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Abstract: Global warming has resulted in increases in the intensity, frequency, and duration of drought
in most land areas at the regional and global scales. Nevertheless, comprehensive understanding of
how water use efficiency (WUE), gross primary production (GPP), and actual evapotranspiration
(AET)-induced water losses respond to exceptional drought and whether the responses are influenced
by drought severity (DS) is still limited. Herein, we assess the fluctuation in the standardized
precipitation evapotranspiration index (SPEI) over the Middle East from 1982 to 2017 to detect the
drought events and further examine standardized anomalies of GPP, WUE, and AET responses
to multiyear exceptional droughts, which are separated into five groups designed to characterize
the severity of extreme drought. The intensification of the five drought events (based on its DS)
increased the WUE, decreased the GPP and AET from D5 to D1, where both the positive and negative
variance among the DS group was statistically significant. The results showed that the positive
values of standardized WUE with the corresponding values of the negative GPP and AET were
dominant (44.3% of the study area), where the AET values decreased more than the GPP, and the
WUE fluctuation in this region is mostly controlled by physical processes, i.e., evaporation. Drought’s
consequences on ecosystem carbon-water interactions ranged significantly among eco-system types
due to the unique hydrothermal conditions of each biome. Our study indicates that forthcoming
droughts, along with heightened climate variability, pose increased risks to semi-arid and sub-humid
ecosystems, potentially leading to biome restructuring, starting with low-productivity, water-sensitive
grasslands. Our assessment of WUE enhances understanding of water-carbon cycle linkages and
aids in projecting ecosystem responses to climate change.

Keywords: water use efficiency; drought severity; detrending analysis; hydroclimatic processes;
gross primary production; middle east

1. Introduction

Since the preindustrial period, the average global temperature has risen by approx-
imately 1.09 ◦C (0.95 to 1.20), with an even more remarkable increase of about 1.59 ◦C
(1.34 to 1.83) in land surface temperature [1]. Increasing temperatures worldwide lead to
higher evaporative demand, which can cause drought even without significant changes in
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precipitation [2]. Furthermore, the frequency and intensity of droughts are dramatically
increasing due to global warming [3]. Extreme drought events adversely affect water
resources, leading to excessive evapotranspiration and moisture deficiency [4–6]. Several
studies have shown that drought can result in socioeconomic losses, reduced agricultural
productivity, and ecosystem degradation [7–10].

Regionally, the temperature rise has had catastrophic spatial consequences in the
Middle East [11,12], leading to increased evaporation demand, changes in precipitation
patterns, and, consequently, intensifying drought and impacting snowpack and mountain
glacier melt [13]. Moreover, droughts significantly affect terrestrial ecosystems, economies,
and societies in the Middle East [14,15], including food security [16], hydrological pro-
cesses [17], vegetation growth, and the extinction of plant species [18]. Droughts in the
Middle East have also led to a sharp decrease in carbon fluxes [19,20] and agricultural crop
yields [21]. Ecological programs and efforts have been implemented to mitigate ecosystem
degradation and increase vegetation coverage in drought-prone areas [22,23], but extreme
drought reduces the effectiveness of such projects by restricting the dynamic growth of
vegetation ecosystems [24].

The changes induced by climate change and drought are expected to have influenced
the ecological dynamics of terrestrial ecosystems and vegetation communities. These
alterations may impact the coupling relationship between terrestrial carbon and water
fluxes. Gross primary productivity (GPP) represents the highest flux of carbon into ter-
restrial biomass from the atmosphere and plays a critical role in the global carbon cycle.
Climatic conditions exert a more substantial influence on GPP dynamics than human activ-
ities [25,26]. Drought events, such as the European drought spell in 2003 and the northwest
USA drought of 2000–2004, have led to declines in GPP and carbon sink capacity [27,28].
Conversely, water use efficiency (WUE), an integrated physiological indicator measuring
the tradeoff between carbon gain and water loss during photosynthesis [29], offers in-
sights into ecosystem adaptability to varying climate conditions [30–34]. Hydroclimatic
conditions significantly influence WUE spatiotemporal variation by affecting evapora-
tion, transpiration, and carbon uptake in ecosystems [35–37]. However, the response of
WUE to drought indices varies, with different indices showing divergent responses in
ecosystem productivity [38–41]. In recent years, numerous studies have investigated the
effects of drought on the coupling between carbon and water cycles [42–48]. However,
the associations between ecosystem WUE and drought exhibit considerable variability
across various vegetation types and climatic conditions, warranting further research for a
comprehensive understanding.

The West Asia region, classified as a transitional climate pattern between hot–dry and
cold–humid climates, is highly susceptible to drought events due to water shortages [49,50].
With limited agreement on GPP, actual evapotranspiration (AET), and WUE responses to
extreme droughts in different climates and vegetation types, there is a need to understand
the impacts of drought intensification in the region. This study investigates the responses
of AET, GPP, and WUE to drought events in the northern part of West Asia. The research
aims to answer critical questions, including differences in ecosystem responses to extreme
droughts among climate patterns and biomes, variation in drought effects on AET, GPP,
and WUE with different drought severities, and the most effective factor controlling WUE
during severe droughts. Herein, we examine how AET, GPP, and WUE responded to
drought events over the northern part of West Asia. We strive to treat the following
questions: (a) How do ecosystems’ AET, GPP, and WUE responses to extreme drought
differ among climate patterns and biomes? (b) Do drought effects on ecosystems’ AET,
GPP, and WUE vary with different severity? (c) If so, which of the AET and GPP is most
effective at controlling WUE during severe drought? Understanding these contrasting
responses is crucial for predicting and managing the impacts of acute drought stress
on terrestrial ecosystems in the face of climate change. The findings from this study will
provide valuable insights for policymakers and governments to develop effective ecosystem
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and water resource management strategies, addressing the challenges posed by drought
intensification across West Asia.

