Journal Description
Proteomes
Proteomes
is an international, peer-reviewed, open access journal on all aspects of proteomics published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubMed, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: CiteScore - Q2 (Clinical Biochemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 25.8 days after submission; acceptance to publication is undertaken in 5.8 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.3 (2022);
5-Year Impact Factor:
2.9 (2022)
Latest Articles
Post-Translational Modifications in Histones and Their Role in Abiotic Stress Tolerance in Plants
Proteomes 2023, 11(4), 38; https://doi.org/10.3390/proteomes11040038 - 22 Nov 2023
Abstract
►
Show Figures
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification,
[...] Read more.
Abiotic stresses profoundly alter plant growth and development, resulting in yield losses. Plants have evolved adaptive mechanisms to combat these challenges, triggering intricate molecular responses to maintain tissue hydration and temperature stability during stress. A pivotal player in this defense is histone modification, governing gene expression in response to diverse environmental cues. Post-translational modifications (PTMs) of histone tails, including acetylation, phosphorylation, methylation, ubiquitination, and sumoylation, regulate transcription, DNA processes, and stress-related traits. This review comprehensively explores the world of PTMs of histones in plants and their vital role in imparting various abiotic stress tolerance in plants. Techniques, like chromatin immune precipitation (ChIP), ChIP-qPCR, mass spectrometry, and Cleavage Under Targets and Tag mentation, have unveiled the dynamic histone modification landscape within plant cells. The significance of PTMs in enhancing the plants’ ability to cope with abiotic stresses has also been discussed. Recent advances in PTM research shed light on the molecular basis of stress tolerance in plants. Understanding the intricate proteome complexity due to various proteoforms/protein variants is a challenging task, but emerging single-cell resolution techniques may help to address such challenges. The review provides the future prospects aimed at harnessing the full potential of PTMs for improved plant responses under changing climate change.
Full article
Open AccessReview
Anti-Cancer Properties of Flaxseed Proteome
by
, , , , and
Proteomes 2023, 11(4), 37; https://doi.org/10.3390/proteomes11040037 - 16 Nov 2023
Abstract
►▼
Show Figures
Flaxseed has been recognized as a valuable source of nutrients and bioactive compounds, including proteins that possess various health benefits. In recent years, studies have shown that flaxseed proteins, including albumins, globulins, glutelin, and prolamins, possess anti-cancer properties. These properties are attributed to
[...] Read more.
Flaxseed has been recognized as a valuable source of nutrients and bioactive compounds, including proteins that possess various health benefits. In recent years, studies have shown that flaxseed proteins, including albumins, globulins, glutelin, and prolamins, possess anti-cancer properties. These properties are attributed to their ability to inhibit cancer cell proliferation, induce apoptosis, and interfere with cancer cell signaling pathways, ultimately leading to the inhibition of metastasis. Moreover, flaxseed proteins have been reported to modulate cancer cell mechanobiology, leading to changes in cell behavior and reduced cancer cell migration and invasion. This review provides an overview of the anti-cancer properties of flaxseed proteins, with a focus on their potential use in cancer treatment. Additionally, it highlights the need for further research to fully establish the potential of flaxseed proteins in cancer therapy.
Full article

Figure 1
Open AccessArticle
Proteome-Wide Profiling Using Sample Multiplexing of a Human Cell Line Treated with Cannabidiol (CBD) and Tetrahydrocannabinol (THC)
by
, , , , , , and
Proteomes 2023, 11(4), 36; https://doi.org/10.3390/proteomes11040036 - 02 Nov 2023
Abstract
Cannabis has been used historically for both medicinal and recreational purposes, with the most notable cannabinoids being cannabidiol (CBD) and tetrahydrocannabinol (THC). Although their therapeutic effects have been well studied and their recreational use is highly debated, the underlying mechanisms of their biological
[...] Read more.
