Oxidative Stress and Its Role in the Emergence and Progression of Myelodysplastic Syndromes: Insights from Proteomic Analysis and Other Methodologies
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy and Selection Criteria
3. Myelodysplastic Syndromes
3.1. Classification of the Myelodysplastic Syndromes
3.2. MDS Pathogenesis
4. Oxidative Stress
4.1. Protein Carbonylation and System Deregulation
4.2. The Case of Iron Overload (IOL)
4.3. Molecular Basis of Oxidative Stress Involvement in MDS
5. Proteomic Analysis
5.1. Proteomics and the Myelodysplastic Syndromes
5.2. Proteomics and Oxidative Stress in MDS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farquhar, M.J.; Bowen, D.T. Oxidative Stress and the Myelodysplastic Syndromes. Int. J. Hematol. 2003, 77, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Hirsch, C.; Clemente, M.; Sekeres, M.; Makishima, H.; Maciejewski, J.P. Genetic and Molecular Characterization of Myelodysplastic Syndromes and Related Myeloid Neoplasms. Int. J. Hematol. 2015, 101, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Narumi, S.; Guan, Y.; Przychodzen, B.P.; Hirsch, C.M.; Makishima, H.; Shima, H.; Aly, M.; Pastor, V.; Kuzmanovic, T.; et al. Germline Loss-of-Function SAMD9 and SAMD9L Alterations in Adult Myelodysplastic Syndromes. Blood 2018, 132, 2309–2313. [Google Scholar] [CrossRef] [PubMed]
- Kontandreopoulou, C.-N.; Kalopisis, K.; Viniou, N.-A.; Diamantopoulos, P. The Genetics of Myelodysplastic Syndromes and the Opportunities for Tailored Treatments. Front. Oncol. 2022, 12, 989483. [Google Scholar] [CrossRef]
- Marques, F.K.; Sabino, A.d.P. Myelodysplastic Neoplasms: An Overview on Diagnosis, Risk-Stratification, Molecular Pathogenesis, and Treatment. Biomed. Pharmacother. 2022, 156, 113905. [Google Scholar] [CrossRef]
- Ketelut-Carneiro, N.; Fitzgerald, K.A. Apoptosis, Pyroptosis, and Necroptosis—Oh My! The Many Ways a Cell Can Die. J. Mol. Biol. 2022, 434, 167378. [Google Scholar] [CrossRef]
- Davies, K.J. Oxidative Stress: The Paradox of Aerobic Life. Biochem. Soc. Symp. 1995, 61, 1–31. [Google Scholar] [CrossRef]
- Psatha, K.; Kollipara, L.; Voutyraki, C.; Divanach, P.; Sickmann, A.; Rassidakis, G.Z.; Drakos, E.; Aivaliotis, M. Deciphering Lymphoma Pathogenesis via State-of-the-Art Mass Spectrometry-Based Quantitative Proteomics. J. Chromatogr. B 2016, 1047, 2–14. [Google Scholar] [CrossRef]
- Májek, P.; Reicheltová, Z.; Suttnar, J.; Čermák, J.; Dyr, J.E. Plasma Protein Alterations in the Refractory Anemia with Excess Blasts Subtype 1 Subgroup of Myelodysplastic Syndrome. Proteome Sci. 2012, 10, 31. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Cortesão, E.; Oliveiros, B.; Alves, V.; Espadana, A.I.; Rito, L.; Magalhães, E.; Pereira, S.; Pereira, A.; Costa, J.M.N.; et al. Oxidative Stress Levels are Correlated with P15 and P16 Gene Promoter Methylation in Myelodysplastic Syndrome Patients. Clin. Exp. Med. 2016, 16, 333–343. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Alves, R.; Baldeiras, I.; Marques, B.; Oliveiros, B.; Pereira, A.; Costa, J.M.N.; Cortesão, E.; Vieira, L.M.; Ribeiro, A.B.S. DNA Methylation Is Correlated with Oxidative Stress in Myelodysplastic Syndrome—Relevance as Complementary Prognostic Biomarkers. Cancers 2021, 13, 3138. [Google Scholar] [CrossRef] [PubMed]