2. Materials and Methods
2.1. Study Area

The study area encompasses the northern part of the Middle East, situated between
the western portion of Asia and the northeast boundary of Africa, within latitudes 25◦06′N
and 42◦07′N and longitudes 24◦41′E and 63◦17′E (see Figure 1). Specifically, we focused
on seven countries in this region: Iran, Iraq, Jordan, Lebanon, Palestine, Syria, and Turkey.
This area covers approximately 3160.873 thousand km2, accounting for 45.6% of the entire
Middle East. According to the FAO Global Land Cover SHARE dataset [51], one-third of
the region is covered by bare soil lands, while shrubland covers 22.5%. Tree cover and
cropland dominate the western and central parts, representing 9.9% and 20% of the total
area, respectively. Forested areas are mainly found in northern and southern Turkey and
the northern and western regions of Iran (see Figure 1b).
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The climate of the Middle East falls into a transitional category, with characteristics
of hot–dry climates in the Arabian Peninsula and temperate-humid or cold–humid cli-
mates in Eastern Europe and Eurasia. The western part experiences high seasonality in
the rainfall regime. Rainy winters occur predominantly between November and April
along the Mediterranean Sea and in western Iran, influenced by Mediterranean cyclones.
The northern region, on the other hand, exhibits a slight seasonal pattern, with rainfall
distributed throughout the year and the highest precipitation occurring during the spring
season. Based on the Köppen–Geiger climate classification [52], the area is grouped into
three main categories (B, C, and D) and 14 subtypes. Group B includes arid (desert) and
semi-arid (steppe) climates, represented by BS and BW climates in the south, eastern side
of Iran, northern Iran, and central Turkey. Group C comprises Mediterranean temperate
climate types (Cs, Cf) along the Mediterranean coast in the Aegean Sea, near the Black Sea,
the Levant, and northern Iraq, encompassing 15.4% of the area. The remaining region is
characterized by cold climate patterns (Ds, Df) found in the eastern Anatolian plateau, the
Taurus Mountains in Turkey, and the Zagros Mountains in western Iran (see Figure 1a).

2.2. Data Collection
2.2.1. Remote Sensing-Based Gridded Dataset of AET and GPP

The Global Land Evaporation Amsterdam Model (GLEAM) dataset v3.8a was used
for 36 years from 1982 to 2017 [53,54]. The GLEAM dataset provides various components
of terrestrial evapotranspiration estimates based on remotely sensed observations, such
as transpiration, open-water evaporation, bare land evaporation, sublimation, and inter-
ception losses. The WUE was calculated using annual actual evaporation (AET) estimates
(mm yr−1). The values of AET were lower than the potential evaporation (PET) values
calculated through the Priestley–Taylor formulation [53]. The PET values were converted
into AET based on a multiplicative stress factor S (–) that ranged from 1 to 0. The AET esti-
mates from the GLEAM algorithm have been validated in recent studies against FLUXNET
data—eddy covariance towers worldwide. Recently, Martens et al. [54] reported an average
of 0.81–0.86 correlation based on 91 FLUXNET stations. More recently, Martens et al. [55]
documented an average correlation ranging between 0.68 and 0.94 based on 5 FLUXNET
stations. The GLEAM AET dataset performs better than other algorithms’ evaporation
datasets in several regions and has demonstrated better agreement with the estimates of
the Budyko, LSA-SAF, and Makkink datasets [55–57]. The GLEAM products are available
within the GLEAM platform at daily, monthly, and yearly timescales and at 0.25◦ arc degree
spatial resolution (NETCDF files) (www.gleam.eun (accessed on 1 March 2023)).

The study utilized GPP data spanning 36 years from 1982 to 2017. GPP estimates
were derived using the Eddy Covariance-Light Use Efficiency (EC-LUE) model [58], which
integrates several key environmental variables, including photosynthetically active radia-
tion (PAR), air temperature, the leaf area index (LAI), CO2 concentrations, radiation, and
vapor pressure deficit (VPD) [59]. Previous studies have demonstrated the EC-LUE model’s
ability to accurately capture GPP variability across various ecosystems and agricultural
areas [60–63]. Cross-validation has further shown the model’s capability to spatially and
temporally reproduce GPP variability across different ecosystem types, surpassing alterna-
tive methods and algorithms [64]. Validation against FLUXNET 2015 tower data has con-
firmed the model’s reliability, with an average R2 of 0.65 and substantial capture of spatial
variability [59]. The latest version of the annual EC-LUE GPP dataset is globally available
at a spatial resolution of 0.05 arc degree (https://doi.org/10.6084/m9.figshare.8942336.v3
(accessed on 1 March 2023)). Subsequently, the data were resampled to a spatial resolu-
tion of 0.25◦ arc degree using the nearest neighbor method to match the resolution of the
GLEAM-AET dataset.

2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI) Data

The SPEIbase dataset v2.9 for 36 years from 1982 to 2017 was used. The SPEIbase
dataset (v2.6) provides various SPEI timescales [65–67], is based on monthly precipitation
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and FAO-56 Penman–Monteith’s potential evapotranspiration from the CRU TS dataset of
the University of East Anglia [68]. We used the SPEI-6 timescale to calculate the drought
severity (DS) for each year in order to identify extreme and severe droughts. The SPEIbase
products are available within the Global SPEI database platform at monthly timescales and
at 0.5◦ arc-degree spatial resolution (NETCDF files) (https://spei.csic.es/database.html
(accessed on 1 March 2023)). In the final step, these data were resampled to 0.25 arc degree
spatial resolution using the nearest neighbor method to correspond with the GLEAM-AET
and GLASS-GPP datasets.

2.2.3. Eddy Covariance (EC) Tower-Driven GPP Data

To evaluate the response of AET, WUE, and GPP during an extreme drought event in
the study area (e.g., the 2008–2009 drought event), we analyzed daily GPP data collected
from the eddy covariance (EC) tower spanning 2001–2009 in the Yatir Forest, a semi-arid
shrubland in the Eastern Mediterranean. The EC tower is located in the central part of
the Yatir Forest, with coordinates of 35◦ 03′ 07.01′′E longitude, 31◦ 20′ 42.25′′N latitude,
and an elevation of 658 m above sea level (m.a.s.l.). The EC method, widely recognized
for its utility in computing carbon flux at the ecosystem level [69], has been consistently
employed in the Yatir Forest since 2000. This methodology adheres to European standards
and contributes to the EuroFlux and FLUXNET communities [70–72].