Cannabis has been used historically for both medicinal and recreational purposes, with the most notable cannabinoids being cannabidiol (CBD) and tetrahydrocannabinol (THC). Although their therapeutic effects have been well studied and their recreational use is highly debated, the underlying mechanisms of their biological effects remain poorly defined. In this study, we use isobaric tag-based sample multiplexed proteome profiling to investigate protein abundance differences in the human neuroblastoma SH-SY5Y cell line treated with CBD and THC. We identified significantly regulated proteins by each treatment and performed a pathway classification and associated protein–protein interaction analysis. Our findings suggest that these treatments may lead to mitochondrial dysfunction and induce endoplasmic reticulum stress. These data can potentially be interrogated further to investigate the potential role of CBD and THC in various biological and disease contexts, providing a foundation for future studies.
Full article
(This article belongs to the Special Issue Quantitative Proteomics: Techniques and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Benefits of FAIMS to Improve the Proteome Coverage of Deteriorated and/or Cross-Linked TMT 10-Plex FFPE Tissue and Plasma-Derived Exosomes Samples
by
, , , , , and
Proteomes 2023, 11(4), 35; https://doi.org/10.3390/proteomes11040035 - 24 Oct 2023
Abstract
The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the
[...] Read more.
The proteome characterization of complex, deteriorated, or cross-linked protein mixtures as paired clinical FFPE or exosome samples isolated from low plasma volumes (250 µL) might be a challenge. In this work, we aimed at investigating the benefits of FAIMS technology coupled to the Orbitrap Exploris 480 mass spectrometer for the TMT quantitative proteomics analyses of these complex samples in comparison to the analysis of protein extracts from cells, frozen tissue, and exosomes isolated from large volume plasma samples (3 mL). TMT experiments were performed using a two-hour gradient LC-MS/MS with or without FAIMS and two compensation voltages (CV = −45 and CV = −60). In the TMT experiments of cells, frozen tissue, or exosomes isolated from large plasma volumes (3 mL) with FAIMS, a limited increase in the number of identified and quantified proteins accompanied by a decrease in the number of peptides identified and quantified was observed. However, we demonstrated here a noticeable improvement (>100%) in the number of peptide and protein identifications and quantifications for the plasma exosomes isolated from low plasma volumes (250 µL) and FFPE tissue samples in TMT experiments with FAIMS in comparison to the LC-MS/MS analysis without FAIMS. Our results highlight the potential of mass spectrometry analyses with FAIMS to increase the depth into the proteome of complex samples derived from deteriorated, cross-linked samples and/or those where the material was scarce, such as FFPE and plasma-derived exosomes from low plasma volumes (250 µL), which might aid in the characterization of their proteome and proteoforms and in the identification of dysregulated proteins that could be used as biomarkers.
Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
►▼
Show Figures

Figure 1
Open AccessReview
Multi-Omics Integration for the Design of Novel Therapies and the Identification of Novel Biomarkers
by
and
Proteomes 2023, 11(4), 34; https://doi.org/10.3390/proteomes11040034 - 20 Oct 2023
Abstract
►▼
Show Figures
Multi-omics is a cutting-edge approach that combines data from different biomolecular levels, such as DNA, RNA, proteins, metabolites, and epigenetic marks, to obtain a holistic view of how living systems work and interact. Multi-omics has been used for various purposes in biomedical research,
[...] Read more.
Multi-omics is a cutting-edge approach that combines data from different biomolecular levels, such as DNA, RNA, proteins, metabolites, and epigenetic marks, to obtain a holistic view of how living systems work and interact. Multi-omics has been used for various purposes in biomedical research, such as identifying new diseases, discovering new drugs, personalizing treatments, and optimizing therapies. This review summarizes the latest progress and challenges of multi-omics for designing new treatments for human diseases, focusing on how to integrate and analyze multiple proteome data and examples of how to use multi-proteomics data to identify new drug targets. We also discussed the future directions and opportunities of multi-omics for developing innovative and effective therapies by deciphering proteome complexity.
Full article

Figure 1
Open AccessReview
Unveiling the Molecular Footprint: Proteome-Based Biomarkers for Alzheimer’s Disease
by
, , , , , , , and
Proteomes 2023, 11(4), 33; https://doi.org/10.3390/proteomes11040033 - 16 Oct 2023
Abstract
►▼
Show Figures
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis
[...] Read more.
