remotesensing-logo

Journal Browser

Journal Browser

Application of Remote Sensing to Flood and Drought Analysis, Monitoring and Risk Management

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Environmental Remote Sensing".

Deadline for manuscript submissions: 15 October 2025 | Viewed by 7332

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Environmental Sciences (ICAM), University of Castilla-La Mancha (UCLM), 45071 Toledo, Spain
Interests: precipitation science; remote sensing of precipitation; extreme precipitation events
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

Floods and droughts are two of the most devastating natural hazards affecting populations, property and infrastructure. The World Bank estimates that at least 1.65 billion people have been affected by floods and 1.43 billion by droughts in the last two decades. Economic losses and damages are also significant, averaging USD 178 billion per year. Climate change is expected to increase the frequency and intensity of these events, making it more important than ever to develop effective strategies for their monitoring and management.

Remote sensing (RS) has become an essential tool for assessing these hydro-climatic risks, providing timely and accurate information on their extent, severity, and impact over large areas and at regular intervals. This information can be used to support a variety of activities, including (1) climate monitoring; (2) early warning systems; (3) emergency response; (4) recovery efforts; and (5) risk assessment and management.

This Special Issue welcomes papers that deal primarily with RS applied to hydro-climate risks, but also use modeling and ground observations for illustrative purposes (e.g., validation). Manuscripts on applications of RS to the study of single events and regional analysis will also be welcome. Case studies and papers on early warning, monitoring, and disaster management are also welcome.

The scope of this Special Issue is very broad, and there are many other topics that could be relevant to this SI, including insurance, agriculture, infrastructure, and human health.

Dr. Andrés Navarro
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • precipitation
  • floods
  • droughts
  • extreme precipitation events
  • natural hazards
  • hydrology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7420 KiB  
Article
Study on the Spatial Distribution Patterns and Driving Forces of Rainstorm-Induced Flash Flood in the Yarlung Tsangpo River Basin
by Fei He, Chaolei Zheng, Xingguo Mo, Zhonggen Wang and Suxia Liu
Remote Sens. 2025, 17(8), 1393; https://doi.org/10.3390/rs17081393 - 14 Apr 2025
Viewed by 202
Abstract
Flash floods, typically triggered by natural events such as heavy rainfall, snowmelt, and dam failures, are characterized by abrupt onset, destructive power, unpredictability, and challenges in mitigation. This study investigates the spatial distribution patterns and driving mechanisms of rainstorm-induced flash flood disasters in [...] Read more.
Flash floods, typically triggered by natural events such as heavy rainfall, snowmelt, and dam failures, are characterized by abrupt onset, destructive power, unpredictability, and challenges in mitigation. This study investigates the spatial distribution patterns and driving mechanisms of rainstorm-induced flash flood disasters in the Yarlung Tsangpo River Basin (YTRB) by integrating topography, hydrometeorology, human activity data, and historical disaster records. Through a multi-method spatial analysis framework—including kernel density estimation, standard deviation ellipse, spatial autocorrelation (Moran’s I and Getis–Ord Gi*), and the optimal parameter geographic detector (OPGD) model (integrating univariate analysis and interaction detection)—we reveal multiscale disaster dynamics across county, township, and small catchment levels. Key findings indicate that finer spatial resolution (e.g., small catchment scale) enhances precision when identifying high-risk zones. Temporally, the number of rainstorm-induced flash floods increased significantly and disaster-affected areas expanded significantly from the 1980s to the 2010s, with a peak spatial dispersion observed during 2010–2019, reflecting a westward shift in disaster distribution. Spatial aggregation of flash floods persisted throughout the study period, concentrated in the central basin. Village density (TD) was identified as the predominant human activity factor, exhibiting nonlinear amplification through interactions with short-duration heavy rainfall (particularly 3 h [P3] and 6 h [P6] maximum precipitations) and GDP. These precipitation durations demonstrated compounding risk effects, where sustained rainfall intensity progressively heightened disaster potential. Topographic and ecological interactions, particularly between elevation (DEM) and vegetation type (VT), further modulate disaster intensity. These findings provide critical insights for risk zonation and targeted prevention strategies in high-altitude river basins. Full article
Show Figures

