Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remotely Sensed Data
2.2.1. MODIS Data
2.2.2. CHIRPS Data
2.2.3. GLDAS-2.1 Soil Moisture Data
2.2.4. VIUPD Vegetation Data
2.3. Reference Data and Remote Sensing Drought Indices
2.3.1. Standardized Precipitation Index (SPI)
2.3.2. Single Condition Indices
- a.
- Precipitation Concentration Index (PCI)
- b.
- Standardized Water Index (SWI)
- c.
- Standardized Vegetation Index (SVI)
- d.
- Evaporative Stress Index (ESI)
- e.
- Soil Moisture Condition Index (SMCI).
- f.
- Vegetation Condition Index (VCI) derived from VIUPD data
- g.
- Temperature–Vegetation Dryness Index (TVDI) from VIUPD data
2.3.3. Aggregate Conditions Indices (ACIs)
WIMDI Implementation via LOWA Model
2.4. Methodology
2.4.1. WIMDI Development Process Overview
2.4.2. WIMDI Assessment
3. Results
3.1. The Reference Drought Map
3.2. Time Series Analysis
3.3. Data Input for WIMDI
3.4. Statistical Validation
3.5. Spatiotemporal Validation
3.6. Drought Yearly Mean Comparison
3.7. OER Watershed Drought Monitoring Cloud Interface
4. Discussion
4.1. Leveraging Cloud Monitoring Interface to Assess Human Impact on Drought Patterns in the OER Watershed
4.2. Agricultural Practices and Water Resource Sustainability
4.3. Urban Expansion and Drought Vulnerability
4.4. Spatial Correlation between Drought, Urbanization, and Irrigated Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erian, W.; Pulwarty, R.; Vogt, J.V.; AbuZeid, K.; Bert, F.; Bruntrup, M.; El-Askary, H.; de Estrada, M.; Gaupp, F.; Grundy, M.; et al. GAR Special Report on Drought 2021; United Nations Office for Disaster Risk Reduction (UNDRR): Geneva, Switzerland, 2021; ISBN 9789212320274. [Google Scholar]
- Wilhite, D.A.; Sivakumar, M.V.; Wood, D.A. Early Warning Systems for Drought Preparedness and Drought Management. In Proceedings of the Expert Group Meeting, Lisbon, Portugal, 5–7 September 2000; World Meteorological Organization: Geneva, Switzerland, 2000; 208p. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; Office of Climatology Research Paper No. 45; US Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- UNISDR. (United Nations International Strategy for Disaster Risk Reduction, Revealing Risk), Redefining Development Global Assessment Report on Disaster Risk Reduction. 2011. Available online: www.preventionweb.net/gar (accessed on 30 July 2024).
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Sivakumar, M.V.; Pulwarty, R. Managing drought risk in a changing climate: The role of national drought policy. Weather. Clim. Extrem. 2014, 3, 4–13. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Bijaber, N.; El Hadani, D.; Saidi, M.; Svoboda, M.D.; Wardlow, B.D.; Hain, C.R.; Poulsen, C.C.; Yessef, M.; Rochdi, A. Developing a Remotely Sensed Drought Monitoring Indicator for Morocco. Geosciences 2018, 8, 55. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Tramblay, Y.; Jarlan, L.; Benabdelouhab, T.; Hanich, L.; El Meslouhi, M.R.; Chehbouni, A. Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate 2017, 5, 1. [Google Scholar] [CrossRef]
- Bouchaou, L.; Choukr-Allah, R.; Hirich, A.; Seif-Ennasr, M.; Malki, M.; Abahous, H.; Bouaakaz, B.; Nghira, A. Climate change and water valuation in Souss-Massa region: Management and adaptive measures. Eur. Water 2017, 60, 203–209. Available online: https://www.researchgate.net/publication/322050444 (accessed on 30 July 2024).
