Bio-Mimicked and Bio-Inspired Synthetic Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (15 February 2024) | Viewed by 6898

Special Issue Editors


E-Mail Website
Guest Editor
Molecular Biotehnology, Turkish-German University, Beykoz, Turkey
Interests: Intrinsically disordered proteins and bio-inspired polymers

grade E-Mail Website
Guest Editor
Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA
Interests: intrinsically disordered proteins; protein folding; protein misfolding; partially folded proteins; protein aggregation; protein structure; protein function; protein stability; protein biophysics; protein bioinformatics; conformational diseases; protein–ligand interactions; protein–protein interactions; liquid-liquid phase transitions
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nature is replete with examples of processes that have been perfected through evolution to effectively use matter and to sustain life. Bio-mimicked and bio-inspired synthetic polymers, used in biology and medicine, will open new avenues in various areas, such as health, defence and nano(bio)technology. These polymers can “transcend Nature” by initiating improvements in biostability and bioavailability compared to their natural counterparts. Furthermore, useful parameters can be precisely and independently controlled for interrogating structure–activity relationships. In fact, many natural biological materials have been used as inspiration to develop innovative synthetic analogues for various areas. In this Special Issue, we focus on bio-mimicked and bio-inspired synthetic polymers, which are useful in many various areas.

Dr. Orkid Coskuner-Weber
Prof. Dr. Vladimir N. Uversky
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomimetic polymers
  • bioinspired polymers
  • coiled polymers
  • foldamers
  • experiments
  • characterization

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 4387 KiB  
Article
Fabrication of Superhydrophobic/Superoleophilic Bamboo Cellulose Foam for Oil/Water Separation
by Chun-Hua Liu, Jiao-Ping Shang, Xing Su, Shuang Zhao, Yun Peng and Yi-Bao Li
Polymers 2022, 14(23), 5162; https://doi.org/10.3390/polym14235162 - 27 Nov 2022
Cited by 8 | Viewed by 2367
Abstract
Water is an indispensable strategic resource for biological and social development. The problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil pollution has become an extremely serious international challenge. At present, numerous superwetting materials have been applied to [...] Read more.
Water is an indispensable strategic resource for biological and social development. The problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil pollution has become an extremely serious international challenge. At present, numerous superwetting materials have been applied to effectively separate oil and water. However, most of these materials are difficult to scale and their large–scale application is limited by cost and environmental protection. Herein, a simple, environmentally friendly strategy including sol–gel, freeze–drying and surface hydrophobic modification is presented to fabricate a bamboo cellulose foam with special wetting characteristics. The bamboo cellulose foam is superhydrophobic, with a water contact angle of 160°, and it has the superoleophilic property of instantaneous oil absorption. Owing to the synergistic effect of the three–dimensional network structure of the superhydrophobic bamboo cellulose foam and its hydrophobic composition, it has an excellent oil–absorption performance of 11.5 g/g~37.5 g/g for various types of oil, as well as good recyclability, with an oil (1,2–dichloroethane) absorption capacity of up to 31.5 g/g after 10 cycles. In addition, the prepared cellulose–based foam exhibits an outstanding performance in terms of acid and alkali corrosion resistance. Importantly, owing to bamboo cellulose being a biodegradable, low–cost, natural polymer material that can be easily modified, superhydrophobic/superoleophilic bamboo cellulose foam has great application potential in the field of oily wastewater treatment. Full article
(This article belongs to the Special Issue Bio-Mimicked and Bio-Inspired Synthetic Polymers)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 2150 KiB  
Review
Intrinsically Disordered Synthetic Polymers in Biomedical Applications
by Elif Yuce-Erarslan, Abraham (Avi) J. Domb, Haytam Kasem, Vladimir N. Uversky and Orkid Coskuner-Weber
Polymers 2023, 15(10), 2406; https://doi.org/10.3390/polym15102406 - 22 May 2023
Cited by 5 | Viewed by 1787
Abstract
In biology and medicine, intrinsically disordered synthetic polymers bio-mimicking intrinsically disordered proteins, which lack stable three-dimensional structures, possess high structural/conformational flexibility. They are prone to self-organization and can be extremely useful in various biomedical applications. Among such applications, intrinsically disordered synthetic polymers can [...] Read more.
In biology and medicine, intrinsically disordered synthetic polymers bio-mimicking intrinsically disordered proteins, which lack stable three-dimensional structures, possess high structural/conformational flexibility. They are prone to self-organization and can be extremely useful in various biomedical applications. Among such applications, intrinsically disordered synthetic polymers can have potential usage in drug delivery, organ transplantation, artificial organ design, and immune compatibility. The designing of new syntheses and characterization mechanisms is currently required to provide the lacking intrinsically disordered synthetic polymers for biomedical applications bio-mimicked using intrinsically disordered proteins. Here, we present our strategies for designing intrinsically disordered synthetic polymers for biomedical applications based on bio-mimicking intrinsically disordered proteins. Full article
(This article belongs to the Special Issue Bio-Mimicked and Bio-Inspired Synthetic Polymers)
Show Figures

Scheme 1

14 pages, 3929 KiB  
Review
Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics
by Orkid Coskuner-Weber, Elif Yuce-Erarslan and Vladimir N. Uversky
Polymers 2023, 15(3), 763; https://doi.org/10.3390/polym15030763 - 2 Feb 2023
Cited by 2 | Viewed by 1797
Abstract
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically [...] Read more.
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers. Full article
(This article belongs to the Special Issue Bio-Mimicked and Bio-Inspired Synthetic Polymers)
Show Figures

Scheme 1

Back to TopTop