Structural and Functional Analysis of Extracts in Plants III

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: closed (15 March 2023) | Viewed by 92171

Special Issue Editor


E-Mail Website
Guest Editor
1. Dipartimento di Biotecnologie Chimica e Farmacia, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
2. SienabioACTIVE, Università di Siena, Via Aldo Moro, 53100 Siena, Italy
Interests: plants extracts; bioactivity; extraction techniques; biomaterials; in vitro cell compatibility; cytotoxicity; mutagenicity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The journal Plants will be publishing the third volume of the Special Issue on “Structural and Functional Analysis of Extracts in Plants”. Plant extracts are extremely complex pools of phytochemicals and, together with their metabolites, are useful for a multitude of applications in different fields. Natural products from plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads, in the food market and in the cosmetic industry.

The use of plant extracts in all these areas depends on their bioactivity and, therefore, their composition, which is closely related to the extraction method. Extraction is in fact the most important step in plant extract preparations, and the use of different extraction techniques determines the bioactive compounds present. Since bioactive compounds occurring in plant material consist of multicomponent mixtures, their separation and identification are fundamental processes in the structural analysis of extracts. Finally, the analysis of plant extracts and/or purified bioactive compounds, involving the applications of common phytochemical and in vitro biological screening assays, is essential for the correlation of structure with function of extracts in order to identify their bioactivity for targeted applications.

Thus, considering the great interest in plant extracts, this third volume of Special Issue will continue to cover several aspects of their structural and functional analysis in order to correlate extraction techniques with the chemical composition of extracts and their bioactivity to elucidate the characteristics of plant-derived compounds that might be used as active substances in a wide variety of areas.

Dr. Stefania Lamponi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant extracts
  • phytochemicals
  • natural food additives
  • bioactive compounds
  • in vitro biological screening

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (39 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1760 KiB  
Article
Determination of Caffeoylquinic Acids Content by UHPLC in Scolymus hispanicus Extracts Obtained through Ultrasound-Assisted Extraction
by Antonio Ruano-González, Ana A. Pinto, Nuria Chinchilla, Miguel Palma, Gerardo F. Barbero, Ceferino Carrera and Mercedes Vázquez-Espinosa
Plants 2023, 12(12), 2340; https://doi.org/10.3390/plants12122340 - 16 Jun 2023
Viewed by 1940
Abstract
Scolymus hispanicus L., also known as golden thistle, Spanish oyster thistle or, more commonly, as tagarnina is a plant that belongs to the Asteraceae family. It is collected from the wild for human consumption in Mediterranean countries. It is a relevant ingredient in [...] Read more.
Scolymus hispanicus L., also known as golden thistle, Spanish oyster thistle or, more commonly, as tagarnina is a plant that belongs to the Asteraceae family. It is collected from the wild for human consumption in Mediterranean countries. It is a relevant ingredient in Andalusian culinary culture, where the midribs of young plants are harvested for consumption. Scolymus hispanicus L. contains a wide variety of phenolic compounds such as caffeoylquinic acids (CQAs), among others. In the present work, the major phenolic compounds present in tagarnina have been identified, with 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-diCQA) being the main ones. A method based on ultrasound-assisted extraction (UAE) has been developed for the extraction of these compounds, with the percentage of methanol, sample-to-solvent ratio and the pH being the most influential factors. The developed method has been validated and employed to determine the concentration of 5-CQA and 3,5-diCQA in the midribs of Scolymus hispanicus, collected in six different places in the south of Spain. The antioxidant activity of the samples has also been determined, and a direct correlation with their caffeoylquinic compounds content has been established, showing an antioxidant effect. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

19 pages, 2994 KiB  
Article
An Investigation into the Acute and Subacute Toxicity of Extracts of Cassipourea flanaganii Stem Bark In Vivo
by Nomakhosi Mpofana, John Kudakwashe Chipangura, Michael Paulse, Masande Yalo, Nceba Gqaleni, Celenkosini Thembelenkosini Nxumalo, Ncoza Cordelia Dlova, Ahmed A. Hussein and Neil R. Crouch
Plants 2023, 12(12), 2281; https://doi.org/10.3390/plants12122281 - 12 Jun 2023
Cited by 2 | Viewed by 1296
Abstract
The conventional use of medicinal plants is in part based on the widespread belief that plant crude extracts are non-toxic. In South Africa, traditional preparations of Cassipourea flanaganii used to treat hypermelanosis have accordingly been regarded by many as non-toxic. Whether that is [...] Read more.
The conventional use of medicinal plants is in part based on the widespread belief that plant crude extracts are non-toxic. In South Africa, traditional preparations of Cassipourea flanaganii used to treat hypermelanosis have accordingly been regarded by many as non-toxic. Whether that is so impacts on the potential of bark extracts to be developed as a commercial drug to treathypermelanosis, given their documented capacity to inhibit tyrosinase activity. Our study investigated the acute and subacute toxicity of the methanol extract of C. flanaganii bark in rats. Wistar rats were randomly assigned into different treatment groups. The rats received a daily oral gavage of crude extract for acute and subacute toxicity tests. Haematological, biomechanical, clinical and histopathology examinations were carried out to evaluate the possible toxicity of C. flanaganii. The results were subjected to the Student’s t-test and ANOVA. For both acute and subacute toxicity, there was no statistical difference between the groups. There were no clinical or behavioral signs of toxicity observed in the rats. No treatment-related gross pathology lesions and no histopathology were observed. The findings of this study demonstrate the absence of acute or subacute toxicity after oral treatment with C. flanaganii stem bark extracts in Wistar rats at the levels administered. Chemical profiling of the total extract using LC-MS tentatively identified eleven (11) compounds as the major chemical constituents. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