- Ben Salem, S.; Ben Salem, A.; Karmaoui, A.; Khebiza, M.Y. Vulnerability of Water Resources to Drought Risk in Southeastern Morocco: Case Study of Ziz Basin. Water 2023, 15, 4085. [Google Scholar] [CrossRef]
- Analy, M.; Laftouhi, N.-E. Groundwater depletion in an urban environment under semiarid climate and persistent drought–city of Marrakesh (Morocco). Water 2021, 13, 3253. [Google Scholar] [CrossRef]
- Ouatiki, H.; Boudhar, A.; Ouhinou, A.; Arioua, A.; Hssaisoune, M.; Bouamri, H.; Benabdelouahab, T. Trend analysis of rainfall and drought over the Oum Er-Rbia River Basin in Morocco during 1970–2010. Arab. J. Geosci. 2019, 12, 128. [Google Scholar] [CrossRef]
- El Qorchi, F.; Khebiza, M.Y.; Omondi, O.A.; Karmaoui, A.; Pham, Q.B.; Acharki, S. Analyzing Temporal Patterns of Temperature, Precipitation, and Drought Incidents: A Comprehensive Study of Environmental Trends in the Upper Draa Basin, Morocco. Water 2023, 15, 3906. [Google Scholar] [CrossRef]
- Larabi, A.; El Asri, H.; Elhamidi, M.J.; Zhim, S. Modeling the impacts of climate change on water resources in Mediterranean and Atlantic hydraulic basins of Morocco. Desalination Water Treat. 2020, 176, 434–435. [Google Scholar] [CrossRef]
- Eddoughri, F.; Lkammarte, F.Z.; El Jarroudi, M.; Lahlali, R.; Karmaoui, A.; Khebiza, M.Y.; Messouli, M. Analysis of the Vulnerability of Agriculture to Climate and Anthropogenic Impacts in the Beni Mellal-Khénifra Region, Morocco. Sustainability 2022, 14, 13166. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan groundwater resources and evolution with global climate changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- Jamali, M.Y.; Namous, M.; Amir, S. Impact of overexploitation of groundwater along the irrigated perimeter of Tadla, Oum Errabia Basin, Morocco. Desalination Water Treat. 2020, 195, 201–212. [Google Scholar] [CrossRef]
- El Garouani, A.; Msaddek, M. The effect of landuse dynamics on water balance components in the Upper Oum Er Rabia Basin, Morocco. E3S Web Conf. 2024, 489, 04009. [Google Scholar] [CrossRef]
- Ouassanouan, Y.; Fakir, Y.; Simonneaux, V.; Kharrou, M.H.; Bouimouass, H.; Najar, I.; Benrhanem, M.; Sguir, F.; Chehbouni, A. Multi-decadal analysis of water resources and agricultural change in a Mediterranean semiarid irrigated piedmont under water scarcity and human interaction. Sci. Total Environ. 2022, 834, 155328. [Google Scholar] [CrossRef]
- Molle, F. Conflicting Policies: Agricultural Intensification vs. Water Conservation in Morocco. 2017. Available online: http://www.g-eau.net/ (accessed on 30 July 2024).