- Tsamesidis, I.; Pantaleo, A.; Pekou, A.; Gusani, A.; Iliadis, S.; Makedou, K.; Manca, A.; Carruale, A.; Lymperaki, E.; Fozza, C. Correlation of Oxidative Stress Biomarkers and Hematological Parameters in Blood Cancer Patients from Sardinia, Italy. Int. J. Hematol. Stem Cell Res. 2019, 13, 49–57. [Google Scholar] [CrossRef]
- Hlaváčková, A.; Štikarová, J.; Pimková, K.; Chrastinová, L.; Májek, P.; Kotlín, R.; Čermák, J.; Suttnar, J.; Dyr, J.E. Enhanced Plasma Protein Carbonylation in Patients with Myelodysplastic Syndromes. Free Radic. Biol. Med. 2017, 108, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Májek, P.; Riedelová-Reicheltová, Z.; Suttnar, J.; Pečánková, K.; Čermák, J.; Dyr, J.E. Plasma Proteome Changes Associated with Refractory Anemia and Refractory Anemia with Ringed Sideroblasts in Patients with Myelodysplastic Syndrome. Proteome Sci. 2013, 11, 14. [Google Scholar] [CrossRef]
- Majek, P.; Riedelova-Reicheltova, Z.; Suttnar, J.; Pecankova, K.; Cermak, J.; Dyr, J.E. Proteome Changes in the Plasma of Myelodysplastic Syndrome Patients with Refractory Anemia with Excess Blasts Subtype 2. Dis. Markers 2014, 2014, 178709. [Google Scholar] [CrossRef]
- Rodríguez-García, A.; Morales, M.L.; Garrido-García, V.; García-Baquero, I.; Leivas, A.; Carreño-Tarragona, G.; Sánchez, R.; Arenas, A.; Cedena, T.; Ayala, R.M.; et al. Protein Carbonylation in Patients with Myelodysplastic Syndrome: An Opportunity for Deferasirox Therapy. Antioxidants 2019, 8, 508. [Google Scholar] [CrossRef]
- Pimková, K.; Chrastinová, L.; Suttnar, J.; Štikarová, J.; Kotlín, R.; Čermák, J.; Dyr, J.E. Plasma Levels of Aminothiols, Nitrite, Nitrate, and Malondialdehyde in Myelodysplastic Syndromes in the Context of Clinical Outcomes and as a Consequence of Iron Overload. Oxidative Med. Cell. Longev. 2014, 2014, 416028. [Google Scholar] [CrossRef]
- Chai, X.; Li, D.; Cao, X.; Zhang, Y.; Mu, J.; Lu, W.; Xiao, X.; Li, C.; Meng, J.; Chen, J.; et al. ROS-Mediated Iron Overload Injures the Hematopoiesis of Bone Marrow by Damaging Hematopoietic Stem/Progenitor Cells in Mice. Sci. Rep. 2015, 5, 10181. [Google Scholar] [CrossRef]
- De Souza, G.F.; Ribeiro, H.L.; De Sousa, J.C.; Heredia, F.F.; De Freitas, R.M.; Martins, M.R.A.; Gonçalves, R.P.; Pinheiro, R.F.; Magalhães, S.M.M. HFE Gene Mutation and Oxidative Damage Biomarkers in Patients with Myelodysplastic Syndromes and Its Relation to Transfusional Iron Overload: An Observational Cross-Sectional Study. BMJ Open 2015, 5, e006048. [Google Scholar] [CrossRef]
- Patel, S.S. Pediatric Myelodysplastic Syndromes. Clin. Lab. Med. 2021, 41, 517–528. [Google Scholar] [CrossRef]
- Chatterjee, T.; Choudhry, V.P. Childhood Myelodysplastic Syndrome. Indian J. Pediatr. 2013, 80, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.L.; Tuechler, H.; Schanz, J.; Sanz, G.; Garcia-Manero, G.; Solé, F.; Bennett, J.M.; Bowen, D.; Fenaux, P.; Dreyfus, F.; et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012, 120, 2454–2465. [Google Scholar] [CrossRef] [PubMed]