22 pages, 1962 KiB  
Article
Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania
by Andreea Maria Iordache, Constantin Nechita, Paula Podea, Niculina Sonia Șuvar, Cornelia Mesaroṣ, Cezara Voica, Ramona Bleiziffer and Monica Culea
Plants 2023, 12(11), 2183; https://doi.org/10.3390/plants12112183 - 31 May 2023
Cited by 10 | Viewed by 2771
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of [...] Read more.
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts’ antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

24 pages, 16375 KiB  
Article
Silver Nanoparticles of Artemisia sieberi Extracts: Chemical Composition and Antimicrobial Activities
by Fatimah Al-Otibi, Nourah A. Alshammry, Raedah I. Alharbi, May N. Bin-Jumah and Maha M. AlSubaie
Plants 2023, 12(11), 2093; https://doi.org/10.3390/plants12112093 - 24 May 2023
Cited by 3 | Viewed by 2172
Abstract
Background: Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and [...] Read more.
Background: Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and ethanolic extracts of A. sieberi. In addition, the study investigated the effect of silver nanoparticles (AgNPs) synthesized from the A. sieberi extract. Methods: The ethanolic and aqueous extracts and AgNPs were prepared from the shoots of A. sieberi. The characteristics of AgNPs were assessed by UV–visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The antibacterial experiments were performed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The fungal species used were Candida parapsilosis, Candida krusei, Candida famata, Candida rhodotorula, and Candida albicans. The antibacterial and antifungal characteristics were evaluated by measuring the diameter of growing organisms in Petri dishes treated with different concentrations of either extracts or AgNPs compared to the untreated controls. Furthermore, TEM imaging was used to investigate any ultrastructure changes in the microbes treated with crude extracts and AgNO3. Results: The ethanolic and aqueous extracts significantly decreased the growth of E. coli, S. aureus, and B. subtilis (p < 0.001), while P. aeruginosa was not affected. Unlike crude extracts, AgNPs had more substantial antibacterial effects against all species. In addition, the mycelial growth of C. famata was reduced by the treatment of both extracts. C. krusei mycelial growth was decreased by the aqueous extract, while the growth of C. parapsilosis was affected by the ethanolic extract and AgNPs (p < 0.001). None of the treatments affected the growth of C. albicans or C. rhodotorula. TEM analysis showed cellular ultrastructure changes in the treated S. aureus and C. famata compared to the control. Conclusion: The biosynthesized AgNPs and extracts of A. sieberi have a potential antimicrobial characteristic against pathogenic bacterial and fungal strains and nullified resistance behavior. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