- Benamar, A.; Mahjoubi, F.Z.; Kzaibe, F. Evaluation of water quality of Oum Er Rbia River (Morocco) using water quality index method. J. Appl. Surf. Interfaces 2019, 5, 1–12. [Google Scholar] [CrossRef]
- Strohmeier, S.; López, P.L.; Haddad, M.; Nangia, V.; Karrou, M.; Montanaro, G.; Boudhar, A.; Linés, C.; Veldkamp, T.; Sterk, G. Surface Runoff and Drought Assessment Using Global Water Resources Datasets—From Oum Er Rbia Basin to the Moroccan Country Scale. Water Resour. Manag. 2020, 34, 2117–2133. [Google Scholar] [CrossRef]
- Echakraoui, Z.; Boukdir, A.; Aderoju, O.; Saïd, E.H.B.; Zitouni, A.; El Maslouhi, R.; Dias, A.G. The climate changes in the sub-basin of the Oum Er rbia central and the impact on the surface waters. E3S Web Conf. 2018, 37, 03003. [Google Scholar] [CrossRef]
- Aksoy, S.; Gorucu, O.; Sertel, E. Drought Monitoring using MODIS derived indices and Google Earth Engine Platform. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; IEEE: New York, NY, USA, 2019. [Google Scholar]
- Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought monitoring over yellow river basin from 2003–2019 using reconstructed MODIS land surface temperature in google earth engine. Remote Sens. 2021, 13, 3748. [Google Scholar] [CrossRef]
- Hwan, J.L.; Carlson, S.M. Fragmentation of an Intermittent Stream During Seasonal Drought: Intra-annual and Interannual Patterns and Biological Consequences. River Res. Appl. 2016, 32, 856–870. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Lai, C. Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Sci. Total Environ. 2020, 703, 135541. [Google Scholar] [CrossRef]
- Van Hoek, M.; Jia, L.; Zhou, J.; Zheng, C.; Menenti, M. Early drought detection by spectral analysis of satellite time series of precipitation and normalized difference vegetation index (NDVI). Remote Sens. 2016, 8, 422. [Google Scholar] [CrossRef]
- van Ginkel, M.; Biradar, C. Drought early warning in agri-food systems. Climate 2021, 9, 134. [Google Scholar] [CrossRef]
- Jones, R.L.; Guha-Sapir, D.; Tubeuf, S. Human and economic impacts of natural disasters: Can we trust the global data? Sci. Data 2022, 9, 572. [Google Scholar] [CrossRef]
- Freire-González, J.; Decker, C.; Hall, J.W. The Economic Impacts of Droughts: A Framework for Analysis. Ecol. Econ. 2017, 132, 196–204. [Google Scholar] [CrossRef]
- Rejekiningrum, P.; Apriyana, Y.; Sutardi; Estiningtyas, W.; Sosiawan, H.; Susilawati, H.L.; Hervani, A.; Alifia, A.D. Optimising Water Management in Drylands to Increase Crop Productivity and Anticipate Climate Change in Indonesia. Sustainability 2022, 14, 11672. [Google Scholar] [CrossRef]
- Balti, H.; Ben Abbes, A.; Mellouli, N.; Farah, I.R.; Sang, Y.; Lamolle, M. A review of drought monitoring with big data: Issues, methods, challenges and research directions. Ecol. Inform. 2020, 60, 101136. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Hassan, Q.K. Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environ. Sci. 2016, 3, 604–630. [Google Scholar] [CrossRef]
- Qazvini, A.T.; Carrion, D. A Spatiotemporal Drought Analysis Application Implemented in the Google Earth Engine and Applied to Iran as a Case Study. Remote Sens. 2023, 15, 2218. [Google Scholar] [CrossRef]
- Ejaz, N.; Bahrawi, J.; Alghamdi, K.M.; Rahman, K.U.; Shang, S. Drought Monitoring Using Landsat Derived Indices and Google Earth Engine Platform: A Case Study from Al-Lith Watershed, Kingdom of Saudi Arabia. Remote Sens. 2023, 15, 984. [Google Scholar] [CrossRef]
- Adell, M.; Domínguez-Gómez, J.A.; Soria, J. Monitoring of forty years of agricultural expansion in the Oum Er Rbia valley (Morocco). The use of Google Earth Engine compared to Sentinel Application Platform. Preprints 2021. [Google Scholar] [CrossRef]
- Oularbi, Y.; Dahmani, J.; Mounir, F. Dynamics of land-use Change using Geospatial Techniques From 1986 to 2019: A Case Study of High Oum Er-Rbia Watershed (Middle Atlas Region). J. Exp. Biol. Agric. Sci. 2022, 10, 369–378. [Google Scholar] [CrossRef]
- Adaawen, S. Understanding climate change and drought perceptions, impact and responses in the rural Savannah, West Africa. Atmosphere 2021, 12, 594. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Leveidioti, I.; Karavitis, C.A.; Kalogeropoulos, K.; Vasilakou, C.G.; Tsatsaris, A.; Zervas, E. Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate 2023, 11, 95. [Google Scholar] [CrossRef]
- Sun, J.; Bi, S.; Bashir, B.; Ge, Z.; Wu, K.; Alsalman, A.; Ayugi, B.O.; Alsafadi, K. Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020). Sustainability 2023, 15, 10875. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakiris, G. Assessment of Hydrological Drought Revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Wang, K.; Niu, J. A new method and a new index for identifying socioeconomic drought events under climate change: A case study of the East River basin in China. Sci. Total Environ. 2018, 616–617, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Chen, M.; Liu, J.; Liu, Y. Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain. Agric. Water Manag. 2022, 263, 107450. [Google Scholar] [CrossRef]
- Loup, J. L’Oum er Rebia. Etudes sur une grande rivière des montagnes marocaines. Rev. De Géographie Alp. 1962, 50, 519–555. [Google Scholar] [CrossRef]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- van Straaten, C. Regional Modeling of Water Stress Irrigation Water Requirement Meets Water Availability in the Oum Er Rbia Basin. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2017. Available online: https://studenttheses.uu.nl/handle/20.500.12932/26915 (accessed on 9 July 2024).