For this study, we exclusively relied on GPP data from the Yatir Forest, accessi-
ble through the EuroFlux database (http://www.europe-fluxdata.eu/home (accessed on
24 September 2023)). The dataset covers the extensive timeframe of 2001–2020; however,
our analysis specifically focused on the daily data from 2001 to 2009. To comprehensively
examine the impact of the severe drought event, we integrated it with daily data of AET
obtained from GLEAM, version 3.8a. Our preprocessing involved accumulating data over
6-month windows (180 days) using a daily-scale moving approach. This facilitated a com-
parative analysis between the SPEI-6 timescale and GPP, WUE as well as AET. Subsequently,
we calculated the average of the moved-accumulated 6-month values for each day of the
year (DoY) over the 9-year period. This allowed us to derive anomalies (%) for AET, GPP,
and WUE in comparison to the long-term averages (see Appendix A for more details). The
focus on the critical period of the severe drought event enhances our understanding of the
nuanced responses of WUE and GPP to extreme water stress conditions.

2.3. Data Analysis
2.3.1. Trending, Detrending Analysis and Standardized AET/GPP/WUE Residual Series

Ecosystem WUE is defined and calculated as the ratio of GPP (i.e., carbon gain of
g C m−2) to AET (i.e., water loss mm), WUE = GPP

AET [73–75]. Herein, we assessed long-term
changes in GPP and WUE for spanning period from 1987 to 2017. The magnitude of these
changes was quantified using Theil-Sen’s slope estimator [76,77], while the statistical sig-
nificance was evaluated utilizing the nonparametric Mann–Kendall (M-K) statistics [78–80].
It is noteworthy that human activities have contributed to vegetation dynamics (land-use
and land-cover change, land reclamation, overgrazing, afforestation, deforestation, and
other anthropogenic factors). As a result, it is hard to distinguish the complex interactions
between vegetation dynamics and influence factors (anthropogenic factors and climate
variables) [81–83]. There are widely used methods to compute detrending analysis that
can be classified into three categories: the regression model-based method, the biophysical
model-based method, and the residual trend-based method for examining climate-human
interactions in vegetation dynamics [84]. Based on the residual trend, the human activities’
effects are removed to detect the climate elements’ impacts (correlations) independently,
calculated by the residuals of the vegetation trend models by computing the detrended anal-
ysis [37,85,86]. Since the GPP series is affected by many variables besides climate factors,
often the annual GPP series has a positive trend, specifically in agricultural systems and
forests. Thus, the detrending method will help to remove the spurious correlations caused
by the human activity-induced long-term trend and accurately detect the correlations
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between nonstationary time series or the correlations between the interannual variations of
these data [85,87]. In this study, the standardized AET, GPP and WUE series (sAET, sGPP
and sWUE), i.e., the standardized detrended anomalies, were obtained from the mean (µ)
and standard deviation (σ) value of deference between the GPP value and the detrended
value for each year separately, during the period 1982–2017 at the pixel scale. The sGPP
and sWUE were calculated as follows:

sAET, sGPP, sWUE =
y(T)i − µ

σ
(1)

yT
i = y0

i − y(τ)i (2)

where y0
i is the observed value of AET/GPP/WUE for i year, and y(τ)i is the value of the

trended AET/GPP/WUE in a separate year. The detrended sAET/sGPP/sWUE series
during the period 1982–2017 was calculated for each pixel using the linear regression
analysis, ordinary least square method (OLS), which was calculated as the following:

y(τ)i = ∂ + xiβ (3)

To fit the value of the detrended AET/GPP/WUE in a separate year, we assumed the
temporal evolution (xi) from 1982 to 2017 is an independent variable, and the AET/GPP/WUE
series data are dependent variables (y0):

β =
n × ∑n

i=1 xi × y0
i − ∑n

i=1 xi ∑n
i y0

i

n × ∑n
i=1 x2

i − (∑n
i=1 xi)

2 (4)

∂ = y0
n − βxn (5)

where n is the length of the studied period (n = 36), while β is the slope ratio AET/GPP/WUE
(yearly) acquired by the OLS method. β < 0 indicates that the AET/GPP/WUE tended to
decrease over the studied years and vice versa.

2.3.2. Quantification of AET, GPP, and WUE Responses to SPEI and Drought Intensification

Pearson’s correlation coefficient was used in order to assess the response of the
sAET/sGPP/sWUE and the lagging effect of the monthly SPEI at 6 timescales for the
studied time series. The correlations were applied at both the regional and pixel scales
(i.e., more than 4700 pixels) and for each land cover type and climate pattern. A significance
test of the correlation coefficient was applied using the F-test at p < 0.05 (i.e., 95% confidence
interval), which indicates the relationship between the sAET/sGPP/sWUE and the lag
effect of the monthly SPEI time series is statistically significant.

Numerous methods have been applied for drought identification and characteris-
tics [88,89], including empirical orthogonal functions, run theory, and the threshold level
method [90]. In this study, we determined the drought year(s) based on a threshold value
of SPEI < −1 (i.e., all negative values less than −1 were considered). The effect is most
noticeable as it leads to the identification of extreme and severe droughts. In this study,
drought intensification within a year was considered DS, and it was analyzed for specific
drought years (Figure 2). Therefore, the DS of a drought year Di is the absolute sum of
SPEI values less than −1 during the 12 months. We considered the first 5 worst drought
years (D1, D2, D3, D4, and D5) and ranked them by intensity from the highest to lowest
severity based on the DS:

DS =

∣∣∣∣∣DD

∑
i=1

SPEIi

∣∣∣∣∣ (6)
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Figure 2. A scheme to illustrate the DS across time and extract multiyear drought events.