- Hasserjian, R.P.; Orazi, A.; Orfao, A.; Rozman, M.; Wang, S.A. The International Consensus Classification of Myelodysplastic Syndromes and Related Entities. Virchows Arch. 2023, 482, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Fontana, D.; Elli, E.M.; Pagni, F.; Piazza, R. Myelodysplastic Syndromes/Myeloproliferative Overlap Neoplasms and Differential Diagnosis in the WHO and ICC 2022 Era: A Focused Review. Cancers 2023, 15, 3175. [Google Scholar] [CrossRef]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Xie, Z.; Komrokji, R.S.; Al Ali, N.; Regelson, A.; Geyer, S.; Patel, A.; Saygin, C.; Zeidan, A.M.; Bewersdorf, J.P.; Mendez, L.M.; et al. Risk Prediction for Clonal Cytopenia: Multicenter Real-World Evidence. Blood 2024, 144, 2033–2044. [Google Scholar] [CrossRef]
- Falini, B.; Martelli, M.P. Comparison of the International Consensus and 5th WHO Edition Classifications of Adult Myelodysplastic Syndromes and Acute Myeloid Leukemia. Am. J. Hematol. 2023, 98, 481–492. [Google Scholar] [CrossRef]
- Vardiman, J.W.; Harris, N.L.; Brunning, R.D. The World Health Organization (WHO) Classification of the Myeloid Neoplasms. Blood 2002, 100, 2292–2302. [Google Scholar] [CrossRef]
- Vardiman, J.W.; Thiele, J.; Arber, D.A.; Brunning, R.D.; Borowitz, M.J.; Porwit, A.; Harris, N.L.; Le Beau, M.M.; Hellström-Lindberg, E.; Tefferi, A.; et al. The 2008 Revision of the World Health Organization (WHO) Classification of Myeloid Neoplasms and Acute Leukemia: Rationale and Important Changes. Blood 2009, 114, 937–951. [Google Scholar] [CrossRef]
- Matos, A.; Magalhães, S.M.M.; Rauh, M.J. Immune Dysregulation and Recurring Mutations in Myelodysplastic Syndromes Pathogenesis. Adv. Exp. Med. Biol. 2021, 1326, 1–10. [Google Scholar]
- Garcia-Manero, G.; Chien, K.S.; Montalban-Bravo, G. Myelodysplastic Syndromes: 2021 Update on Diagnosis, Risk Stratification and Management. Am. J. Hematol. 2020, 95, 1399–1420. [Google Scholar] [CrossRef] [PubMed]
- Montes, P.; Guerra-Librero, A.; García, P.; Cornejo-Calvo, M.E.; López, M.d.S.; de Haro, T.; Martínez-Ruiz, L.; Escames, G.; Acuña-Castroviejo, D. Effect of 5-Azacitidine Treatment on Redox Status and Inflammatory Condition in MDS Patients. Antioxidants 2022, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Benton, C.B.; Khan, M.; Sallman, D.; Nazha, A.; Nogueras González, G.M.; Piao, J.; Ning, J.; Aung, F.; Al Ali, N.; Jabbour, E.; et al. Prognosis of Patients with Intermediate Risk IPSS-R Myelodysplastic Syndrome Indicates Variable Outcomes and Need for Models Beyond IPSS-R. Am. J. Hematol. 2018, 93, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Weeks, L.D.; Niroula, A.; Neuberg, D.; Wong, W.; Lindsley, R.C.; Luskin, M.R.; Berliner, N.; Stone, R.M.; DeAngelo, D.J.; Soiffer, R.J.; et al. Prediction of Risk for Myeloid Malignancy in Clonal Hematopoiesis. NEJM Évid. 2023, 2. [Google Scholar] [CrossRef]
- Garcia-Manero, G. Myelodysplastic Syndromes: 2023 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2023, 98, 1307–1325. [Google Scholar] [CrossRef]