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and memory loss. Early and accurate diagnosis of AD is crucial for implementing timely interventions and developing effective therapeutic strategies. Proteome-based biomarkers have emerged as promising tools for AD diagnosis and prognosis due to their ability to reflect disease-specific molecular alterations. There is of great significance for biomarkers in AD diagnosis and management. It emphasizes the limitations of existing diagnostic approaches and the need for reliable and accessible biomarkers. Proteomics, a field that comprehensively analyzes the entire protein complement of cells, tissues, or bio fluids, is presented as a powerful tool for identifying AD biomarkers. There is a diverse range of proteomic approaches employed in AD research, including mass spectrometry, two-dimensional gel electrophoresis, and protein microarrays. The challenges associated with identifying reliable biomarkers, such as sample heterogeneity and the dynamic nature of the disease. There are well-known proteins implicated in AD pathogenesis, such as amyloid-beta peptides, tau protein, Apo lipoprotein E, and clusterin, as well as inflammatory markers and complement proteins. Validation and clinical utility of proteome-based biomarkers are addressing the challenges involved in validation studies and the diagnostic accuracy of these biomarkers. There is great potential in monitoring disease progression and response to treatment, thereby aiding in personalized medicine approaches for AD patients. There is a great role for bioinformatics and data analysis in proteomics for AD biomarker research and the importance of data preprocessing, statistical analysis, pathway analysis, and integration of multi-omics data for a comprehensive understanding of AD pathophysiology. In conclusion, proteome-based biomarkers hold great promise in the field of AD research. They provide valuable insights into disease mechanisms, aid in early diagnosis, and facilitate personalized treatment strategies. However, further research and validation studies are necessary to harness the full potential of proteome-based biomarkers in clinical practice.
Full article

Figure 1
Open AccessArticle
Identification of Plasma Biomarkers from Rheumatoid Arthritis Patients Using an Optimized Sequential Window Acquisition of All THeoretical Mass Spectra (SWATH) Proteomics Workflow
by
, , , , , , , , , , , , and
Proteomes 2023, 11(4), 32; https://doi.org/10.3390/proteomes11040032 - 16 Oct 2023
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disease. Plasma biomarkers are critical for understanding disease mechanisms, treatment effects, and diagnosis. Mass spectrometry-based proteomics is a powerful tool for unbiased biomarker discovery. However, plasma proteomics is significantly hampered by signal interference from
[...] Read more.
Rheumatoid arthritis (RA) is a systemic autoimmune and inflammatory disease. Plasma biomarkers are critical for understanding disease mechanisms, treatment effects, and diagnosis. Mass spectrometry-based proteomics is a powerful tool for unbiased biomarker discovery. However, plasma proteomics is significantly hampered by signal interference from high-abundance proteins, low overall protein coverage, and high levels of missing data from data-dependent acquisition (DDA). To achieve quantitative proteomics analysis for plasma samples with a balance of throughput, performance, and cost, we developed a workflow incorporating plate-based high abundance protein depletion and sample preparation, comprehensive peptide spectral library building, and data-independent acquisition (DIA) SWATH mass spectrometry-based methodology. In this study, we analyzed plasma samples from both RA patients and healthy donors. The results showed that the new workflow performance exceeded that of the current state-of-the-art depletion-based plasma proteomic platforms in terms of both data quality and proteome coverage. Proteins from biological processes related to the activation of systemic inflammation, suppression of platelet function, and loss of muscle mass were enriched and differentially expressed in RA. Some plasma proteins, particularly acute-phase reactant proteins, showed great power to distinguish between RA patients and healthy donors. Moreover, protein isoforms in the plasma were also analyzed, providing even deeper proteome coverage. This workflow can serve as a basis for further application in discovering plasma biomarkers of other diseases.
Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
►▼
Show Figures

Figure 1
Open AccessArticle
A Proteomics-Based Identification of the Biological Networks Mediating the Impact of Epigallocatechin-3-Gallate on Trophoblast Cell Migration and Invasion, with Potential Implications for Maternal and Fetal Health
Proteomes 2023, 11(4), 31; https://doi.org/10.3390/proteomes11040031 - 12 Oct 2023
Abstract
►▼
Show Figures
Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis
[...] Read more.
Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis to evaluate its influence on trophoblast cell migration and invasion. Be-Wo trophoblast cells were treated with EGCG, and a zone closure assay was conducted to assess the cell migration and invasion. Subsequently, a proteomics analysis was performed on the treated and control groups, followed by a bioinformatics analysis to evaluate the affected biological pathways and protein networks. A quantitative real-time PCR and Western blot analysis were carried out to validate the proteomics findings. Our results showed that EGCG significantly suppressed the trophoblast migration and invasion at a concentration not affecting cell survival. The proteomics analysis revealed notable differences in the protein expression between the EGCG-treated and control groups. Specifically, EGCG downregulated the signaling pathways related to EIF2, mTOR, and estrogen response, as well as the processes associated with the cytoskeleton, extracellular matrix, and protein translation. Conversely, EGCG upregulated the pathways linked to lipid degradation and oxidative metabolism. The quantitative PCR showed that EGCG modulated protein expression by regulating gene transcription, and the Western blot analysis confirmed its impact on cytoskeleton and extracellular matrix reorganization. These findings suggest EGCG may inhibit trophoblast migration and invasion through multiple signaling pathways, highlighting the potential risks associated with consuming EGCG-containing products during pregnancy. Future research should investigate the impact of EGCG intake on maternal and fetal proteoforms.
Full article

Graphical abstract
Open AccessArticle
Comparative Proteomic Analysis of Two Commonly Used Laboratory Yeast Strains: W303 and BY4742
Proteomes 2023, 11(4), 30; https://doi.org/10.3390/proteomes11040030 - 09 Oct 2023
Abstract
The yeast Saccharomyces cerevisiae is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of S. cerevisiae are available, they may have different genetic backgrounds which can confound
[...] Read more.
The yeast Saccharomyces cerevisiae is a powerful model system that is often used to expand our understanding of cellular processes and biological functions. Although many genetically well-characterized laboratory strains of S. cerevisiae are available, they may have different genetic backgrounds which can confound data interpretation. Here, we report a comparative whole-proteome analysis of two common laboratory yeast background strains, W303 and BY4742, in both exponential and stationary growth phases using isobaric-tag-based mass spectrometry to highlight differences in proteome complexity. We quantified over 4400 proteins, hundreds of which showed differences in abundance between strains and/or growth phases. Moreover, we used proteome-wide protein abundance to profile the mating type of the strains used in the experiment, the auxotrophic markers, and associated metabolic pathways, as well as to investigate differences in particular classes of proteins, such as the pleiotropic drug resistance (PDR) proteins. This study is a valuable resource that offers insight into mechanistic differences between two common yeast background strains and can be used as a guide to select a background that is best suited for addressing a particular biological question.
Full article
(This article belongs to the Special Issue Quantitative Proteomics: Techniques and Applications)
►▼
Show Figures

Figure 1
Open AccessTechnical Note
Urine-HILIC: Automated Sample Preparation for Bottom-Up Urinary Proteome Profiling in Clinical Proteomics
Proteomes 2023, 11(4), 29; https://doi.org/10.3390/proteomes11040029 - 28 Sep 2023
Abstract
Urine provides a diverse source of information related to a patient’s health status and is ideal for clinical proteomics due to its ease of collection. To date, most methods for the preparation of urine samples lack the throughput required to analyze large clinical
[...] Read more.