To calculate DS for a specific year, we first identified all the negative SPEI values
(SPEI < −1) for that year. Next, we summed up the absolute values of these negative SPEI
values for the 12-month period (DD, drought duration), representing the total drought
intensity for that year. The result is the DS value for that specific year, and we ranked the
years from highest to lowest DS values to obtain D1 to D5 categories, with D1 being the most
severe drought event. It is important to note that DS is calculated independently for each
year, regardless of whether it is part of a longer-term drought event. This approach allows
us to assess the individual impacts of drought intensification on ecosystem carbon-water
fluxes for each year without assuming any specific temporal pattern of drought occurrence.

3. Results
3.1. Spatial–Temporal Variations of Ecosystems’ AET, GPP, and WUE

The spatial distribution of AET values varied significantly in the terrestrial ecosystems
of the Middle East between 1982 and 2017 (Figure 3a). This variance is explained by
several climatic and hydrological conditioning factors. In this regard, the regional spatial
annual mean of AET values was 220 mm yr−1. In general, the spatial distribution of the
values of AET reached its highest values (<400 mm yr−1) in the north and northwest of
the area under study, especially in northern Iran and Turkey and some western parts of
Syria and Lebanon. Moreover, these areas are subject to the Mediterranean climate in a
mountainous environment, implying a high-intensity orographic rainfall pattern (annual
precipitation < 1000 mm), thereby implying high water abundance, high humidity, and
relatively short drought episodes. The AET value was the lowest (<400 mm yr−1) in the
central, south, and east of the area under study, especially in most of the territories in Iran,
Iraq, Syria, Jordan, and Palestine.

The regional annual mean of GPP values was 277 g C m2 yr−1. Most of the territories
in central Iran, Iraq, Syria, and Jordan (Figure 3b) recorded the lowest values of GPP
(<400 g C m2 yr−1); these regions showed a negative trend (−0.3 to −5 g C m2 per decade)
in contrast to that in the far northern west Iran, and most of the Turkish and Lebanese
territories have positive significant trends (+15 to +45 g C m2 per decade) (Figure 3d,e).
Referring to the spatial distribution of WUE values, all countries under study were charac-
terized by a noticeable spatial variation in the distribution of WUE values with a multiyear
average of 1.1 g C mm−1 yr−1. For instance, WUE values of <2 g C mm−1 yr−1 dominated
most of the ecosystem territories of the study area (Figure 3c). In marked contrast, the
whole ecosystem territories of Lebanon, western Syria, Palestine, northern Turkey, Iran,
and southern Jordan were subjected to WUE values of >2 g C mm−1 yr−1. Figure A1 in
Appendix A shows the spatial–temporal distribution of the WUE values in detail. WUE
values of <0.2 g C mm−1 yr−1 dominated most of the area under study in 1994, while most
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of the area achieved WUE values of >1 g C mm−1 yr−1 in 1984. It is worth noting that
WUE trends are consistent with those of GPP (Figure 3f,g).
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Figure 3. (a–c) Multiyear average of ecosystems’ AET, GPP, and WUE over Western Asia between
1982 and 2017. (d–g) Temporal trends of annual GPP and WUE (changes per decade and signif-
icant upwards and downwards trends). sP.: significant positive, sN.: significant negative, and
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Figure 4 shows the quantitative variation of the ecosystems’ values of AET, GPP, and
WUE for each land cover type and prevailing climate patterns. TCA cover achieved the
highest values of AET, GPP, and WUE with values of 440 mm yr−1, 791 g C m−2 yr−1,
and 1.82 g C mm−1 yr−1, respectively, while bare soil produced the lowest AET and GPP
values, with 156 mm yr−1 and 87 g C m−2 yr−1, respectively. Sparse vegetation cover,
however, produced the lowest values of WUE (0.78 g C mm−1 yr−1). Regarding the
climatic pattern, the Cfa pattern showed the highest values of AET (628 mm yr−1) and
GPP (1512 g C m−2 yr−1), whilst the Cfb pattern produced the greatest values of WUE
(2.43 g C mm−1 yr−1). In contrast, the BSh climate type produced the lowest WUE with a
value of 0.7 g C mm−1 yr−1.
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Figure 4. Spatial variation of ecosystems’ AET, GPP, and WUE for each land cover type and prevailing
climate patterns over the Middle East between 1982 and 2017.

3.2. In Situ AET, WUE, and GPP Response to Extreme Drought (Semi-Arid Shrubland)

This section of the study focuses on the critical period of the severe drought event
(2008–2009) to enhance our understanding of the nuanced responses of AET, WUE, and GPP
to extreme drought stress conditions using the EC station in the Yatir Forest Ecosystems.
Figure 5 illustrates the anomalies (%) of accumulated AET, GPP, and WUE over 6-month
periods compared to SPEI-6. Notably, anomalies of AET and GPP are positively correlated
(r = 0.84) and show a correlation with SPEI-6, particularly during the 2008–2009 drought
event. During the peak of the drought event, GPP anomalies reached −55%, while AET
anomalies reached 60–70% during both summers of 2008 and 2009. The reduction in AET
during the onset and end of the drought event exceeded GPP reductions, explaining the
positive increases in WUE. It is worth noting that the highest reduction in WUE (−40%)
coincided with the highest reduction in GPP and lower AET anomalies, specifically during
the peak of the drought event.
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Figure 5. Anomalies (%) of accumulated AET, GPP, and WUE over 6-month periods compared to
the long-term averages for each day of the year (DoY) spanning the 9-year period (2001–2009) in the
Yatir Forest, a semi-arid shrubland in the Eastern Mediterranean. The SPEI-6 values correspond to
the same timeframe, with emphasis on the 2008–2009 extreme drought event (shaded area). The red
dashed line in the lower panel represents the threshold level for DS calculation.

