Innovative Drilling and Extraction Techniques for the Future of Oil and Gas

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Energy Systems".

Deadline for manuscript submissions: 31 July 2026 | Viewed by 1023

Special Issue Editor


E-Mail Website
Guest Editor
School of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China
Interests: dynamics and control; modern design of oil and gas equipment; underground tools and drill bit technology; underground testing and intelligent control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advances in modern oil and gas technology are transforming the industry through four key areas: intelligent automation, environmental protection, cost-effectiveness, and flexible solutions. By combining artificial intelligence and robotic systems, drilling equipment relies on real-time data analysis to improve accuracy and predict maintenance needs. Meanwhile, strategies to combat climate change are reducing carbon emissions through better monitoring and integration with renewable energy sources. Advances in materials and engineering methods are helping to utilize resources more efficiently, increasing production while reducing environmental impact. Collaboration across industries is also creating adaptable technologies that work together to build stronger energy systems, which balance economic needs with environmental protection in the current changing world.

This Special Issue, titled "Innovative Drilling and Extraction Techniques for the Future of Oil and Gas", seeks high-quality works focusing on cutting-edge advancements in exploration and production. Topics include, but are not limited to, the following:

  • Intelligent drilling technology for complex downhole challenges;
  • Efficient solutions for downhole drilling;
  • Design, analysis, control, and optimization in oil and gas extraction;
  • Simulation techniques, software, algorithms, or other tools for modeling and simulation, or other.

Thanks and I hope you consider participating in this Special Issue.

Prof. Dr. Jialin Tian
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drilling
  • extraction
  • optimization
  • energy
  • process systems engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3415 KB  
Article
Drilling Performance Experiment and Working Load Modeling Calculation of Diamond Coring Bit
by Jianlin Yao, Bin Liu, Kunpeng Yao and Haitao Ren
Processes 2026, 14(2), 267; https://doi.org/10.3390/pr14020267 - 12 Jan 2026
Viewed by 268
Abstract
Diamond coring bits exhibit stable rock-breaking and coring processes as well as a long service life. However, when drilling in complex and challenging formations are characterized by high hardness, strong plasticity, and high abrasiveness, issues such as low rock-breaking efficiency, rapid failure, and [...] Read more.
Diamond coring bits exhibit stable rock-breaking and coring processes as well as a long service life. However, when drilling in complex and challenging formations are characterized by high hardness, strong plasticity, and high abrasiveness, issues such as low rock-breaking efficiency, rapid failure, and shortened service life frequently occur. To prevent premature bit failure and enhance rock-breaking efficiency, this study investigated the effects of drilling pressure and rotational speed on rock-breaking performance through bench-scale experiments using typical rock samples. A total of 15 experimental groups were included in this study, with one independent trial performed for each group. ROP is calculated as the ratio of effective drilling depth to time consumed, and MSE is derived based on axial force, torque, and rock-breaking volume. The experimental results indicated that (1) sandstone is more sensitive to rotational speed, whereas limestone and dolomite are more sensitive to drilling pressure; (2) the minimum mechanical specific energy (MSE) of sandstone was achieved at a drilling pressure of 15 kN and rotational speed of 50 r/min; (3) limestone exhibited the lowest MSE at 10 kN drilling pressure and 50 r/min rotational speed; and (4) dolomite showed the minimum energy consumption at 10 kN drilling pressure and 25 r/min rotational speed. On this basis, this paper establishes a cutting mechanics model for single-crystal diamond and a working load calculation model for the entire bit, respectively. The cutting mechanics model for single-crystal diamond is re-established based on Hertzian contact theory and elastic-plastic deformation theory. The findings of this study are expected to provide a working load calculation method for diamond coring bits in typical complex and challenging drilling formations and offer technical support for the design of coring bit cutting structures and the development of customized new products. It should be noted that the conclusions of this study are limited to the experimental parameter range (drilling pressure: 5–15 kN; rotational speed: 25–80 r/min), and their applicability under higher load conditions requires further verification. Full article
Show Figures

Figure 1

21 pages, 4703 KB  
Article
Nonlinear Dynamics and Stick-Slip Suppression in a Drill String System Under Harmonic Excitation
by Siqi Li, Zhuo Chen, Yingcao Zhou, Mingyu Qin, Ye Yuan and Zihao Guan
Processes 2026, 14(1), 93; https://doi.org/10.3390/pr14010093 - 26 Dec 2025
Viewed by 319
Abstract
Axial harmonic excitation is an emerging method for enhancing drilling speed, yet its influence on the torsional dynamics of a drill string remains unclear. To investigate these effects, this study establishes a single-degree-of-freedom (SDOF) nonlinear torsional dynamic model capable of coupling axial harmonic [...] Read more.
Axial harmonic excitation is an emerging method for enhancing drilling speed, yet its influence on the torsional dynamics of a drill string remains unclear. To investigate these effects, this study establishes a single-degree-of-freedom (SDOF) nonlinear torsional dynamic model capable of coupling axial harmonic excitation. The model, based on Stribeck friction theory, describes the interaction by coupling the axial harmonic load with the torsional dynamic equation. After non-dimensionalizing the model, the influence patterns of static load amplitude, dynamic load amplitude, and excitation frequency on the system’s dynamics are systematically investigated. The results show that increasing the static load amplitude aggravates stick-slip vibrations, whereas increasing the dynamic load amplitude is largely ineffective for suppression and may even induce complex motions. In contrast, adjusting the excitation frequency can suppress and even eliminate stick-slip vibrations, allowing the system to achieve stable, continuous rotation. Furthermore, an interaction effect exists between the static load amplitude and the excitation frequency; at any given frequency, the Percentage of Sticking Time (PST) increases as the static load amplitude grows. This study also reveals the non-monotonic nature of the frequency’s suppression effect on vibration. These findings demonstrate that frequency optimization is the fundamental strategy for vibration suppression, requiring the dynamic load frequency to be adjusted to a specific range based on the actual weight on bit (WOB) in drilling operations. This research provides not only a deep mechanistic understanding of the drill string’s nonlinear dynamics under complex excitation but also a key theoretical basis for designing vibration suppression strategies in advanced drilling technologies. Full article
Show Figures

Figure 1

Back to TopTop