- Gu, M.; Kovilakam, S.C.; Dunn, W.G.; Marando, L.; Barcena, C.; Mohorianu, I.; Smith, A.; Kar, S.P.; Fabre, M.A.; Gerstung, M.; et al. Multiparameter Prediction of Myeloid Neoplasia Risk. Nat. Genet. 2023, 55, 1523–1530. [Google Scholar] [CrossRef]
- Cazzola, M. Myelodysplastic Syndromes. N. Engl. J. Med. 2020, 383, 1358–1374. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Naeim, F.; Rao, P.N.; Grody, W.W. Myelodysplastic Syndromes. Hematopathology: Morphology, Immunophenotype, Cytogenetics, and Molecular Approaches; Academic Press: Cambridge, MA, USA, 2008; pp. 129–154. [Google Scholar]
- Neukirchen, J.; Haas, R.; Germing, U. Prognostic Molecular Markers in Myelodysplastic Syndromes. Expert Rev. Hematol. 2009, 2, 563–575. [Google Scholar] [CrossRef]
- Santini, V. Anemia as the Main Manifestation of Myelodysplastic Syndromes. Semin. Hematol. 2015, 52, 348–356. [Google Scholar] [CrossRef]
- Jin, M.; Fang, J.; Wang, J.-J.; Shao, X.; Xu, S.-W.; Liu, P.-Q.; Ye, W.-C.; Liu, Z.-P. Regulation of Toll-Like Receptor (TLR) Signaling Pathways in Atherosclerosis: From Mechanisms to Targeted Therapeutics. Acta Pharmacol. Sin. 2023, 44, 2358–2375. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, K.; Aktar, A.; Ramasamy, S.; Biswas, B.; Kerr, P.G.; Blanchard, C. Attenuating Colorectal Cancer Using Nine Cultivars of Australian Lupin Seeds: Apoptosis Induction Triggered by Mitochondrial Reactive Oxygen Species Generation and Caspases-3/7 Activation. Cells 2023, 12, 2557. [Google Scholar] [CrossRef] [PubMed]
- Lauber, K.; Bohn, E.; Kröber, S.M.; Xiao, Y.-J.; Blumenthal, S.G.; Lindemann, R.K.; Marini, P.; Wiedig, C.; Zobywalski, A.; Baksh, S.; et al. Apoptotic Cells Induce Migration of Phagocytes via Caspase-3-Mediated Release of a Lipid Attraction Signal. Cell 2003, 113, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Barreyro, L.; Chlon, T.M.; Starczynowski, D.T. Chronic immune Response Dysregulation in MDS Pathogenesis. Blood 2018, 132, 1553–1560. [Google Scholar] [CrossRef]
- Basiorka, A.A.; McGraw, K.L.; Eksioglu, E.A.; Chen, X.; Johnson, J.; Zhang, L.; Zhang, Q.; Irvine, B.A.; Cluzeau, T.; Sallman, D.A.; et al. The NLRP3 Inflammasome Functions as a Driver of the Myelodysplastic Syndrome Phenotype. Blood 2016, 128, 2960–2975. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef]
- Genovese, G.; Kähler, A.K.; Handsaker, R.E.; Lindberg, J.; Rose, S.A.; Bakhoum, S.F.; Chambert, K.; Mick, E.; Neale, B.M.; Fromer, M.; et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. N. Engl. J. Med. 2014, 371, 2477–2487. [Google Scholar] [CrossRef]
- Hellström-Lindberg, E.; Tobiasson, M.; Greenberg, P. Myelodysplastic Syndromes: Moving towards Personalized Management. Haematologica 2020, 105, 1765–1779. [Google Scholar] [CrossRef]
- Haase, D.; Germing, U.; Schanz, J.; Pfeilstöcker, M.; Nösslinger, T.; Hildebrandt, B.; Kundgen, A.; Lübbert, M.; Kunzmann, R.; Giagounidis, A.A.N.; et al. New Insights into the Prognostic Impact of the Karyotype in MDS and Correlation with Subtypes: Evidence from a Core Dataset of 2124 Patients. Blood 2007, 110, 4385–4395. [Google Scholar] [CrossRef]