3.3. Spatial–Temporal Patterns of Response sAET, sGPP, and sWUE to the SPEI

For evaluating the water loss from the ecosystem under drought disturbances, the
correlation between sAET and the SPEI-6 was calculated, as can be seen in Figure 6a. The
highest significant positive correlation (r > 0.29, p < 0.05) was observed between April and
September (a decrease in the SPEI value corresponds to a decrease in the amount of actual
evaporation), where r ranged between 0.5 and 1 (p < 0.05) and covered the majority of the
study area.

Figure 6b depicts the temporal relationship between sGPP and the SPEI-6 timescale.
The highest positive correlation (red color) was recorded from January to June and domi-
nated in the central part of the study area, especially in January. In contrast, the highest
significant negative values were recorded between August and December, whereas October,
November, and December exhibited the highest negative correlations, which dominated in
the northern part of the study area, including the majority of Turkey and the northwest
part of Iran. However, the positive correlation (r), ranging between 0.3 and 0.5, was more
intense, especially in the central part of the study area. For instance, in January, the majority
of Iraq, the eastern part of Syria, the central part of Turkey, and the western part of Iran
exhibited the highest correlation.
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Figure 6. Correlation between the sGPP, sAET, and sWUE and the monthly SPEI-6 timescale series
(a–c) from 1982 to 2017 (lagging effects). The bold colors of brown, red, and blue denote significant
correlations with a critical value of 0.3 at a 0.05 significance value. Also, the spatial distribution
of maximum correlations (Max. corr., r) (d), and the sWUE/sGPP response pattern to the SPEI-6
timescale series for the studied period (e). sP: significant positive, sN: significant negative, and
ins.: insignificant.

Furthermore, to evaluate the tradeoff between carbon uptake and water loss during
photosynthesis under drought disturbances, the correlation between sWUE and the SPEI-6
was calculated, as can be seen in Figure 6c. The most significant negative correlation
(r < −0.3, p < 0.05) was observed between April and August, especially in the border area
between Jordan, Iraq and Syria, eastern Iran and southern Jordan (April–August), where r
ranged between −0.5 and −1 (p < 0.05).

Furthermore, to highlight the maximum correlations (Max. r) between the values of
sAET, sGPP, and sWUE against the SPEI-6 series as presented in Figure 6d. The results of
the maximum correlations for sAET vs. SPEI-6 showed that the majority of the study area,
greater than (>90%), falls into the “High positive significant response” pattern, while the
highest (Max. r) positive significant response of the sWUE to SPEI-6 was only recorded
in small areas within the study area. In contrast, the majority of the study area showed a
negative significant response (sWUE vs. SPEI-6) (Figure 6d). The central part of Iran, the
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southern part of Jordan, the northwest of Turkey, and the northeastern part of Syria exhib-
ited the lowest significant values (bold blue). On the other hand, the spatial distribution of
the maximum correlations between sGPP and SPEI-6 reveals that most of the study area
has a positive significant response in the southern part of Iran, the eastern part of Syria, the
central part of Turkey, and the northern part of Iraq.

For more insights into the distribution of the highest correlation values across the study
area, the maximum correlations (sAET, sGPP, and sWUE vs. SPEI-6) were categorized based
on land cover (Figure 7a–c) and climate pattern (Figure 7d–f). The dynamic interaction
between sAET, sGPP, and sWUE vs. the SPEI-6 across different land cover types reveals
that the highest positive and negative correlations were captured in shrub-covered areas,
cropland, and bare soil. In terms of climate patterns, the semi-arid (BSh) and temperate (Cfa,
Cfb, and Csa) showed the highest correlation. For sAET’s response to the SPEI-6, the results
reveal that the highest positive correlation was captured in the arid (BWk) and semi-arid
(BSk) regions, followed by temperate climates (Cfb and Csb). These results imply that most
of the study area was prone to the negative impact of climate conditions (i.e., drought),
where the positive response of GPP and the negative response of WUE highlighted the
vulnerability of ecosystems to drought events.
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Figure 7. Maximum average correlations between sAET/sGPP/sWUE and SPEI-6 timescale series
for each land cover (d–f) and climate pattern (a–c).

3.4. Divergent Response of sAET/sGPP/sWUE to Drought (DS)

The analysis of DS across the study area captured five years of DS ranging between D1
(17.5) and D5 (10.2), as shown in Figure 8. The corresponding years to these DS were 1985,
1990, 2000–2005, and 2007–2009. On a temporal scale, the highest DS values were recorded
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first in 2007–2009 and second in 1999–2000, as illustrated in Figure 8 (right panels). These
periods are considered the worst drought events that impacted the study area, highlighting
the rapid succession of drought cycles over the region.
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Figure 8. Boxplot of sAET, sGPP, and WUE values (mean value is denoted by a red dash, the lower
and higher bound of boxes are the 25th percentile, 75th percentile values) during the worst 5 drought
years (D1, D2, D3, D4, and D5) ranked by its intensity from the highest to lowest severity based
on the DS function. The left panels represent the spatial frequency of DS values (pixel number)
in the studied area for the 5 drought years. The right panels refer to the spatial frequency of year
corresponding (pixel number) to each drought year (the total pixels were 4700).

The dynamic response of the ecosystem to DS events was analyzed and presented in
Figure 8. The average sWUE anomalies exhibited a positive response (Increased WUE),
which ranged from +0.725 for D1 to +0.159 for D5. In contrast, DS groups negatively
affected the sGPP and sAET (decreased GPP and AET). The highest negative impact was
obtained in D1 (Avg. = −0.53 for sGPP and −1.5 for sAET), while the correspondence of
the sGPP and sAET during D5 reached −0.23 and −0.65, respectively. The results of the
cumulative probability density (CPD) of the sGPP indicate that 77% and 65% of the study
area had negative values (sGPP < 0) during the drought events of D1 and D5, respectively.
And 35% and 22% of the study area had extreme reductions (sGPP < −1) during the
drought events of D1 and D5, respectively. The CPD of sWUE indicates that 65% and 50%
of the study area had positive values (sWUE > 0) during the drought events of D1 and D5,
respectively, and 36% and 19% of the study area had high increment (sWUE > 1) for D1
and D5 events, respectively (Figure 9).
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Figure 9. Cumulative probability density (CPD) of sGPP/WUE values during the D1 drought year
(brown line for sGPP and pink line for sWUE) and the last rank of the D5 drought year (green line for
sGPP and violet line for sWUE).