Urine provides a diverse source of information related to a patient’s health status and is ideal for clinical proteomics due to its ease of collection. To date, most methods for the preparation of urine samples lack the throughput required to analyze large clinical cohorts. To this end, we developed a novel workflow, urine-HILIC (uHLC), based on an on-bead protein capture, clean-up, and digestion without the need for bottleneck processing steps such as protein precipitation or centrifugation. The workflow was applied to an acute kidney injury (AKI) pilot study. Urine from clinical samples and a pooled sample was subjected to automated sample preparation in a KingFisher™ Flex magnetic handling station using the novel approach based on MagReSyn® HILIC microspheres. For benchmarking, the pooled sample was also prepared using a published protocol based on an on-membrane (OM) protein capture and digestion workflow. Peptides were analyzed by LCMS in data-independent acquisition (DIA) mode using a Dionex Ultimate 3000 UPLC coupled to a Sciex 5600 mass spectrometer. The data were searched in Spectronaut™ 17. Both workflows showed similar peptide and protein identifications in the pooled sample. The uHLC workflow was easier to set up and complete, having less hands-on time than the OM method, with fewer manual processing steps. Lower peptide and protein coefficient of variation was observed in the uHLC technical replicates. Following statistical analysis, candidate protein markers were filtered, at ≥8.35-fold change in abundance, ≥2 unique peptides and ≤1% false discovery rate, and revealed 121 significant, differentially abundant proteins, some of which have known associations with kidney injury. The pilot data derived using this novel workflow provide information on the urinary proteome of patients with AKI. Further exploration in a larger cohort using this novel high-throughput method is warranted.
Full article
(This article belongs to the Special Issue Proteomics of Body Fluids: Principles, Methods, and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparison of the Proteomes and Phosphoproteomes of S. cerevisiae Cells Harvested with Different Strategies
by
and
Proteomes 2023, 11(4), 28; https://doi.org/10.3390/proteomes11040028 - 27 Sep 2023
Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected,
[...] Read more.
The budding yeast Saccharomyces cerevisiae is a powerful model system that is widely used to investigate many cellular processes. The harvesting of yeast cells is the first step in almost every experimental procedure. Here, yeast cells are isolated from their growth medium, collected, and used for successive experiments or analysis. The two most common methods to harvest S. cerevisiae are centrifugation and filtration. Understanding if and how centrifugation and filtration affect yeast physiology is essential with respect to downstream data interpretation. Here, we profile and compare the proteomes and the phosphoproteomes, using isobaric label-based quantitative mass spectrometry, of three common methods used to harvest S. cerevisiae cells: low-speed centrifugation, high-speed centrifugation, and filtration. Our data suggest that, while the proteome was stable across the tested conditions, hundreds of phosphorylation events were different between centrifugation and filtration. Our analysis shows that, under our experimental conditions, filtration may cause both cell wall and osmotic stress at higher levels compared to centrifugation, implying harvesting-method-specific stresses. Thus, considering that the basal activation levels of specific stresses may differ under certain harvesting conditions is an important, but often overlooked, aspect of experimental design.
Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
►▼
Show Figures

Figure 1
Open AccessArticle
Quantitative Differences in Rumen Epithelium Proteins in Lambs Fed Wheat, Perennial Wheat, or Perennial Wheat plus Lucerne
by
, , , , , , and
Proteomes 2023, 11(3), 27; https://doi.org/10.3390/proteomes11030027 - 20 Sep 2023
Abstract
►▼
Show Figures
The value of crops such as perennial wheat (PW) for grain and grazing compared to conventional wheat (W), or the addition of lucerne to PW (PWL) is still being determined. This research sought to determine if these diets were associated with changes in
[...] Read more.
The value of crops such as perennial wheat (PW) for grain and grazing compared to conventional wheat (W), or the addition of lucerne to PW (PWL) is still being determined. This research sought to determine if these diets were associated with changes in the membranebound proteins that transport nutrients in the rumen epithelium (RE). Crossbred ewes (Poll Dorset × Merino) were fed W, PW, or PWL (50:50) fresh-cut forage ad libitum for 4 weeks. Average daily gain (ADG; p < 0.001) was highest in the W-fed lambs compared to the PW and PWL. Metabolisable energy intake (MEI) was higher in lambs fed W (p < 0.001) compared to PW and PWL. In pairwise comparisons of the PW and PWL diet group we found protein abundance was significantly (p < 0.05, FDR < 0.05, Benjamini p < 0.05) different in fatty acid metabolism, oxidative phosphorylation, and biosynthesis of cofactors pathways. There were not any differences in protein abundance related to nutrient transport or energy metabolism in the RE between W- vs. PW- and W- vs. PWL-fed lambs. However, in the PW- vs. PWL-fed lambs, there was a difference in the level of proteins regulating the metabolism of fatty acids and energy production in the mitochondria of the rumen epithelium.