15 pages, 2037 KiB  
Article
Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries
by Toktam Taghavi, Hiral Patel and Reza Rafie
Plants 2023, 12(9), 1833; https://doi.org/10.3390/plants12091833 - 29 Apr 2023
Cited by 9 | Viewed by 2626
Abstract
Anthocyanins are a major group of plant pigments that have antioxidant activities. Pigments play a major role in human health and have attracted a lot of attention globally. Many factors affect anthocyanin yields, such as solvent type, incubation time, solvent-to-sample ratio, sample type, [...] Read more.
Anthocyanins are a major group of plant pigments that have antioxidant activities. Pigments play a major role in human health and have attracted a lot of attention globally. Many factors affect anthocyanin yields, such as solvent type, incubation time, solvent-to-sample ratio, sample type, and temperature. The first parameter was tested, and the rest were considered constant in this experiment. A total of nine organic and water-based solvents (methanol and chloroform: methanol, acetone, ethanol, water) and their combinations were compared to extract anthocyanins from freshly-pureed strawberries. Solvents changed anthocyanin yield, color parameters, and profile. The color parameters of a* values lower than 30, L* values higher than 85, hue angle more than 40, and chroma less than 30 indicated some color degradation in strawberry anthocyanins. Therefore, the best solvents for anthocyanin assessment were methanol and methanol: water. The second-best solvent was the pH differential buffers. Other solvents such as ethanol, chloroform: methanol, water, and water-based solvents extracted considerable amounts of anthocyanins; however, they showed some degree of color degradation, evidenced by the color parameters. Acetone did not yield a stable extract which degraded over 48 h of storage at 4 °C. The extraction solvent determined the main anthocyanin of the anthocyanins profile. Pelargonidin was the major anthocyanin in chloroform: methanol solvent, while delphinidin was dominant in all other solvents. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 14553 KiB  
Article
Pluronic-F-127-Passivated SnO2 Nanoparticles Derived by Using Polygonum cuspidatum Root Extract: Synthesis, Characterization, and Anticancer Properties
by Badr Alzahrani, Abozer Y. Elderdery, Nasser A. N. Alzerwi, Abdullah Alsrhani, Afnan Alsultan, Musaed Rayzah, Bandar Idrees, Fares Rayzah, Yaser Baksh, Ahmed M. Alzahrani, Suresh K. Subbiah and Pooi Ling Mok
Plants 2023, 12(9), 1760; https://doi.org/10.3390/plants12091760 - 25 Apr 2023
Cited by 5 | Viewed by 2162
Abstract
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. [...] Read more.
Nanotechnology has emerged as the most popular research topic with revolutionary applications across all scientific disciplines. Tin oxide (SnO2) has been gaining considerable attention lately owing to its intriguing features, which can be enhanced by its synthesis in the nanoscale range. The establishment of a cost-efficient and ecologically friendly procedure for its production is the result of growing concerns about human well-being. The novelty and significance of this study lie in the fact that the synthesized SnO2 nanoparticles have been tailored to have specific properties, such as size and morphology. These properties are crucial for their applications. Moreover, this study provides insights into the synthesis process of SnO2 nanoparticles, which can be useful for developing efficient and cost-effective methods for large-scale production. In the current study, green Pluronic-coated SnO2 nanoparticles (NPs) utilizing the root extracts of Polygonum cuspidatum have been formulated and characterized by several methods such as UV–visible, Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDAX), transmission electron microscope (TEM), field emission-scanning electron microscope (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL), and dynamic light scattering (DLS) studies. The crystallite size of SnO2 NPs was estimated to be 45 nm, and a tetragonal rutile-type crystalline structure was observed. FESEM analysis validated the NPs’ spherical structure. The cytotoxic potential of the NPs against HepG2 cells was assessed using the in vitro MTT assay. The apoptotic efficiency of the NPs was evaluated using a dual-staining approach. The NPs revealed substantial cytotoxic effects against HepG2 cells but failed to exhibit cytotoxicity in different liver cell lines. Furthermore, dual staining and flow cytometry studies revealed higher apoptosis in NP-treated HepG2 cells. Nanoparticle treatment also inhibited the cell cycle at G0/G1 stage. It increased oxidative stress and promoted apoptosis by encouraging pro-apoptotic protein expression in HepG2 cells. NP treatment effectively blocked the PI3K/Akt/mTOR axis in HepG2 cells. Thus, green Pluronic-F-127-coated SnO2 NPs exhibits enormous efficiency to be utilized as an talented anticancer agent. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 12655 KiB  
Article
Bio-Fabrication of Silver Nanoparticles Using Citrus aurantifolia Fruit Peel Extract (CAFPE) and the Role of Plant Extract in the Synthesis
by Tijjani Mustapha, Nur Raihana Ithnin, Hidayatulfathi Othman, Zatul-’Iffah Abu Hasan and Norashiqin Misni
Plants 2023, 12(8), 1648; https://doi.org/10.3390/plants12081648 - 14 Apr 2023
Cited by 9 | Viewed by 2581
Abstract
The green synthesis of silver nanoparticles has been proposed as an eco-friendly and cost-effective substitute for chemical and physical methods. The aim of this study was to synthesize and characterize silver nanoparticles using the peel extract of Citrus aurantifolia fruit, and to determine [...] Read more.
The green synthesis of silver nanoparticles has been proposed as an eco-friendly and cost-effective substitute for chemical and physical methods. The aim of this study was to synthesize and characterize silver nanoparticles using the peel extract of Citrus aurantifolia fruit, and to determine the possible phytochemical constituents’ presence in the plant extracts that might be responsible for the synthesis. Citrus aurantifolia fruit peel extraction was followed by phytochemical studies of secondary metabolites, FTIR analysis confirmation of functional groups, and GC–MS analysis. Silver nanoparticles were synthesized through bio-reduction of silver ions (Ag+) to silver nanoparticles using CAFPE and characterized using UV-Vis spectroscopy, HR–TEM, FESEM, EDX, XRD, DLS, and FTIR. The presence of plant secondary metabolites such as alkaloids, flavonoids, tannins, saponins, phenols, terpenoids, and steroids was detected. The FTIR analysis of the extract revealed the presence of functional groups like hydroxyl, carboxyl, carbonyl, amine, and phenyl, whereas the GC–MS analysis indicated presence of chemical compounds such as 1,2,4-Benzenetricarboxylic acid, Fumaric acid, nonyl pentadecyl, and 4-Methyl-2-trimethylsilyloxy-acetophenone, etc., with similar functional groups. The synthesized silver nanoparticle (AgNP) has displayed the characteristics of a surface plasmon resonance (SPR) band peak from 360–405 nm. High resolution transmission electron microscope (HR-TEM) and field emission scan electron microscope (FESEM) confirm polydisperse, spherical shaped, and smooth surface nanoparticles with an average size of 24.023 nm. Energy dispersive X-ray (EDX) analysis further revealed that silver is the most abundant element found in the micrograph of the nanoparticles, and FTIR analysis further confirmed the presence of different functional groups in the surface of the nanoparticle. The XRD analysis also confirmed that the nanoparticles synthesized are crystalline in nature. Based on the findings of this study, it is understood that the variety of natural compounds that are present in plant extracts of Citrus aurantifolia fruit peel can act as both reducing and stabilizing agents for the synthesis of silver nanoparticles. It is, therefore, concluded that Citrus aurantifolia peel extract can be potentially used for the large production of silver nanoparticles for several applications. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