3.5. Divergent Response of sAET/sGPP/sWUE to Drought across Different Climate and Biomes

For more insights about the responses of sAET, sGPP, and sWUE to DS, the ecosystem’s
responses were highlighted under different climate groups and land cover types (Figure 10).
The sWUE of bare soil and shrub-covered areas presented the highest positive response
to multiyear DS, where the 5 drought years increased the WUE from D5 to D1 events. On
the other hand, the sGPP of croplands, grassland, and tree-covered areas has clear and
high negative values in the DS group, where D1 has the highest negative values and was
associated with relatively stable and slight positive responses for sWUE among the five
drought years.

DS exhibited divergent impacts across WUE of climate patterns. The WUE of both
BWh and BWk arid recorded the highest positive response to DS years from D1 to D5 where
the drought events increased the WUE from D5 to D1. The sGPP for the same climatic
patterns had a stationary negative variance amongst the DS group. While the sWUE of
temperate and cold climate patterns (Cs and Ds) showed the lowest positive response
against the DS events, the response amongst the group was stable and insignificant. It was
coupled with significant negative variance between the DS group and the sGPP of the same
climate patterns.

Figure 11 illustrates ecosystem WUE response patterns to extreme drought (D1). In
44.3% of the study area, positive sWUE values coincide with negative sGPP and sAET,
suggesting a greater decrease in AET compared to GPP. This WUE pattern is primarily
influenced by physical processes like evaporation and water availability. The second
dominant pattern, covering 29% of the area, exhibits negative sWUE values alongside
negative sGPP and sAET, indicating a more pronounced reduction in GPP compared to AET.
This WUE pattern is largely controlled by biological activities such as carbon assimilation.
he third dominant pattern, accounting for 21.4% of the area, showcases positive sWUE
values alongside positive sGPP and negative sAET. This suggests fluctuations in WUE
influenced by both biological and physical processes, with both GPP and AET co-regulating
the variability.
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Figure 10. Mean and standard deviation (Std.) of sAET, sGPP, and sWUE values (mean value is
denoted by a column, the lower and higher bound of vertical line indicate the Std. of anomalies
values), which were calculated during the first 5 worst drought years (D1, D2, D3, D4, and D5)
ranked by its intensity from the highest to lowest severity, for each land cover type and climate
pattern separately. The header panels represent spatial frequency of DS values across land cover and
climate patterns.
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Figure 11. Intersection map of the sWUE during an extreme drought year and the composite maps
of the sGPP and sAET. In this figure, the symbol “+” represents positive standardized anomalies of
WUE, GPP, and AET, while the symbol “−” represents negative standardized anomalies of WUE,
GPP, and AET during exceptional drought (D1).

4. Discussion
4.1. Spatia-Temporal Variability of Carbon-Water Fluxes in the Study Area

The spatial variability of carbon-water fluxes in the study area has significant impli-
cations for the region’s ecosystems. Existing research in this field highlights a growing
interest in monitoring the consequences of WUE and GPP variations on ecosystems world-
wide [41,43,91–95]. In this study, we conducted a comprehensive analysis of multiyear
averaged WUE and GPP values for the Middle East, revealing substantial spatial hetero-
geneity across seven land cover types and 14 subtypes of climate patterns.

The observed spatial variations in WUE and GPP can be attributed to a combi-
nation of topographic factors, vegetation physiological characteristics, and cultivation
methods [38,39,96,97]. These findings align with previous studies by Sun et al. [98] and
Guo et al. [99], emphasizing the importance of considering these factors in ecosystem
carbon-water flux assessments. Notably, the northern part of the study area, characterized
by temperate climates (Cfa and Cfb) and hosting a variety of deciduous and evergreen
forests, exhibited the highest annual WUE and GPP values. These regions benefit from
relatively abundant water resources and favorable environmental conditions, leading
to enhanced carbon productivity per unit of water consumed. In contrast, the central
region of Iran, eastern Syria, and southern Iraq, which experience arid desert climates
(BW and BS), displayed the lowest annual WUE and GPP values. In these regions, water
scarcity and prolonged drought conditions pose challenges, ultimately leading to reduced
carbon productivity.

While our study sheds light on the spatial variations of WUE and GPP, it is important
to indicate the presence of additional influential factors. The complexity of interactions
between climatic conditions, topography, and vital ecological factors contributes to the
observed spatial heterogeneity of WUE and GPP [100,101].

4.2. GPP, AET, and WUE and Response to the Drought

Drought intensity, frequency, timing, and duration have a significant impact on carbon
and water cycles [46,95]. During extreme drought (D1) events, our study observed negative
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anomalies in ecosystem GPP and varied responses in WUE. Terrestrial ecosystems in the
region were extensively affected by SPEI droughts from 1999 to 2009, with GPP and WUE
anomalies correlated with the SPEI-6 monthly timescale. The regional-scale GPP and WUE
responses during D1 to D5 drought events ranged from slight to high declines and slight
to high increases, respectively. The central part of Iran, under an arid climate pattern,
experienced extreme drought episodes (D1) with a significant increase in WUE.

Hydroclimatic conditions play a crucial role in shaping the spatiotemporal variability
of ecosystem WUE [39,102,103]. The carbon-water cycle exhibits a robust relationship,
where disturbances in solar radiation, temperature, precipitation, and ecosystem dynamics
can influence WUE components such as GPP and AET simultaneously. For instance, un-
der hot temperatures, WUE decreases due to a sharp drop in GPP. Precipitation directly
affects the variability of ecosystem WUE by immediately influencing evapotranspiration
processes and indirectly affecting vegetation carbon uptake through soil moisture regula-
tion [104–107]. On the other hand, VPD has been found to reduce WUE in various forest
types [108–111].