Figure 1

31 pages, 21480 KiB  
Article
SSegRef2Surf—Near Real-Time Photogrammetric Flood Monitoring and Refinement of Classified Water Surfaces
by Michael Kögel, Lilly Feile, Fabian Möldner and Dirk Carstensen
Remote Sens. 2025, 17(8), 1351; https://doi.org/10.3390/rs17081351 - 10 Apr 2025
Viewed by 277
Abstract
Effective response to flood events requires high-resolution, frequently updated data on flooded areas for comprehensive flood risk assessments. Unmanned aerial vehicles (UAVs) equipped with conventional camera systems and classification based on orthophotos from photogrammetric postprocessing and artificial intelligence are widely used to detect [...] Read more.
Effective response to flood events requires high-resolution, frequently updated data on flooded areas for comprehensive flood risk assessments. Unmanned aerial vehicles (UAVs) equipped with conventional camera systems and classification based on orthophotos from photogrammetric postprocessing and artificial intelligence are widely used to detect flooded areas. However, these methods often involve time-intensive pre- and postprocessing steps and fail to incorporate geometric factors such as elevation data and water depths. This study introduces SSegRef2Surf, a novel tool that integrates classified flood raster data with terrain information. SSegRef2Surf refines and optimizes coarse raster classifications by filling shadowed areas and correcting misclassified regions. This tool reduces data requirements for AI training and minimizes postprocessing time, enabling near real-time flood monitoring. All processes necessary for SSegRef2Surf were optimized through sensitivity and accuracy analyses to reduce postprocessing duration to a minimum. A comparison of the SSegRef2Surf results with two-dimensional (2D) numerical model results for a flood event revealed discrepancies in the 2D model, caused by inaccuracies in the underlying terrain data. This comparison showed that 30% of the flooded areas identified in the 2D numerical results were incorrect, while missing areas (11%) were added. This highlights the significant potential of SSegRef2Surf for near real-time flood monitoring and traceability of flood events, as combining UAVs’ high-frequency surveying capabilities with SSegRef2Surf allows for more effective validation and optimization of 2D models. Full article
Show Figures

Figure 1

29 pages, 13136 KiB  
Article
Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco
by Imane Serbouti, Jérôme Chenal, Biswajeet Pradhan, El Bachir Diop, Rida Azmi, Seyid Abdellahi Ebnou Abdem, Meriem Adraoui, Mohammed Hlal and Mariem Bounabi
Remote Sens. 2024, 16(18), 3398; https://doi.org/10.3390/rs16183398 - 12 Sep 2024
Cited by 1 | Viewed by 1863
Abstract
Drought monitoring is a critical environmental challenge, particularly in regions where irrigated agricultural intensification and urban expansion pressure water resources. This study assesses the impact of these activities on drought dynamics in Morocco’s Oum Er-Rbia (OER) watershed from 2002 to 2022, using the [...] Read more.
Drought monitoring is a critical environmental challenge, particularly in regions where irrigated agricultural intensification and urban expansion pressure water resources. This study assesses the impact of these activities on drought dynamics in Morocco’s Oum Er-Rbia (OER) watershed from 2002 to 2022, using the newly developed Watershed Integrated Multi-Drought Index (WIMDI), through Google Earth Engine (GEE). WIMDI integrates several drought indices, including SMCI, ESI, VCI, TVDI, SWI, PCI, and SVI, via a localized weighted averaging model (LOWA). Statistical validation against various drought-type indices including SPI, SDI, SEDI, and SMCI showed WIMDI’s strong correlations (r-values up to 0.805) and lower RMSE, indicating superior accuracy. Spatiotemporal validation against aggregated drought indices such as VHI, VDSI, and SDCI, along with time-series analysis, confirmed WIMDI’s robustness in capturing drought variability across the OER watershed. These results highlight WIMDI’s potential as a reliable tool for effective drought monitoring and management across diverse ecosystems and climates. Full article
Show Figures