Full article

Figure 1
Open AccessArticle
Algorithmically Reconstructed Molecular Pathways as the New Generation of Prognostic Molecular Biomarkers in Human Solid Cancers
by
, , , , , , , , , , and
Proteomes 2023, 11(3), 26; https://doi.org/10.3390/proteomes11030026 - 25 Aug 2023
Abstract
►▼
Show Figures
Individual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and
[...] Read more.
Individual gene expression and molecular pathway activation profiles were shown to be effective biomarkers in many cancers. Here, we used the human interactome model to algorithmically build 7470 molecular pathways centered around individual gene products. We assessed their associations with tumor type and survival in comparison with the previous generation of molecular pathway biomarkers (3022 “classical” pathways) and with the RNA transcripts or proteomic profiles of individual genes, for 8141 and 1117 samples, respectively. For all analytes in RNA and proteomic data, respectively, we found a total of 7441 and 7343 potential biomarker associations for gene-centric pathways, 3020 and 2950 for classical pathways, and 24,349 and 6742 for individual genes. Overall, the percentage of RNA biomarkers was statistically significantly higher for both types of pathways than for individual genes (p < 0.05). In turn, both types of pathways showed comparable performance. The percentage of cancer-type-specific biomarkers was comparable between proteomic and transcriptomic levels, but the proportion of survival biomarkers was dramatically lower for proteomic data. Thus, we conclude that pathway activation level is the advanced type of biomarker for RNA and proteomic data, and momentary algorithmic computer building of pathways is a new credible alternative to time-consuming hypothesis-driven manual pathway curation and reconstruction.
Full article

Figure 1
Open AccessArticle
Urine Peptidome Analysis Identifies Common and Stage-Specific Markers in Early Versus Advanced CKD
by
, , , , , , and
Proteomes 2023, 11(3), 25; https://doi.org/10.3390/proteomes11030025 - 23 Aug 2023
Abstract
Given the pathophysiological continuum of chronic kidney disease (CKD), different molecular determinants affecting progression may be associated with distinct disease phases; thus, identification of these players are crucial for guiding therapeutic decisions, ideally in a non-invasive, repeatable setting. Analyzing the urinary peptidome has
[...] Read more.
Given the pathophysiological continuum of chronic kidney disease (CKD), different molecular determinants affecting progression may be associated with distinct disease phases; thus, identification of these players are crucial for guiding therapeutic decisions, ideally in a non-invasive, repeatable setting. Analyzing the urinary peptidome has been proven an efficient method for biomarker determination in CKD, among other diseases. In this work, after applying several selection criteria, urine samples from 317 early (stage 2) and advanced (stage 3b–5) CKD patients were analyzed using capillary electrophoresis coupled to mass spectrometry (CE-MS). The entire two groups were initially compared to highlight the respective pathophysiology between initial and late disease phases. Subsequently, slow and fast progressors were compared within each group in an attempt to distinguish phase-specific disease progression molecules. The early vs. late-stage CKD comparison revealed 929 significantly different peptides, most of which were downregulated and 268 with collagen origins. When comparing slow vs. fast progressors in early stage CKD, 42 peptides were significantly altered, 30 of which were collagen peptide fragments. This association suggests the development of structural changes may be reversible at an early stage. The study confirms previous findings, based on its multivariable-matched progression groups derived from a large initial cohort. However, only four peptide fragments differed between slow vs. fast progressors in late-stage CKD, indicating different pathogenic processes occur in fast and slow progressors in different stages of CKD. The defined peptides associated with CKD progression at early stage might potentially constitute a non-invasive approach to improve patient management by guiding (personalized) intervention.
Full article
(This article belongs to the Special Issue Clinical Proteomics: Third Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Proteomics-Driven Biomarkers in Pancreatic Cancer
Proteomes 2023, 11(3), 24; https://doi.org/10.3390/proteomes11030024 - 07 Aug 2023
Cited by 1
Abstract
Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves
[...] Read more.