During extreme droughts in most parts of the study area, the WUE increased, highlight-
ing the resilience of ecosystems to rapid soil moisture fluctuations, especially in mountain-
ous regions [43,112]. We observed increased WUE during drought episodes (e.g., 2007–2010)
due to decreased GPP and decreased AET in most areas (AET was significantly more and
faster affected by drought than GPP; see Figure 5). However, in most northern regions,
annual WUE declined due to decreased GPP and decreased AET (Figures 11 and A2). In
regions such as northern Iraq and central parts of Turkey, where WUE decreases during
severe and extreme drought years, GPP is notably more affected by drought than AET.
This leads to diminished WUE, attributed to water and heat stress constraining vegetation
growth [19]. Extreme droughts can exacerbate water deficits beyond the capacity of plants’
self-regulation (stomatal conductance adjustment and transpiration reduction), leading to
vegetation mortality and a broad decline in ecosystem productivity [27,28,95]. Neverthe-
less, in most study areas, ecosystem WUE generally increased under drought stress, as the
decrease in GPP was less than that of ET [39,44,113,114].

4.3. Response of GPP and WUE to Drought across Different Climate and Biomes

The Köppen climate classification and FAO land cover data were employed in our
study to investigate the regional connections between ecosystem-scale sGPP and sWUE and
drought. In arid and seasonally dry regions (classified as BW and BS), we observed only a
minor reduction in sGPP. Additionally, our analysis unveiled distinct responses of WUE to
drought in dry versus semi-arid/sub-humid environments, as depicted in Appendix A,
Figure A2. In arid ecosystems, WUE fluctuations are primarily driven by physical processes
such as evaporation, whereas in semi-arid or sub-humid environments, WUE variability is
predominantly influenced by biological activities such as assimilation [37,95,115].

Our findings align with existing literature emphasizing the regional relationships
between plant abundance and climatic patterns that shape ecosystems [37,96,97]. Moreover,
vegetation systems adapted to arid regions demonstrate greater drought tolerance and
lower sensitivity of GPP [37,97,116]. However, the association between ecosystem WUE
and drought exhibits notable variation across different vegetation types and environmental
contexts. Studies have revealed contrasting responses in various regions. For instance,
in Northeast China and central Inner Mongolia, annual WUE increased during drought
periods, whereas in Central China, it decreased [38]. In the Eurasian temperate grasslands,
located in the central Eurasian continent, drought led to an enhancement of ecosystem
WUE in over 65% of the region [117]. Yang et al. [37] conducted a global synthesis using
two observational WUE datasets, revealing contrasting WUE responses to drought across
ecosystems. They observed that WUE tends to increase with drought in arid ecosystems but
decreases in semi-arid/sub-humid ecosystems, indicating varying sensitivities of ecosystem
processes to changes in hydroclimatic conditions [37].
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Moreover, drought severities exhibited divergent impacts across WUE of climate
patterns and land cover for our study area (see Figure A2). This somewhat aligns with
some studies; for example, Lu and Zhuang [118] found that ecosystem WUE in the United
States tended to increase under moderate drought but decrease under severe drought.
In North China, slight and moderate drought enhanced ecosystem WUE, while severe
and extreme drought resulted in WUE reductions regardless of different hydroclimatic
conditions and biomes [119]. For South China, however, moderate and extreme drought
reduced annual WUE, and severe drought slightly increased annual WUE, suggesting a
‘turning point’ in the WUE-drought relationship [38]. In contrast, positive WUE responses
to severe and extreme drought occurred across land biomes in California [120] and in the
forest ecosystem in Southwest China [121]. Spatially coherent increases in intrinsic WUE
were also observed over the Northern Hemisphere during severe droughts that affected
Europe, Russia, and the United States in 2001–2011 [42].

Notably, the negative effects of drought resulting in declining WUE were most promi-
nent in the transition zone between arid and semi-arid lands [119]. Zhao et al. [110]
analyzed the effects of drought on WUE for various vegetation types and illustrated that
croplands had a peak WUE value under moderate drought events, while forests and grass-
lands reached their peak WUE under slight drought. In addition to these findings, our
study indicated that both bare soil and shrub-covered areas showed a positive sensitivity
to drought intensity in terms of WUE, while croplands and grasslands exhibited a nega-
tive sensitivity to drought intensity in terms of GPP. Areas with rapidly and seasonally
growing vegetation that are sensitive to water demand have relatively thin and shallow
root structures, limiting their drought tolerance ability. As a result, soil water deficits can
lead to critical reductions in productivity in such regions [115,122,123]. Despite the low
likelihood of occurrence, extreme drought can have dramatic impacts on ecosystems and
pose a threat to vegetation growth. But our current knowledge of how terrestrial ecosystem
WUE responds to extreme drought remains controversial and incomplete for a range of
systems because the results are primarily based on local- to regional-scale observations
and data.

4.4. Uncertainties and Limitations

A potential uncertainty matter in the dynamic change in carbon–water fluxes and the
effects of drought stress on WUE may exist, particularly when the uncertainties are linked
with uncertain values from AET and GPP estimates (remote sensing-based GPP-Glass and
AET-GLEAM estimation) due to inputs and/or algorithm structure, ultimately influencing
WUE. These limitations in the GPP/AET dataset may cause uncertain interpretations
when assessing the effects of drought stress on WUE using a few or different GPP/AET
products. For instance, the origins of uncertainty may have originated from the satellite’s
orbital drift and spectral coverage. As such, remotely sensed NDVI and PAR data may
suffer from limitations contributing to the excess variation of trained parameters and
output suboptimal representation in model parameter modification, which may impact
the GPP model [40]. However, the cross-validation reliably illustrated that the EC-LUE
could reproduce the variability of GPP spatially and temporally for numerous ecosystem
types, and several model comparisons also showed that the EC-LUE model performs
better than other methods and algorithms [59,61,105,124]. Also, the GLEAM AET dataset
performed better than other algorithms’ evaporation datasets in several regions and has
demonstrated better agreement with the estimates of the Budyko, LSA-SAF, and Makkink
datasets [55–57]. However, either GPP/AET estimates from remote sensing, process-based
models, or machine learning algorithms should be cautiously utilized when assessing
WUE’s response to drought.