11 pages, 721 KiB  
Article
In Vitro Cytotoxic Potential of Selected Jordanian Flora and Their Associated Phytochemical Analysis
by Manal I. Alruwad, Manal M. Sabry, Abdallah M. Gendy, Riham Salah El-Dine and Hala M. El Hefnawy
Plants 2023, 12(8), 1626; https://doi.org/10.3390/plants12081626 - 12 Apr 2023
Cited by 7 | Viewed by 1796
Abstract
Traditional medicines are a significant source of phytochemicals with potential anticancer effects. Ten Jordanian plants were chosen to be tested for cytotoxicity on human colorectal (HT-29) and breast adenocarcinoma (MCF-7) cell lines. The ethanol extracts were screened for their potential cytotoxic effects using [...] Read more.
Traditional medicines are a significant source of phytochemicals with potential anticancer effects. Ten Jordanian plants were chosen to be tested for cytotoxicity on human colorectal (HT-29) and breast adenocarcinoma (MCF-7) cell lines. The ethanol extracts were screened for their potential cytotoxic effects using a Sulforhodamine B (SRB) colorimetric assay, using doxorubicin as positive control. Plants extracts exhibiting marked cytotoxic activity were further investigated by qualitative and quantitative phytochemical methods. Total phenolics were quantified using the Folin-Ciocalteu reagent, while flavonoids were quantified using aluminum chloride. The total saponins of the n-butanol fraction were estimated using diosgenin as a standard. The total alkaloids and total terpenoids were also evaluated using the gravimetric method. As results, Senecio leucanthemifolius (IC50: 13.84 μg/mL) and Clematis cirrhosa (IC50: 13.28 μg/mL) exhibited marked cytotoxic effects on human colorectal adenocarcinoma (HT-29) cell lines. Total phenolics, flavonoids, saponins, alkaloids, and terpenoids found in Senecio leucanthemifolius were (91.82, 14.90, 14.27, 101, and 135.4 mg/g of dry extract), respectively. They were revealed to be (68.18, 7.16, 31.25, 73.6, and 180 mg/g of dry extract) in Clematis cirrhosa, respectively. Senecio leucanthemifolius and Clematis cirrhosa have been found to possess cytotoxicity against colorectal (HT-29). In conclusion, the findings of this study offer a new perspective on Jordanian plant extracts anticancer activity research. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