- ABHOER (Agence du Bassin Hydraulique de l’Oum Er-Rbia). Assistance Technique pour L’intégration et L’évaluation des Risques Climatiques dans la Planification et le Développement des Ressources en eau du Bassin de l’Oum Er-Rbia–Maroc; [Rapport de synthèse]; ABHOER: Beni-Mellal, Morocco, 2017. [Google Scholar]
- Sherif, A.; Fadi, D. Royaume du Maroc Coût de la Dégradation des Ressources en Eau du Bassin de L’oum Er-Rbia Sustainable Water Integrated Management (SWIM)-Support Mechanism. Available online: https://www.swim-sm.eu/files/COED_MOROCCO_final.pdf (accessed on 30 April 2024).
- Justice, C.; Townshend, J.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Wan, Z. Collection-6 MODIS Land Surface Temperature Products Users’ Guide; ICESS, University of California: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Didan, K.; Munoz, A.B. MODIS Vegetation Index User’s Guide (MOD13 Series). Available online: https://vip.arizona.edu (accessed on 30 April 2024).
- Cleugh, H.A.; Leuning, R.; Mu, Q.; Running, S.W. Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens. Environ. 2007, 106, 285–304. [Google Scholar] [CrossRef]
- Mu, Q.; Jones, L.A.; Kimball, J.S.; McDonald, K.C.; Running, S.W. Satellite assessment of land surface evapotranspiration for the pan-Arctic domain. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Evolution of hydrological and carbon cycles under a changing climate. Part III: Global change impacts on landscape scale evapotranspiration. Hydrol. Process. 2011, 25, 4093–4102. [Google Scholar] [CrossRef]
- MODIS Land Science Team. MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf (accessed on 30 April 2024).
