 2012, 189–190, 50–64. [Google Scholar] [CrossRef]
- Roy, E.D.; Richards, P.D.; Martinelli, L.A.; Coletta, L.D.; Lins, S.R.M.; Vazquez, F.F.; Willig, E.; Spera, S.A.; VanWey, L.K.; Porder, S. The phosphorus cost of agricultural intensification in the tropics. Nat. Plants 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing soil legacy phosphorus to promote sustainable agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef] [PubMed]
- Pavinato, P.S.; Gotz, L.F.; Teles, A.P.B.; Arruda, B.; Herrera, W.B.; Chadwick, D.R.; Jones, D.L.; Withers, P.J.A. Legacy Soil Phosphorus Bioavailability in Tropical and Temperate Soils: Implications for Sustainable Crop Production. Soil Tillage Res. 2024, 244, 106228. [Google Scholar] [CrossRef]
- Daniels, R.B.; Gamble, E.E.; Holzhey, C.S. Thick Bh Horizons in the North Carolina Coastal Plain: I. Morphology and Relation to Texture and Soil Ground Water. Soil Sci. Soc. Am. J. 1975, 39, 1177–1181. [Google Scholar] [CrossRef]
- Obour, A.K.; Silveira, M.L.; Vendramini, J.M.B.; Jawitz, J.; O’Connor, G.A.; Sollenberger, L.E. A Phosphorus Budget for Bahiagrass Pastures Growing on a Typical Florida Spodosol. Agron. J. 2011, 103, 611–616. [Google Scholar] [CrossRef]
- Woods, W.I.; Lehmann, J.; Rebellato, L.; Steiner, C.; Teixeira, W.G.; WinklerPrins, A. (Eds.) Amazonian Dark Earths: Wim Sombroek’s Vision; Springer: Berlin/Hamburg, Germany, 2009; ISBN 978-1-4020-9030-1. [Google Scholar]
- Zielinski, R.A.; Orem, W.H.; Simmons, K.R.; Bohlen, P.J. Fertilizer-Derived Uranium and Sulfur in Rangeland Soil and Runoff: A Case Study in Central Florida. Water. Air. Soil Pollut. 2006, 176, 163–183. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, X.; Li, J. A 1961–2010 record of fertilizer use, pesticide application and cereal yields: A review. Agron. Sustain. Dev. 2015, 35, 83–93. [Google Scholar] [CrossRef]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef]
- Zhi, R.; Boughton, E.H.; Li, H.; Petticord, D.F.; Saha, A.; Sparks, J.P.; Reddy, K.R.; Qiu, J. Soil legacy phosphorus and loss risk in subtropical grasslands. J. Environ. Manag. 2024, 366, 121656. [Google Scholar] [CrossRef]
- Zhang, X.; Zwiers, F.W.; Hegerl, G.C.; Lambert, F.H.; Gillett, N.P.; Solomon, S.; Stott, P.A.; Nozawa, T. Detection of human influence on twentieth-century precipitation trends. Nature 2007, 448, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2019; Volume 1, pp. 93–174. [Google Scholar]
- IPCC Core Writing Team; Lee, H.; Romero, J. (Eds.) Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/ (accessed on 23 September 2025).