- Hasserjian, R.P. Myelodysplastic Syndrome Updated. Pathobiology 2019, 86, 53–61. [Google Scholar] [CrossRef]
- Richardson, C.; Yan, S.; Vestal, C.G. Oxidative Stress, Bone Marrow Failure, and Genome Instability in Hematopoietic Stem Cells. Int. J. Mol. Sci. 2015, 16, 2366–2385. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S. Oxidative Stress in the Regulation of Normal and Neoplastic Hematopoiesis. Antioxid. Redox Signal. 2008, 10, 1923–1940. [Google Scholar] [CrossRef] [PubMed]
- Linares, M.; Marín-García, P.; Méndez, D.; Puyet, A.; Diez, A.; Bautista, J.M. Proteomic Approaches to Identifying Carbonylated Proteins in Brain Tissue. J. Proteome Res. 2011, 10, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.M.; Schaad, O.; Durual, S.; Cossali, D.; Docquier, M.; Beris, P.; Descombes, P.; Matthes, T. Growth Differentiation Factor 15 Production is Necessary for Normal Erythroid Differentiation and is Increased in Refractory Anaemia with Ring-Sideroblasts. Br. J. Haematol. 2009, 144, 251–262. [Google Scholar] [CrossRef]
- Ivars, D.; Orero, M.T.; Javier, K.; Díaz-Vico, L.; García-Giménez, J.L.; Mena, S.; Tormos, C.; Egea, M.; Pérez, P.L.; Arrizabalaga, B.; et al. Oxidative Imbalance in Low/Intermediate-1-Risk Myelodysplastic Syndrome Patients: The Influence of Iron Overload. Clin. Biochem. 2017, 50, 911–917. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Jones, D.P. Radical-Free Biology of Oxidative Stress. Am. J. Physiol. Cell Physiol. 2008, 295, C849–C868. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Paclet, M.-H.; Laurans, S.; Dupré-Crochet, S. Regulation of Neutrophil NADPH Oxidase, NOX2: A Crucial Effector in Neutrophil Phenotype and Function. Front. Cell Dev. Biol. 2022, 10, 945749. [Google Scholar] [CrossRef]
- Waghela, B.N.; Vaidya, F.U.; Agrawal, Y.; Santra, M.K.; Mishra, V.; Pathak, C. Molecular Insights of NADPH Oxidases and Its Pathological Consequences. Cell Biochem. Funct. 2021, 39, 218–234. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Cortesão, E.; Oliveiros, B.; Alves, V.; Espadana, A.I.; Rito, L.; Magalhães, E.; Lobão, M.J.; Pereira, A.; Nascimento Costa, J.M.N.; et al. Oxidative Stress and Mitochondrial Dysfunction Play a Role in Myelodysplastic Syndrome Development, Diagnosis, and Prognosis: A Pilot Study. Free. Radic. Res. 2015, 49, 1081–1094. [Google Scholar] [CrossRef] [PubMed]
- Mavridou, D.; Psatha, K.; Aivaliotis, M. Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia. J. Pers. Med. 2024, 14, 831. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, T.U. Origins and Evolution of Cotranslational Transport to the ER. Adv. Exp. Med. Biol. 2007, 607, 52–60. [Google Scholar] [PubMed]
- Schwarz, A.; Beck, M. The Benefits of Cotranslational Assembly: A Structural Perspective. Trends Cell Biol. 2019, 29, 791–803. [Google Scholar] [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- León, I.R.; Schwämmle, V.; Jensen, O.N.; Sprenger, R.R. Quantitative Assessment of In-Solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis. Mol. Cell. Proteom. 2013, 12, 2992–3005. [Google Scholar] [CrossRef]