20 pages, 2039 KiB  
Article
Moringa oleifera Lam Leaf Extract Stimulates NRF2 and Attenuates ARV-Induced Toxicity in Human Liver Cells (HepG2)
by Siqiniseko S. Ndlovu, Anil A. Chuturgoon and Terisha Ghazi
Plants 2023, 12(7), 1541; https://doi.org/10.3390/plants12071541 - 3 Apr 2023
Cited by 3 | Viewed by 2101
Abstract
The World Health Organization (WHO) reported that there are 37 million individuals living with the human immunodeficiency virus (HIV) worldwide, with the majority in South Africa. This chronic disease is managed by the effective use of antiretroviral (ARV) drugs. However, with prolonged use, [...] Read more.
The World Health Organization (WHO) reported that there are 37 million individuals living with the human immunodeficiency virus (HIV) worldwide, with the majority in South Africa. This chronic disease is managed by the effective use of antiretroviral (ARV) drugs. However, with prolonged use, ARV drug-induced toxicity remains a clinically complex problem. This study investigated the toxicity of ARV drugs on mitochondria and the NRF2 antioxidant pathway and its possible amelioration using Moringa oleifera Lam (MO) leaf extracts. This medicinal plant has a range of functional bioactive compounds. Liver (HepG2) cells were treated with individual ARV drugs: Tenofovir disoproxil fumarate (TDF), Emtricitabine (FTC), and Lamivudine (3TC) for 96 h, followed by MO leaf extracts for 24 h. Intracellular ROS, cytotoxicity, lipid peroxidation, total and reduced glutathione (GSH), ATP, and mitochondrial polarisation were determined. Finally, protein (pNRF2, NRF2, SOD2, CAT, and Sirt3) and mRNA (NRF2, CAT, NQO1 SOD2, Sirt3, and PGC1α) expression were measured using Western blot and qPCR, respectively. TDF, FTC, and 3TC significantly increased intracellular ROS and extracellular levels of both MDA and LDH. ARVs also reduced the GSH and ATP levels and altered the mitochondrial polarization. Further, ARVs reduced the expression of NRF2 SOD2, Sirt3, CAT, NQO1, UCP2 and PGC1α mRNA and consequently pNRF2, NRF2, SOD2, Sirt3 and CAT protein. In contrast, there was a significant reduction in the extracellular MDA and LDH levels post-MO treatment. MO significantly reduced intracellular ROS while significantly increasing GSH, ATP, and mitochondrial membrane polarization. The addition of MO to ARV-treated cells significantly upregulated the expression of NRF2, SOD2, Sirt3, CAT, UCP2, PGC1α, and NQO1 mRNA and pNRF2, NRF2, SOD2, Sirt3 proteins. Thus, MO ameliorates ARV-induced hepatotoxicity by scavenging oxidants by inducing the NRF2 antioxidant pathway. MO shows great therapeutic potential and may be considered a potential supplement to ameliorate ARV drug toxicity. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 2521 KiB  
Article
An Insight into In Vitro Antioxidant, Antimicrobial, Cytotoxic, and Apoptosis Induction Potential of Mangiferin, a Bioactive Compound Derived from Mangifera indica
by Ramy S. Yehia and Sarah A. Altwaim
Plants 2023, 12(7), 1539; https://doi.org/10.3390/plants12071539 - 3 Apr 2023
Cited by 8 | Viewed by 2743
Abstract
Due to their low cost, toxicity, and health risks, medicinal plants have come to be seen as useful products and sources of biologically active compounds. Mangifera indica L., a medicinal plant with a long history, has a high bioactive metabolites content. Mangiferin (C [...] Read more.
Due to their low cost, toxicity, and health risks, medicinal plants have come to be seen as useful products and sources of biologically active compounds. Mangifera indica L., a medicinal plant with a long history, has a high bioactive metabolites content. Mangiferin (C19H18O11) is primary isolated from M. indica’s leaves, which has many pharmacological benefits. In this investigation, ultrasonic-assisted extraction with ethanol as the extraction solvent was applied to obtain mangiferin from a local type of M. indica leaves. HPLC was performed after a dichloromethane-ethyl acetate liquid–liquid fractionation method. Further, UV–vis, FTIR, and NMR spectroscopy were utilized to elucidate the structure. Interestingly, purified mangiferin displayed promising antimicrobial efficacy against a diverse variety of fungal and bacterial pathogens with MICs of 1.95–62.5 and 1.95–31.25 µg/mL, respectively. Time–kill patterns also showed that mangiferin had both bactericidal and fungicidal action. Furthermore, it exhibited strong radical dosage-dependent scavenging activity (IC50 = 17.6 μg/mL) compared to vitamin C (Vc, IC50 = 11.9 μg/mL), suggesting it could be developed into a viable antioxidant agent. To our delight, the IC50 values of mangiferin for the MCF-7 and HeLa cell lines were 41.2 and 44.7 μg/mL, respectively, from MTT cell viability testing, and it was less harmful when tested against the noncancerous cell line. Notably, it significantly induced cell apoptosis in MCF-7 cells by 62.2–83.4% using annexin V-FITC/PI labeling. Hence, our findings suggest that mangiferin can be used in the medical industry to create therapeutic interventions and medication delivery systems for society. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

12 pages, 1012 KiB  
Article
Toxicity and Anti-Inflammatory Effects of Agave sisalana Extract Derived from Agroindustrial Residue
by Luisa Taynara Silvério da Costa, Julia Amanda Rodrigues Fracasso, Lucas Pires Guarnier, Gustavo Reis de Brito, Daniel Baldini Fumis, Renata Aparecida de Camargo Bittencourt, Aimée Maria Guiotti, Débora de Barros Barbosa, Isabel Cristina Cherici Camargo, Edislane Barreiros de Souza, Pedro de Oliva Neto and Lucinéia dos Santos
Plants 2023, 12(7), 1523; https://doi.org/10.3390/plants12071523 - 31 Mar 2023
Cited by 3 | Viewed by 2166
Abstract
Background: In several countries, the leaf juice of Agave sisalana (also known as sisal) is widely used topically, especially as an antiseptic, and orally for the treatment of different pathologies. However, in Brazil, which is the largest producer of Agave sisalana, its residue, [...] Read more.
Background: In several countries, the leaf juice of Agave sisalana (also known as sisal) is widely used topically, especially as an antiseptic, and orally for the treatment of different pathologies. However, in Brazil, which is the largest producer of Agave sisalana, its residue, which represents the majority of its weight, has been thrown away. For this reason, the determination of the pharmacological and toxicological potentials of sisal residue and its possible therapeutic use is seen as a way to contribute to the sustainable development and social promotion of the largest producer of sisal in Brazil, the interior of Bahia State, which is among the poorest areas in the country. Given the scarcity of available scientific studies on the pharmacological and toxicological properties of sisal residue juice, this study aimed to promote the acid hydrolysis of this juice to potentiate the anti-inflammatory effect already described in the literature. Furthermore, it aimed to evaluate the toxicological profile of the hydrolyzed extract (EAH) and to determine its acute toxicity, as well as its side effects on the reproductive aspects of rats. Method: The anti-inflammatory effect of EAH was evaluated in vitro using the induction of hemolysis by hypotonic solution and in vivo in rats using the carrageenan-induced paw edema test and the xylene-induced ear edema test. The acute toxicity, resulting from a single-dose administration, was investigated for some manifestation of toxic symptoms related to motor control and consciousness in rats. At a concentration of 100 mg/kg, by repeated doses, the reproductive toxicity effects of EAH in rats were assessed. Results: In vitro anti-inflammatory activity was positive using the human red blood cell membrane stabilization method. In both in vivo tests used to assess the anti-inflammatory activity, EAH (at three doses) significantly inhibited edema when compared to the control group. At a dose of 50 mg/kg, EAH exhibited a greater effect than indomethacin, a nonsteroidal anti-inflammatory drug with known activity. In vivo toxicological studies have shown that EAH does not present toxic effects when administered orally in a single dose, up to 1000 mg/kg. Finally, EAH promoted a gonadotoxic effect and increased the embryonic mortality rate after implantation. Conclusions: It is suggested that the anti-edematogenic effect of the acid hydrolysis extract from sisal juice is due to the high concentration of steroidal sapogenins. Therefore, this extract can be considered a potential new anti-inflammatory or even an important sapogenin source for the development of steroidal glucocorticoids. However, further studies are needed to elucidate the chemical composition of sisal juice. Regarding toxicology studies, EAH did not show cytotoxic and clastogenic potentials, but it presented a powerful reproductive toxic effect in rats. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