- Lelieveld, J.; Crutzen, P.J. Indirect chemical effects of methane on climate warming. Nature 1992, 355, 339–342. [Google Scholar] [CrossRef]
- Zhang, Z.; Zimmermann, N.E.; Stenke, A.; Li, X.; Hodson, E.L.; Zhu, G.; Huang, C.; Poulter, B. Emerging role of wetland methane emissions in driving 21st century climate change. Proc. Natl. Acad. Sci. USA 2017, 114, 9647–9652. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.D.; Gomez-Casanovas, N.; Walter, M.T.; Boughton, E.H.; Bernacchi, C.J.; DeLucia, E.H.; Groffman, P.M.; Keel, E.W.; Sparks, J.P. Influence of transient flooding on methane fluxes from subtropical pastures. J. Geophys. Res. Biogeosci. 2016, 121, 965–977. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F. Human-Induced Arctic Moistening. Science 2008, 320, 518–520. [Google Scholar] [CrossRef]
- Grand, S.; Lavkulich, L.M. Effects of Forest Harvest on Soil Carbon and Related Variables in Canadian Spodosols. Soil Sci. Soc. Am. J. 2012, 76, 1816–1827. [Google Scholar] [CrossRef]
- Stone, E.L.; Harris, W.G.; Brown, R.B.; Kuehl, R.J. Carbon Storage in Florida Spodosols. Soil Sci. Soc. Am. J. 1993, 57, 179–182. [Google Scholar] [CrossRef]
- Bernal, B.; Megonigal, J.P.; Mozdzer, T.J. An Invasive Wetland Grass Primes Deep Soil Carbon Pools. Glob. Change Biol. 2017, 23, 2104–2116. [Google Scholar] [CrossRef]
- Yavitt, J.B.; Fahey, T.J.; Simmons, J.A. Methane and Carbon Dioxide Dynamics in a Northern Hardwood Ecosystem. Soil Sci. Soc. Am. J. 1995, 59, 796–804. [Google Scholar] [CrossRef]
- Christiansen, J.R.; Romero, A.J.B.; Jørgensen, N.O.G.; Jørgensen, C.J.; Berg, L.K.; Elberling, B. Methane Fluxes and the Functional Groups of Methanotrophs and Methanogens in a Young Arctic Landscape on Disko Island, West Greenland. Biogeochemistry 2015, 122, 15–33. [Google Scholar] [CrossRef]
- Lee, F.Y.; Yuan, T.L.; Carlisle, V.W. Nature of Cementing Materials in Ortstein Horizons of Selected Florida Spodosols: II. Soil Properties and Chemical Form(s) of Aluminum. Soil Sci. Soc. Am. J. 1988, 52, 1796–1801. [Google Scholar] [CrossRef]
- Dai, K.H.; David, M.B.; Vance, G.F. Characterization of solid and dissolved carbon in a spruce-fir Spodosol. Biogeochem. 1996, 35, 339–365. [Google Scholar] [CrossRef]
- Bernal, B.; McKinley, D.C.; Hungate, B.A.; White, P.M.; Mozdzer, T.J.; Megonigal, J.P. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biol. Biochem. 2016, 98, 85–94. [Google Scholar] [CrossRef]
- Kludze, H.K.; DeLaune, R.D.; Patrick, W.H. Aerenchyma Formation and Methane and Oxygen Exchange in Rice. Soil Sci. Soc. Am. J. 1993, 57, 386–391. [Google Scholar] [CrossRef]
- Hoffland, E.; Findenegg, G.R.; Nelemans, J.A. Solubilization of rock phosphate by rape. Plant Soil. 1989, 113, 161–165. [Google Scholar] [CrossRef]
- Lu, Y.; Wassmann, R.; Neue, H.U.; Huang, C. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochem. 1999, 47, 203–218. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petticord, D.F.; Uveges, B.T.; Boughton, E.H.; Strahm, B.D.; Sparks, J.P. Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils. Soil Syst. 2025, 9, 115. https://doi.org/10.3390/soilsystems9040115
Petticord DF, Uveges BT, Boughton EH, Strahm BD, Sparks JP. Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils. Soil Systems. 2025; 9(4):115. https://doi.org/10.3390/soilsystems9040115
Chicago/Turabian StylePetticord, Daniel F., Benjamin T. Uveges, Elizabeth H. Boughton, Brian D. Strahm, and Jed P. Sparks. 2025. "Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils" Soil Systems 9, no. 4: 115. https://doi.org/10.3390/soilsystems9040115
APA StylePetticord, D. F., Uveges, B. T., Boughton, E. H., Strahm, B. D., & Sparks, J. P. (2025). Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils. Soil Systems, 9(4), 115. https://doi.org/10.3390/soilsystems9040115