- Gundry, R.L.; White, M.Y.; Murray, C.I.; Kane, L.A.; Fu, Q.; Stanley, B.A.; Van Eyk, J.E. Preparation of Proteins and Peptides for Mass Spectrometry Analysis in a Bottom-Up Proteomics Workflow. Curr. Protoc. Mol. Biol. 2009, 90 (Suppl. S88), 10–25. [Google Scholar] [CrossRef]
- Shan, L.; Jones, B.R. Nano-LC: An Updated Review. Biomed. Chromatogr. 2022, 36, e5317. [Google Scholar] [CrossRef]
- Finehout, E.J.; Lee, K.H. An Introduction to Mass Spectrometry Applications in Biological Research. Biochem. Mol. Biol. Educ. 2004, 32, 93–100. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
Authors | Year | Sample Type | Possible Biomarkers | Association with MDS |
---|---|---|---|---|
Májek P et al. [9] | 2012 | Blood plasma | Leucine–rich–alpha–2–glycoprotein (LRAG) Retinol-binding protein 4 | Progression to AML Poor prognosis |
Gonçalves, A. C et al. [10,11] | 2021, 2016 | Bone marrow peripheral blood (serum, plasma) | Superoxide anion Gene methylation promoters (p15, p16) | Progression to AML Involvement of oxidative stress in MDS |
Tsamesidis I. et al. [12] | 2019 | Blood serum | Vitamin E, malonyldialdehyde | Involvement of oxidative stress in MDS |
Hlaváčková A et al. [13] | 2017 | Blood plasma | Serum albumin Fibrinogen alpha chain Fibrinogen beta chain Fibrinogen gamma chain Serotransferrin Ig alpha–1 chain C region Alpha–2—macroglobulin Ig mu chain C region Haptoglobin Apolipoprotein A-IV Apolipoprotein B-100 Apolipoprotein Complement C1r subcomponent Complement C3 Complement C4—A; Complement C4—B Complement component C9 Hemopexin Ceruloplasmin Inter-alpha-trypsin inhibitor heavy chain Vitronectin Gelsolin C4b-binding protein alpha chain Plasminogen Histidine-rich glycoprotein Clusterin Kininogen–1 Serum amyloid A–1 protein | Pathogenesis of MDS and oxidative stress |
Májek P et al. [14] | 2013 | Blood plasma | Inter–alpha–trypsin inhibitor heavy chain H4 (ITIH4) protein Retinol–binding protein 4 Alpha-2-HS glycoprotein (A2HSG) | Bone marrow morphology Poor prognosis |
Májek P et al. [15] | 2014 | Blood plasma | LRAG, ITIH4, A2HSG | Progression to AML Poor prognosis |
Rodriguez-Garcia A et al. [16] | 2019 | Bone marrow CD34+ cells | Actin cytoplasmic 1 Zinc finger protein 846 14–3–3 protein zeta/delta L-lactate dehydrogenase, A chain p21 | Progression to AML Involvement of oxidative stress Pathogenesis of MDS |
Pimková K et al. [17] | 2014 | Blood serum blood plasma | Cysteine (Cys) Homocysteine (HCys) Cysteinylglycine (CG) MDA | Involvement of oxidative stress Pathogenesis of MDS |
Chai X et al. [18] | 2015 | BM mononuclear cells (BMMNCs) mesenchymal stem cells (MSCs) blood plasma | Iron overload | Bone marrow injury |
DeSouza G.F. et al. [19] | 2014 | Peripheral blood | MDA Lipid peroxides | Involvement of oxidative stress Pathogenesis of MDS |
WHO—2001 [28] | WHO—2008 [29] | WHO—HAEM4 (2016) [27] |
---|---|---|
- | Refractory cytopenia with unilineage dysplasia (RA, refractory neutropenia, refractory thrombocytopenia | - |
Refractory anemia with ringed sideroblasts (RARS) | Refractory anemia with ringed sideroblasts (RARS) | MDS with ring sideroblasts |