The use of the DS method and SPEI-6 for detecting and assessing responses of ecosys-
tem carbon-water fluxes to drought intensification may come with certain uncertainties
and limitations. Some of these are as follows: (i) Spatial and Temporal Resolution: The
spatial and temporal resolution of the DS method and SPEI-6 calculations can influence the
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accuracy of drought detection and its impacts on carbon-water fluxes. Coarser resolution
data may not capture localized drought events, while finer resolution data may introduce
noise and uncertainty in the analysis. (ii) Drought Definitions: The choice of drought defini-
tion can vary among studies and can impact the results. Different drought definitions may
yield different DS classifications, leading to varied responses in ecosystem carbon-water
fluxes. Also, the DS method and SPEI-6 require the selection of threshold values to classify
DS. The choice of these thresholds can influence the detected drought events and responses
of ecosystem carbon-water fluxes. (iii) Lag Effects: The response of ecosystem carbon-water
fluxes to drought may exhibit lag effects, where the impact of drought on these fluxes
may not be immediate. The DS method and SPEI-6 may not fully account for such lag
effects, leading to uncertainties in the analysis. (iv) Ecosystem Heterogeneity: Ecosystems
within the study area may exhibit varying sensitivities to drought, depending on their
composition, structure, and adaptation to climate conditions. The DS method and SPEI-6
may not fully capture the heterogeneity of ecosystem responses, leading to uncertainties in
generalizing the results. (v) Nonclimate Factors: Ecosystem carbon-water fluxes can also
be influenced by nonclimate factors such as land use changes, land management practices,
and disturbances like wildfires [26,125,126]. The DS method and SPEI-6 may not consider
these factors, introducing uncertainties in attributing changes solely to drought.

Addressing these uncertainties and limitations requires careful consideration of data
sources, methodologies, and assumptions when using the DS method and SPEI-6 for study-
ing ecosystem responses to drought intensification. Sensitivity analyses and validation
against ground-based observations can help assess the reliability of the results and provide
a more robust understanding of ecosystem responses to drought [126]. It is necessary to
further enhance the models’ capacity to estimate GPP and AET. As a result, there will
be more certainty in the evaluation of drought risks and their effects on WUE. To clearly
explain this variation, more research on the effects of drought timing and duration on
the monthly and seasonal scales is required. Therefore, additional investigation should
examine how droughts, in addition to anthropogenic activities and fire events, affect ter-
restrial ecosystems. To comprehend the potential dynamics affecting the spatial–temporal
changes in the GPP and AET in the study area, those studies can take into account soil
moisture-based drought indices. Additionally, they can take into account the significance
of identifying the immediate and delayed effects of droughts.

5. Conclusions

Ecosystem WUE serves as an excellent proxy for examining the coupling between
carbon-water fluxes in terrestrial ecosystems. Estimating WUE enables the quantification
of carbon-water exchange and the detection of its response to drought disturbances. Based
on a remote sensing-driven GPP dataset and a component of terrestrial evapotranspiration,
specifically the AET driven by GLEAM dataset estimates, we comprehensively examined
the impacts of the monthly SPEI-6 on long-term GPP/WUE variability over the ME for the
period 1982–2017. We focused on coupling analysis between the WUE/GPP and SPEI, as
well as spatial heterogeneity. The ability of an ecosystem to tolerate drought disturbances
was considered based on DS as a drought intensification function, along with whether
various ecosystem types have varying responses. The main findings are as follows:

(1) The ecosystem GPP is sensitive to drought in semi-arid ecosystems (BSh), and the
GPP of croplands and shrub-covered areas recorded the highest positive significant
correlations and were more sensitive to SPEI variability. The ecosystem WUE is
sensitive to drought in temperate climates (Cf), followed by arid climate patterns
(BW), and the WUE of bare soil and shrub-covered areas recorded the highest negative
significant correlations and were more sensitive to the SPEI.

(2) The ecosystem GPP and WUE declined significantly during the 2008 extreme drought
(D1) in the north of Iraq and northeast of Syria, where the sWUEA of bare soil and
shrub-covered areas had the highest positive response to DS years, whereas the
sGPPA of croplands, grassland, and tree-covered areas had clear and high negative
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values with the DS group, with D1 having the highest negative values for these land
cover types.

(3) The ecosystem GPP and WUE in the ME are sensitive to drought disturbances and
present a contrasting response regionally. The results of our study pointed out that the
WUE fluctuation in arid ecosystems is mostly controlled by evaporation. In semi-arid
or sub-humid environments, WUE variability is generally controlled by biological
activities (i.e., assimilation).

Therefore, additional observation and simulation are still required to underestimate
the divergences and potential uncertainty. Additionally, it is still troublesome to precisely
reproduce GPP and AET. As such, the dataset combination from diverse and independent
models can facilitate reaching more reliable conclusions when evaluating the responses
of GPP and WUE to drought disturbance at a regional scale. Future investigations should
pay more attention to the processes of ET and GPP, parameterization selection, and output
optimal representation in model modification, which may impact the ET and GPP, which
are conclusive for an in-depth understanding of the relationships between GPP-WUE and
drought disturbances.
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Appendix A

The anomalies (%) for AET, GPP, and WUE in comparison to the long-term average of
accumulating data over 6-month windows (180 days) using a daily-scale moving approach
can be calculated using the following equations:

AET, GPP, and WUE Anomalies (%) =

(
Accumulated X ij − Average Accumulated Xlong−term

Average Accumulated Xlong−term

)
× 100

where:

Accumulated X ij is the daily accumulated value of AET or GPP or WUE for i day and j
year over the 6-month window (180 days).
Average Accumulated Xlong−term is the long-term average of the moved-accumulated 6-month
values for each day of the year (DoY) over the 9-year period.
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