- Hubanks, P.A.; Platnick, S.; King, M.D.; Ridgway, B. MODIS Atmosphere L3 Global Gridded Product User’s Guide & algorithm theoretical basis document (ATBD) for C6.1 products: 08_D3, 08_E3, 08_M3. Version 2020, 1, 129. [Google Scholar]
- Alsilibe, F.; Bene, K.; Bilal, G.; Alghafli, K.; Shi, X. Accuracy Assessment and Validation of Multi-Source CHIRPS Precipitation Estimates for Water Resource Management in the Barada Basin, Syria. Remote Sens. 2023, 15, 1778. [Google Scholar] [CrossRef]
- Dhanesh, Y.; Bindhu, V.M.; Senent-Aparicio, J.; Brighenti, T.M.; Ayana, E.; Smitha, P.S.; Fei, C.; Srinivasan, R. A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sens. 2020, 12, 3088. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Wang, W. Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis. Remote Sens. Environ. 2019, 220, 1–18. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. 2016, 121, 2658–2678. [Google Scholar] [CrossRef]
- Sun, X.; Lai, P.; Wang, S.; Song, L.; Ma, M.; Han, X. Monitoring of Extreme Agricultural Drought of the Past 20 Years in Southwest China Using GLDAS Soil Moisture. Remote Sens. 2022, 14, 1323. [Google Scholar] [CrossRef]
- Sangüesa, C.; Pizarro, R.; Ibañez, A.; Pino, J.; Rivera, D.; García-Chevesich, P.; Ingram, B. Spatial and temporal analysis of rainfall concentration using the Gini index and PCI. Water 2018, 10, 112. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Gong, X.; Wei, X.; Yang, J. Precipitation trends and alteration in Wei River Basin: Implication for water resources management in the transitional zone between Plain and Loess Plateau, China. Water 2019, 11, 2407. [Google Scholar] [CrossRef]
- Liu, S.; Yan, D.; Wang, H.; Li, C.; Weng, B.; Qin, T. Standardized water budget index and validation in drought estimation of Haihe River Basin, North China. Adv. Meteorol. 2016, 2016, 9159532. [Google Scholar] [CrossRef]
- Peters, A.J.; Waltershea, E.A.; Ji, L.; Vliia, A.; Hayes, M.; Svoboda, M.D. Drought Monitoring with NDVI-Based Standardized Vegetation Index. 2002. Available online: https://www.asprs.org/wp-content/uploads/pers/2002journal/january/2002_jan_71-75.pdf (accessed on 9 July 2024).
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L.; Arunyawat, S.; Tuankrua, V.; Ogbazghi, W.; Yemane, T. Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Sánchez, N.; González-Zamora, Á.; Piles, M.; Martínez-Fernández, J. A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: A case of study over the Iberian Peninsula. Remote Sens. 2016, 8, 287. [Google Scholar] [CrossRef]
- Gonçalves, S.T.N.; Júnior, F.d.C.V.; Silveira, C.d.S.; Cid, D.A.C.; Martins, E.S.P.R.; da Costa, J.M.F. Comparative Analysis of Drought Indices in Hydrological Monitoring in Ceará’s Semi-Arid Basins, Brazil. Water 2023, 15, 1259. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, T.; Di, C. Evaluating the impacts of environmental factors on soil moisture temporal dynamics at different time scales. J. Water Clim. Chang. 2021, 12, 420–432. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.; Liu, K. Mutation Characteristics of Precipitation Concentration Spatiotemporal Variation and Its Potential Correlation with Low-Frequency Climate Factors in the LRB Area from 1960 to 2020. Water 2023, 15, 955. [Google Scholar] [CrossRef]
- Jain, S.K.; Keshri, R.; Goswami, A.; Sarkar, A.; Chaudhry, A. Identification of drought-vulnerable areas using NOAA AVHRR data. Int. J. Remote Sens. 2009, 30, 2653–2668. [Google Scholar] [CrossRef]
- Tsiros, E.; Domenikiotis, C.; Spiliotopoulos, M.; Dalezios, N.R. Use of Noaa/Avhrr-Based Vegetation Condition Index (Vci) and Temperature Condition Index (TCI) for Drought Monitoring in Thessaly, Greece. Available online: https://www.researchgate.net/publication/236577458 (accessed on 30 April 2024).
- Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) based on bi-parabolic NDVI-Ts space and gradient-based structural similarity (GSSIM) for long-term drought assessment across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef]
- Sobhani, B.; Zengir, V.S.; Kianian, M.K. Drought monitoring in the Lake Urmia basin in Iran. Arab. J. Geosci. 2019, 12, 448. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Ndayisaba, F.; Jiang, L.; Zheng, G.; Chen, T.; De Maeyer, P. Determining variable weights for an Optimal Scaled Drought Condition Index (OSDCI): Evaluation in Central Asia. Remote Sens. Environ. 2019, 231, 111220. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M.; Li, G.; Wang, Y. Regional-scale drought monitor using synthesized index based on remote sensing in northeast China. Open Geosci. 2020, 12, 163–173. [Google Scholar] [CrossRef]
- Munyaka, J.-C.B.; Chenal, J.; Mabaso, S.; Tfwala, S.S.; Mandal, A.K. Geospatial Tools and Remote Sensing Strategies for Timely Humanitarian Response: A Case Study on Drought Monitoring in Eswatini. Sustainability 2024, 16, 409. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, R.; Qu, Y.; Bento, V.A.; Zhou, T.; Lin, Y.; Wu, X.; Qi, J.; Shui, W.; Wang, Q. Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather. Clim. Extrem. 2022, 35, 100412. [Google Scholar] [CrossRef]
- Yager, R.R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking. In Readings in Fuzzy Sets for Intelligent Systems; Elsevier: Amsterdam, The Netherlands, 1993; pp. 80–87. ISBN 9781483214504. [Google Scholar] [CrossRef]
- Yager, R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Figuerola-Wischke, A.; Merigó, J.M.; Gil-Lafuente, A.M.; Boria-Reverter, J. A Bibliometric Review of the Ordered Weighted Averaging Operator. Mathematics 2024, 12, 1053. [Google Scholar] [CrossRef]
- Malczewski, J.; Liu, X. Local ordered weighted averaging in GIS-based multicriteria analysis. Ann. GIS 2014, 20, 117–129. [Google Scholar] [CrossRef]
- Jiao, W.; Zhang, L.; Chang, Q.; Fu, D.; Cen, Y.; Tong, Q. Evaluating an enhanced vegetation condition index (VCI) based on VIUPD for drought monitoring in the continental United States. Remote Sens. 2016, 8, 224. [Google Scholar] [CrossRef]
- Vélez-Nicolás, M.; García-López, S.; Ruiz-Ortiz, V.; Zazo, S.; Molina, J.L. Precipitation Variability and Drought Assessment Using the SPI: Application to Long-Term Series in the Strait of Gibraltar Area. Water 2022, 14, 884. [Google Scholar] [CrossRef]
- Elbeltagi, A.; AlThobiani, F.; Kamruzzaman, M.; Shaid, S.; Roy, D.K.; Deb, L.; Islam, M.; Kundu, P.K.; Rahman, M. Estimating the Standardized Precipitation Evapotranspiration Index Using Data-Driven Techniques: A Regional Study of Bangladesh. Water 2022, 14, 1764. [Google Scholar] [CrossRef]
- Souza, A.G.S.S.; Neto, A.R.; de Souza, L.L. Soil moisture-based index for agricultural drought assessment: SMADI application in Pernambuco State-Brazil. Remote Sens. Environ. 2021, 252, 112124. [Google Scholar] [CrossRef]
ID of Product | Name Data | Description | Resolution (m) |
---|---|---|---|
MOD11A2 | MODIS LST and Emissivity 8-Day | Provides 8-day composite estimates of land surface temperature (LST) and emissivity derived from thermal infrared data. | 1000 |
MOD13Q1 | MODIS Vegetation Indices 16-Day | The values of the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) during a 16-day period vary depending on the specific location and time of year. Typically, these indices range from negative values to values close to 1, with higher values indicating healthier vegetation cover. | 250 |