Refractory anemia with multilineage dysplasia and ringed sideroblasts | - | - |
MDS associated with isolated del(5q) | MDS with isolated del(5q) | MDS with isolated del(5q) |
- | - | MDS with single lineage dysplasia |
Refractory cytopenia with multilineage dysplasia (RCMD) | Refractory cytopenia with multilineage dysplasia (RCMD) | MDS with multilineage dysplasia |
Refractory anemia with excess blasts-1 (RAEB–1) | Refractory anemia with excess blasts | MDS–EB–1 (5–9% blasts) |
Refractory anemia with excess blasts-2 (RAEB–2) | Refractory anemia with excess blasts | MDS–EB–2 (10–19% blasts) |
Myelodysplastic syndrome, unclassified (MDS–U) | Myelodysplastic syndrome, unclassified (MDS–U) | - |
ICC (2022) [27] | WHO–HAEM5 (2022) [27] |
---|---|
Clonal cytopenia of undetermined significance (CCUS) | Clonal cytopenia of undetermined significance (CCUS) |
MDS with mutated SF3B1 | MDS with low blasts and SF3B1 mutation |
MDS with del(5q) | MDS with low blasts and isolated 5q deletion |
MDS with mutated TP53 | MDS with biallelic TP53 inactivation |
MDS, NOS without dysplasia | - |
MDS, NOS with single lineage dysplasia | Definition of lineage dysplasia, optional |
MDS, NOS with multilineage dysplasia | Definition of lineage dysplasia, optional |
- | MDS with low blasts (<5% blasts) |
- | MDS hypoplastic |
MDS with excess blasts (5–9% blasts) | MDS with increased blasts (MDS–IB1) (5–9% blasts) |
MDS/AML (10–19% blasts) | MDS with increased blasts (MDS–IB2) (10–19% blasts) |
MDS/AML with mutated TP53 | - |
MDS/AML with myelodysplasia—related mutations | - |
MDS/AML with myelodysplasia—related cytogenetic abnormalities | - |
MDS/AML NOS | - |
- | MDS with fibrosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boura-Theodorou, A.; Psatha, K.; Maniatsi, S.; Kourti, A.; Kaiafa, G.; Aivaliotis, M.; Makedou, K. Oxidative Stress and Its Role in the Emergence and Progression of Myelodysplastic Syndromes: Insights from Proteomic Analysis and Other Methodologies. Proteomes 2025, 13, 21. https://doi.org/10.3390/proteomes13020021
Boura-Theodorou A, Psatha K, Maniatsi S, Kourti A, Kaiafa G, Aivaliotis M, Makedou K. Oxidative Stress and Its Role in the Emergence and Progression of Myelodysplastic Syndromes: Insights from Proteomic Analysis and Other Methodologies. Proteomes. 2025; 13(2):21. https://doi.org/10.3390/proteomes13020021
Chicago/Turabian StyleBoura-Theodorou, Anastasia, Konstantina Psatha, Stefania Maniatsi, Areti Kourti, Georgia Kaiafa, Michalis Aivaliotis, and Kali Makedou. 2025. "Oxidative Stress and Its Role in the Emergence and Progression of Myelodysplastic Syndromes: Insights from Proteomic Analysis and Other Methodologies" Proteomes 13, no. 2: 21. https://doi.org/10.3390/proteomes13020021
APA StyleBoura-Theodorou, A., Psatha, K., Maniatsi, S., Kourti, A., Kaiafa, G., Aivaliotis, M., & Makedou, K. (2025). Oxidative Stress and Its Role in the Emergence and Progression of Myelodysplastic Syndromes: Insights from Proteomic Analysis and Other Methodologies. Proteomes, 13(2), 21. https://doi.org/10.3390/proteomes13020021