20 pages, 3074 KiB  
Article
Allelopathic Activity of Canadian Goldenrod (Solidago canadensis L.) Extracts on Seed Germination and Growth of Lettuce (Lactuca sativa L.) and Garden Pepper Cress (Lepidium sativum L.)
by Asta Judžentienė, Jurga Būdienė, Linas Labanauskas, Donata Stancelytė and Irena Nedveckytė
Plants 2023, 12(7), 1421; https://doi.org/10.3390/plants12071421 - 23 Mar 2023
Cited by 2 | Viewed by 2727
Abstract
Native to N. America, Canadian goldenrod (Solidago canadensis L.) was introduced to Europe as an ornamental plant and quickly spread here and in other parts of the world. The rapid spread of the plant is due to several reasons: phenotypic plasticity, broad [...] Read more.
Native to N. America, Canadian goldenrod (Solidago canadensis L.) was introduced to Europe as an ornamental plant and quickly spread here and in other parts of the world. The rapid spread of the plant is due to several reasons: phenotypic plasticity, broad climatic tolerance, propagation via underground rhizomes and seeds that mature in large numbers, etc. Additionally, the success of Canadian goldenrod’s invasion is determined by its allelochemicals that affect seed germination, root formation and whole growth of nearby plants. Allelopathy of various extracts and essential oils (EOs) of S. canadensis on seed germination and growth of lettuce (Lactuca sativa L.) and garden pepper cress (Lepidium sativum L.) was evaluated and compared with other Solidago species (S. virgaurea, S. × niederederi) collected from the same growing locality in Lithuania. Soil characteristics (conductivity, pH and major elements) of the collecting site were determined. Aqueous flower extracts of all studied Solidago species showed the highest inhibitory effect on model plants. Canadian goldenrod leaf water/diethyl ether extract showed highest inhibitory effect in all relative concentrations (1.0; 0.1; 0.01) suppressing growth of L. sativa (from 0 to 2.3 mm compared with 22.7 mm for control samples) and L. sativum (from 0.5 to 16.8 mm compared with 35.3 mm in control). It was noticed that garden pepper cress was more susceptible to Solidago spp. inhibitory effects than lettuce. S. canadensis root EOs comprised mainly of limonene (35.0%) and β-pinene (26.2%) and inflorescence oils containing α-pinene (21.6%), germacrene D (15.1%), limonene (10.2%) and lupenyl acetate (9.8%) exhibited the highest inhibitory effect on lettuce and garden pepper cress growth. Relative germination and vigor index of model plants was conducted. Chemical composition of extracts and EOs was determined by HPLC/DAD/TOF and GC/MS techniques. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

18 pages, 2998 KiB  
Article
Unveiling Chemical, Antioxidant and Antibacterial Properties of Fagonia indica Grown in the Hail Mountains, Saudi Arabia
by Abdel Moneim E. Sulieman, Eida Alanaizy, Naimah A. Alanaizy, Emad M. Abdallah, Hajo Idriss, Zakaria A. Salih, Nasir A. Ibrahim, Nahid Abdelraheem Ali, Salwa E. Ibrahim and Bothaina S. Abd El Hakeem
Plants 2023, 12(6), 1354; https://doi.org/10.3390/plants12061354 - 17 Mar 2023
Cited by 8 | Viewed by 3059
Abstract
The Aja and Salma mountains in the Hail region are home to a variety of indigenous wild plants, some of which are used in Bedouin folk medicine to treat various ailments. The purpose of the current study was to unveil the chemical, antioxidant [...] Read more.
The Aja and Salma mountains in the Hail region are home to a variety of indigenous wild plants, some of which are used in Bedouin folk medicine to treat various ailments. The purpose of the current study was to unveil the chemical, antioxidant and antibacterial properties of Fagonia indica (Showeka) grown widely in these mountains, as data on the biological activities of this plant in this remote area are scarce. XRF spectrometry indicated the presence of some essential elements, which were in the order of Ca > S > K > AL > CL > Si > P > Fe > Mg > Na > Ti > Sr > Zn > Mn. Qualitative chemical screening revealed the presence of saponins, terpenes, flavonoids, tannins, phenols and cardiac glycosides in the methanolic extract (80% v/v). GC–MS showed the presence of 2-chloropropanoic acid 18.5%, tetrahydro-2-methylfuran 20.1%, tridecanoic acid 12-methyl-, methyl ester 2.2%, hexadecanoic acid, methyl ester 8.6%, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate 13.4%, methyl linoleate 7.0%, petroselinic acid methyl ester 15%, erucylamide 6.7% and diosgenin 8.5%. Total phenols, total tannins, flavonoids, DPPH, reducing power, -carotene and ABTS IC50 (mg/mL) scavenging activity were used to measure the antioxidant capabilities of Fagonia indica, which exhibited prominent antioxidant properties at low concentrations when compared to ascorbic acid, butylate hydroxytoluene and beta-carotene. The antibacterial investigation revealed significant inhibitory effects against Bacillus subtilis MTCC121 and Pseudomona aeruginosa MTCC 741 with inhibition zones of 15.00 ± 1.5 and 12.0 ± 1.0 mm, respectively. The MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) ranged between 125 to 500 μg/mL. The MBC/MIC ratio indicated possible bactericidal efficacy against Bacillus subtilis and bacteriostatic activity against Pseudomona aeruginosa. The study also showed that this plant has anti-biofilm formation activity. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