Pancreatic cancer is a devastating disease that has a grim prognosis, highlighting the need for improved screening, diagnosis, and treatment strategies. Currently, the sole biomarker for pancreatic ductal adenocarcinoma (PDAC) authorized by the U.S. Food and Drug Administration is CA 19-9, which proves to be the most beneficial in tracking treatment response rather than in early detection. In recent years, proteomics has emerged as a powerful tool for advancing our understanding of pancreatic cancer biology and identifying potential biomarkers and therapeutic targets. This review aims to offer a comprehensive survey of proteomics’ current status in pancreatic cancer research, specifically accentuating its applications and its potential to drastically enhance screening, diagnosis, and treatment response. With respect to screening and diagnostic precision, proteomics carries the capacity to augment the sensitivity and specificity of extant screening and diagnostic methodologies. Nonetheless, more research is imperative for validating potential biomarkers and establishing standard procedures for sample preparation and data analysis. Furthermore, proteomics presents opportunities for unveiling new biomarkers and therapeutic targets, as well as fostering the development of personalized treatment strategies based on protein expression patterns associated with treatment response. In conclusion, proteomics holds great promise for advancing our understanding of pancreatic cancer biology and improving patient outcomes. It is essential to maintain momentum in investment and innovation in this arena to unearth more groundbreaking discoveries and transmute them into practical diagnostic and therapeutic strategies in the clinical context.
Full article
Open AccessArticle
Comparison of Four Purification Methods on Serum Extracellular Vesicle Recovery, Size Distribution, and Proteomics
by
, , , , , , , and
Proteomes 2023, 11(3), 23; https://doi.org/10.3390/proteomes11030023 - 25 Jul 2023
Abstract
In recent decades, the role played by extracellular vesicles in physiological and pathological processes has attracted attention. Extracellular vesicles are released by different types of cells and carry molecules that could become biomarkers for the diagnosis of diseases. Extracellular vesicles are also moldable
[...] Read more.
In recent decades, the role played by extracellular vesicles in physiological and pathological processes has attracted attention. Extracellular vesicles are released by different types of cells and carry molecules that could become biomarkers for the diagnosis of diseases. Extracellular vesicles are also moldable tools for the controlled release of bioactive substances in clinical and therapeutic applications. However, one of the significant challenges when studying these exciting and versatile vesicles is the purification process, which presents significant difficulties in terms of lack of purity, yield, and reproducibility, reflected in unreliable data. Therefore, our objective in the present study was to compare the proteomic profile of serum-derived EVs purified using ExoQuick™ (Systems Biosciences), Total Isolation Kit (Life Technologies), Ultracentrifugation, and Ultrafiltration. Each technique utilized for purification has shown different concentrations and populations of purified particles. The results showed marked differences in distribution, size, and protein content, demonstrating the need to develop reproducible and reliable protocols to isolate extracellular vesicles for their clinical application.
Full article
(This article belongs to the Section Extracellular Vesicles)
►▼
Show Figures

Figure 1
Open AccessReview
Oncogenic Proteomics Approaches for Translational Research and HIV-Associated Malignancy Mechanisms
by
, , , and
Proteomes 2023, 11(3), 22; https://doi.org/10.3390/proteomes11030022 - 04 Jul 2023
Abstract
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on
[...] Read more.
Recent advances in the field of proteomics have allowed extensive insights into the molecular regulations of the cell proteome. Specifically, this allows researchers to dissect a multitude of signaling arrays while targeting for the discovery of novel protein signatures. These approaches based on data mining are becoming increasingly powerful for identifying both potential disease mechanisms as well as indicators for disease progression and overall survival predictive and prognostic molecular markers for cancer. Furthermore, mass spectrometry (MS) integrations satisfy the ongoing demand for in-depth biomarker validation. For the purpose of this review, we will highlight the current developments based on MS sensitivity, to place quantitative proteomics into clinical settings and provide a perspective to integrate proteomics data for future applications in cancer precision medicine. We will also discuss malignancies associated with oncogenic viruses such as Acquire Immunodeficiency Syndrome (AIDS) and suggest novel mechanisms behind this phenomenon. Human Immunodeficiency Virus type-1 (HIV-1) proteins are known to be oncogenic per se, to induce oxidative and endoplasmic reticulum stresses, and to be released from the infected or expressing cells. HIV-1 proteins can act alone or in collaboration with other known oncoproteins, which cause the bulk of malignancies in people living with HIV-1 on ART.