Figure 1

21 pages, 10773 KiB  
Article
A Synthetic Aperture Radar-Based Robust Satellite Technique (RST) for Timely Mapping of Floods
by Meriam Lahsaini, Felice Albano, Raffaele Albano, Arianna Mazzariello and Teodosio Lacava
Remote Sens. 2024, 16(12), 2193; https://doi.org/10.3390/rs16122193 - 17 Jun 2024
Cited by 4 | Viewed by 1963
Abstract
Satellite data have been widely utilized for flood detection and mapping tasks, and in recent years, there has been a growing interest in using Synthetic Aperture Radar (SAR) data due to the increased availability of recent missions with enhanced temporal resolution. This capability, [...] Read more.
Satellite data have been widely utilized for flood detection and mapping tasks, and in recent years, there has been a growing interest in using Synthetic Aperture Radar (SAR) data due to the increased availability of recent missions with enhanced temporal resolution. This capability, when combined with the inherent advantages of SAR technology over optical sensors, such as spatial resolution and independence from weather conditions, allows for timely and accurate information on flood event dynamics. In this study, we present an innovative automated approach, SAR-RST-FLOOD, for mapping flooded areas using SAR data. Based on a multi-temporal analysis of Sentinel 1 data, such an approach would allow for robust and automatic identification of flooded areas. To assess its reliability and accuracy, we analyzed five case studies in areas where floods caused significant damage. Performance metrics, such as overall (OA), user (UA), and producer (PA) accuracy, as well as the Kappa index (K), were used to evaluate the methodology by considering several reference flood maps. The results demonstrate a user accuracy exceeding 0.78 for each test map when compared to the observed flood data. Additionally, the overall accuracy values surpassed 0.96, and the kappa index values exceeded 0.78 when compared to the mapping processes from observed data or other reference datasets from the Copernicus Emergency Management System. Considering these results and the fact that the proposed approach has been implemented within the Google Earth Engine framework, its potential for global-scale applications is evident. Full article
Show Figures

Figure 1

27 pages, 6482 KiB  
Article
Response of Ecosystem Carbon–Water Fluxes to Extreme Drought in West Asia
by Karam Alsafadi, Bashar Bashir, Safwan Mohammed, Hazem Ghassan Abdo, Ali Mokhtar, Abdullah Alsalman and Wenzhi Cao
Remote Sens. 2024, 16(7), 1179; https://doi.org/10.3390/rs16071179 - 28 Mar 2024
Cited by 4 | Viewed by 2066
Abstract
Global warming has resulted in increases in the intensity, frequency, and duration of drought in most land areas at the regional and global scales. Nevertheless, comprehensive understanding of how water use efficiency (WUE), gross primary production (GPP), and actual evapotranspiration (AET)-induced water losses [...] Read more.
Global warming has resulted in increases in the intensity, frequency, and duration of drought in most land areas at the regional and global scales. Nevertheless, comprehensive understanding of how water use efficiency (WUE), gross primary production (GPP), and actual evapotranspiration (AET)-induced water losses respond to exceptional drought and whether the responses are influenced by drought severity (DS) is still limited. Herein, we assess the fluctuation in the standardized precipitation evapotranspiration index (SPEI) over the Middle East from 1982 to 2017 to detect the drought events and further examine standardized anomalies of GPP, WUE, and AET responses to multiyear exceptional droughts, which are separated into five groups designed to characterize the severity of extreme drought. The intensification of the five drought events (based on its DS) increased the WUE, decreased the GPP and AET from D5 to D1, where both the positive and negative variance among the DS group was statistically significant. The results showed that the positive values of standardized WUE with the corresponding values of the negative GPP and AET were dominant (44.3% of the study area), where the AET values decreased more than the GPP, and the WUE fluctuation in this region is mostly controlled by physical processes, i.e., evaporation. Drought’s consequences on ecosystem carbon-water interactions ranged significantly among eco-system types due to the unique hydrothermal conditions of each biome. Our study indicates that forthcoming droughts, along with heightened climate variability, pose increased risks to semi-arid and sub-humid ecosystems, potentially leading to biome restructuring, starting with low-productivity, water-sensitive grasslands. Our assessment of WUE enhances understanding of water-carbon cycle linkages and aids in projecting ecosystem responses to climate change. Full article
Show Figures

Figure 1

Back to TopTop