10 pages, 992 KiB  
Communication
Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species
by Eva Ürgeová, Ľubica Uváčková, Miroslava Vaneková and Tibor Maliar
Plants 2023, 12(6), 1325; https://doi.org/10.3390/plants12061325 - 15 Mar 2023
Cited by 3 | Viewed by 1591
Abstract
Salvia is a widely used herb that also contains essential oils and other valuable compounds. In this work, the hydrolates of five Salvia sp. were evaluated for their potential antimicrobial and antioxidant activity against four bacterial strains. The hydrolates were obtained from fresh [...] Read more.
Salvia is a widely used herb that also contains essential oils and other valuable compounds. In this work, the hydrolates of five Salvia sp. were evaluated for their potential antimicrobial and antioxidant activity against four bacterial strains. The hydrolates were obtained from fresh leaves by microwave-assisted extraction. Chemical composition analysis by gas chromatography and mass spectrometry revealed that their major constituents were isopulegol (38.2–57.1%), 1,8-cineole (4.7–19.6%), and thujone (5.6–14.1%). The minimum inhibitory concentration (MIC) of the plant hydrolates was tested by the microdilution method at concentrations ranging from 1.0 to 512 μg/mL. The hydrolates prepared from Salvia officinalis and S. sclarea showed inhibitory activity on the tested Gram-positive and Gram-negative bacteria, taxon Salvia nemorosa showed inhibitory activity only partially. The hydrolate of S. divinorum had practically no antibacterial effect. Enterobacter asburiae was the only bacterium for which we found sensitivity to the hydrolate of S. aethiopis, with a MIC50 value of 216.59 µL/mL. The antioxidant activity of the hydrolates was low, ranging from 6.4 to 23.3%. Therefore, salvia hydrolates could be used as antimicrobial agents in medicine, cosmetics, and food preservation. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

18 pages, 2792 KiB  
Article
UPLC-ESI-MS/MS Profiling and Cytotoxic, Antioxidant, Anti-Inflammatory, Antidiabetic, and Antiobesity Activities of the Non-Polar Fractions of Salvia hispanica L. Aerial Parts
by Afaf E. Abdel Ghani, Muneera S. M. Al-Saleem, Wael M. Abdel-Mageed, Ehsan M. AbouZeid, Marwa Y. Mahmoud and Rehab H. Abdallah
Plants 2023, 12(5), 1062; https://doi.org/10.3390/plants12051062 - 27 Feb 2023
Cited by 10 | Viewed by 2330
Abstract
Salvia hispanica L. is an annual herbaceous plant commonly known as “Chia”. It has been recommended for therapeutic use because of its use as an excellent source of fatty acids, protein, dietary fibers, antioxidants, and omega-3 fatty acids. A literature survey concerning phytochemical [...] Read more.
Salvia hispanica L. is an annual herbaceous plant commonly known as “Chia”. It has been recommended for therapeutic use because of its use as an excellent source of fatty acids, protein, dietary fibers, antioxidants, and omega-3 fatty acids. A literature survey concerning phytochemical and biological investigations of chia extracts revealed less attention towards the non-polar extracts of S. hispanica L. aerial parts, which motivates us to investigate their phytochemical constituents and biological potentials. The phytochemical investigation of the non-polar fractions of S. hispanica L. aerial parts resulted in the tentative identification of 42 compounds using UPLC-ESI-MS/MS analysis with the isolation of β-sitosterol (1), betulinic acid (2), oleanolic acid (3), and β-sitosterol-3-O-β-D-glucoside (4). GLC-MS analysis of the seeds’ oil showed a high concentration of omega-3 fatty acid, with a percentage of 35.64% of the total fatty acid content in the seed oil. The biological results revealed that the dichloromethane fraction showed promising DPPH radical-scavenging activity (IC50 = 14.73 µg/mL), antidiabetic activity with significant inhibition of the α-amylase enzyme (IC50 673.25 μg/mL), and anti-inflammatory activity using in vitro histamine release assay (IC50 61.8 μg/mL). Furthermore, the dichloromethane fraction revealed moderate cytotoxic activity against human lung cancer cell line (A-549), human prostate carcinoma (PC-3), and colon carcinoma (HCT-116) with IC50s 35.9 ± 2.1 μg/mL, 42.4 ± 2.3 μg/mL, and 47.5 ± 1.3 μg/mL, respectively, and antiobesity activity with IC50 59.3 μg/mL, using pancreatic lipase inhibitory assay. In conclusion, this study’s findings not only shed light on the phytochemical constituents and biological activities of the non-polar fractions of chia but also should be taken as a basis for the future in vivo and clinical studies on the safety and efficacy of chia and its extracts. Further study should be focused towards the isolation of the active principles of the dichloromethane fraction and studying their efficacy, exact mechanism(s), and safety, which could benefit the pharmaceutical industry and folk medicine practitioners who use this plant to cure diseases. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