MOD16A2 | MODIS Vegetation Indices Monthly | Provides global estimates of evapotranspiration (ET) and potential evapotranspiration (PET) at an 8-day temporal resolution. | 500 |
MOD09GA | MODIS daily surface reflectance | Provides daily surface reflectance data, which can be used to calculate the Normalized Difference Water Index (NDWI). | 500 and 1000 |
Index | Equation | References |
---|---|---|
SDCI | [86,87] | |
VDSI | [88] | |
VHI | [89,90] |
α | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
λ1 | 0 | 0.015 | 0.016 | 0.040 | 0.041 | 0.142 | 0.235 | 0.277 | 0.300 | 0.302 | 1 |
λ2 | 0 | 0.050 | 0.055 | 0.091 | 0.093 | 0.142 | 0.200 | 0.193 | 0.187 | 0.180 | 0 |
λ3 | 0 | 0.090 | 0.100 | 0.103 | 0.105 | 0.142 | 0.180 | 0.175 | 0.170 | 0.165 | 0 |
λ4 | 0 | 0.130 | 0.132 | 0.133 | 0.138 | 0.142 | 0.138 | 0.135 | 0.130 | 0.129 | 0 |
λ5 | 0 | 0.155 | 0.156 | 0.158 | 0.159 | 0.142 | 0.114 | 0.110 | 0.105 | 0.100 | 0 |
λ6 | 0 | 0.200 | 0.21 | 0.215 | 0.216 | 0.142 | 0.092 | 0.080 | 0.077 | 0.067 | 0 |
λ7 | 1 | 0.355 | 0.360 | 0.363 | 0.364 | 0.142 | 0.041 | 0.030 | 0.027 | 0.025 | 0 |
α | r-Value | ||
---|---|---|---|
SPI1 | SPI3 | SPI6 | |
0.1 | 0.702 | 0.744 | 0.665 |
0.2 | 0.705 | 0.730 | 0.689 |
0.3 | 0.738 | 0.739 | 0.701 |
0.4 | 0.728 | 0.705 | 0.612 |
0.5 | 0.710 | 0.731 | 0.664 |
0.6 | 0.720 | 0.737 | 0.699 |
0.7 | 0.739 | 0.740 | 0.705 |
0.8 | 0.668 | 0.640 | 0.680 |
0.9 | 0.661 | 0.622 | 0.677 |
Drought Indices | r-Value | |||||
---|---|---|---|---|---|---|
SPI-1 | SPI-3 | SPI-6 | SDI | SEDI | SMCI | |
VHI | 0.345 | 0.333 | 0.302 | 0.320 | 0.320 | 0.320 |
VDSI | 0.350 | 0.370 | 0.404 | 0.380 | 0.380 | 0.380 |
SDCI | 0.650 | 0.550 | 0.603 | 0.590 | 0.590 | 0.590 |
WIMDI | 0.728 * | 0.805 * | 0.733 * | 0.750 * | 0.730 * | 0.710 * |
Drought Indices | RMSE | |||||
---|---|---|---|---|---|---|
SPI-1 | SPI-3 | SPI-6 | SDI | SEDI | SMCI | |
VHI | 0.702 | 1.205 | 1.404 | 1.220 | 1.220 | 1.220 |
VDSI | 0.776 | 1.370 | 1.854 | 1.500 | 1.500 | 1.500 |
SDCI | 0.750 | 1.550 | 1.883 | 1.650 | 1.650 | 1.650 |
WIMDI | 0.698 * | 1.106 * | 1.133 * | 1.100 * | 1.090 * | 1.080 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serbouti, I.; Chenal, J.; Pradhan, B.; Diop, E.B.; Azmi, R.; Abdem, S.A.E.; Adraoui, M.; Hlal, M.; Bounabi, M. Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco. Remote Sens. 2024, 16, 3398. https://doi.org/10.3390/rs16183398
Serbouti I, Chenal J, Pradhan B, Diop EB, Azmi R, Abdem SAE, Adraoui M, Hlal M, Bounabi M. Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco. Remote Sensing. 2024; 16(18):3398. https://doi.org/10.3390/rs16183398
Chicago/Turabian StyleSerbouti, Imane, Jérôme Chenal, Biswajeet Pradhan, El Bachir Diop, Rida Azmi, Seyid Abdellahi Ebnou Abdem, Meriem Adraoui, Mohammed Hlal, and Mariem Bounabi. 2024. "Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco" Remote Sensing 16, no. 18: 3398. https://doi.org/10.3390/rs16183398
APA StyleSerbouti, I., Chenal, J., Pradhan, B., Diop, E. B., Azmi, R., Abdem, S. A. E., Adraoui, M., Hlal, M., & Bounabi, M. (2024). Assessing the Impact of Agricultural Practices and Urban Expansion on Drought Dynamics Using a Multi-Drought Index Application Implemented in Google Earth Engine: A Case Study of the Oum Er-Rbia Watershed, Morocco. Remote Sensing, 16(18), 3398. https://doi.org/10.3390/rs16183398