Full article
(This article belongs to the Special Issue Proteomics in Cancer Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Network-Based Prediction of Side Effects of Repurposed Antihypertensive Sartans against COVID-19 via Proteome and Drug-Target Interactomes
by
, , , , , , , , , and
Proteomes 2023, 11(2), 21; https://doi.org/10.3390/proteomes11020021 - 08 Jun 2023
Abstract
►▼
Show Figures
The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to
[...] Read more.
The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to angiotensin-converting enzyme 2 (ACE2), which in turn interacts with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. However, there has been no in silico analysis of the potential toxicity risks associated with the use of these drugs for the treatment of COVID-19. To address this, a network-based bioinformatics methodology was used to investigate the potential side effects of known Food and Drug Administration (FDA)-approved antihypertensive drugs, Sartans. This involved identifying the human proteins targeted by these drugs, their first neighbors, and any drugs that bind to them using publicly available experimentally supported data, and subsequently constructing proteomes and protein–drug interactomes. This methodology was also applied to Pfizer’s Paxlovid, an antiviral drug approved by the FDA for emergency use in mild-to-moderate COVID-19 treatment. The study compares the results for both drug categories and examines the potential for off-target effects, undesirable involvement in various biological processes and diseases, possible drug interactions, and the potential reduction in drug efficiency resulting from proteoform identification.
Full article

Figure 1
Open AccessArticle
Mass Spectrometry and Pharmacological Approaches to Measuring Cooption and Reciprocal Activation of Receptor Tyrosine Kinases
by
, , , , and
Proteomes 2023, 11(2), 20; https://doi.org/10.3390/proteomes11020020 - 02 Jun 2023
Abstract
Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of
[...] Read more.
Receptor tyrosine kinases (RTKs) can show extensive crosstalk, directly and indirectly. Elucidating RTK crosstalk remains an important goal in the clinical combination of anti-cancer therapies. Here, we present mass spectrometry and pharmacological approaches showing the hepatocyte growth factor receptor (MET)-promoting tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) and other membrane receptors in MET-amplified H1993 NSCLC cells. Conversely, in H292 wt-EGFR NSCLC cells, EGFR promotes the tyrosine phosphorylation of MET. Reciprocal regulation of the EGFR and insulin receptor (IR) was observed in the GEO CRC cells, where inhibition of the EGFR drives tyrosine phosphorylation of the insulin receptor. Similarly, in platelet-derived growth factor receptor (PDGFR)-amplified H1703 NSCLC cells, inhibition of the EGFR promotes the tyrosine phosphorylation of the PDGFR. These RTK interactions are used to illustrate basic principles applicable to other RTK signaling networks. More specifically, we focus on two types of RTK interaction: (1) co-option of one RTK by another and (2) reciprocal activation of one receptor following the inhibition of a distinct receptor.
Full article
(This article belongs to the Special Issue Proteomics in Cancer Research)
►▼
Show Figures

Figure 1
Open AccessReview
Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry
by
, , , and
Proteomes 2023, 11(2), 19; https://doi.org/10.3390/proteomes11020019 - 10 May 2023
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex
[...] Read more.
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomedicines, IJMS, Metabolites, Molecules, Proteomes
Proteomics and Metabolomics in Biomedicine, 2nd Volume
Topic Editors: Lucia Santorelli, Marianna Caterino, Michele CostanzoDeadline: 30 June 2024
Topic in
Biomolecules, Cells, CIMB, IJMS, JMP, Molecules, Proteomes
Metalloproteins and Metalloenzymes
Topic Editors: Eugene A. Permyakov, Ludmilla Morozova-RocheDeadline: 31 December 2024

Conferences
Special Issues
Special Issue in
Proteomes
Blood-Brain Barrier Proteomics
Guest Editors: Gwenael Pottiez, Yannis KaramanosDeadline: 31 December 2023