11 pages, 7510 KiB  
Article
Therapeutic Potential of Extracts from Macaranga tanarius (MTE) in Diabetic Nephropathy
by Yung-Chien Hsu, Cheng-Chih Chang, Ching-Chuan Hsieh, Ya-Hsueh Shih, Hsiu-Ching Chang and Chun-Liang Lin
Plants 2023, 12(3), 656; https://doi.org/10.3390/plants12030656 - 2 Feb 2023
Cited by 6 | Viewed by 2454
Abstract
Diabetic nephropathy is a complication of diabetes that leads to end-stage kidney disease and is a major health burden worldwide. Prenylflavonoid compounds extracted from Macaranga tanarius (MTE) exhibit anti-inflammation, anti-oxidant, and anti-bacterial properties. However, the effects of these compounds on diabetic nephropathy remain [...] Read more.
Diabetic nephropathy is a complication of diabetes that leads to end-stage kidney disease and is a major health burden worldwide. Prenylflavonoid compounds extracted from Macaranga tanarius (MTE) exhibit anti-inflammation, anti-oxidant, and anti-bacterial properties. However, the effects of these compounds on diabetic nephropathy remain unclear. The effects of MTE on diabetic nephropathy were investigated in vitro by using mouse renal mesangial cells and in vivo by using a db/db knockout mouse model. No overt alteration in proliferation was observed in mouse renal mesangial cells treated with 0–1 μg/mL MTE. Western blot analysis indicated that MTE dose-dependently attenuated the expression of fibronectin, α-smooth muscle actin, and collagen IV. Administration of MTE ameliorated renal albumin loss in db/db mice. Immunohistochemical staining revealed that MTE mitigated diabetes-induced fibronectin and collagen IV expression. Periodic acid–Schiff (PAS) and trichrome staining also showed that administration of MTE reduced the renal fibrosis phenomenon. MTE significantly ameliorated diabetes-induced nephropathy. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

13 pages, 2194 KiB  
Article
Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru
by Marilú Roxana Soto-Vásquez, Paul Alan Arkin Alvarado-García, Edison H. Osorio, Luciana R. Tallini and Jaume Bastida
Plants 2023, 12(2), 322; https://doi.org/10.3390/plants12020322 - 10 Jan 2023
Cited by 3 | Viewed by 1856
Abstract
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an [...] Read more.
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 µg·mL−1, the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 ± 0.3 µg·mL−1. Furthermore, at a dose of 1.0 mg·kg−1, a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2α-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive molecules. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

15 pages, 8430 KiB  
Article
The Ethanol Extracts of Osmanthus fragrans Leaves Ameliorate the Bone Loss via the Inhibition of Osteoclastogenesis in Osteoporosis
by Yo-Seob Seo, HyangI Lim, Jeong-Yeon Seo, Kyeong-Rok Kang, Do Kyung Kim, Hyun-Hwa Lee, Deuk-Sil Oh and Jae-Sung Kim
Plants 2023, 12(2), 253; https://doi.org/10.3390/plants12020253 - 5 Jan 2023
Viewed by 2042
Abstract
The aim of this study was to evaluate the anti-osteoporosis effects of Osmanthus fragrans leaf ethanol extract (OFLEE) in bone marrow-derived macrophages (BMM) and animals with osteoporosis. OFLEE not only suppressed tartrate-resistant acid phosphatase (TRAP)-positive cells with multiple nuclei but also decreased TRAP [...] Read more.
The aim of this study was to evaluate the anti-osteoporosis effects of Osmanthus fragrans leaf ethanol extract (OFLEE) in bone marrow-derived macrophages (BMM) and animals with osteoporosis. OFLEE not only suppressed tartrate-resistant acid phosphatase (TRAP)-positive cells with multiple nuclei but also decreased TRAP activity in BMM treated with macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). The formation of F-actin rings and the expression and activation of matrix metalloproteinases were decreased by OFLEE in BMM treated with M-CSF and RANKL. OFLEE suppressed M-CSF- and RANKL-induced osteoclastogenesis by inhibiting NF-κB phosphorylation, tumor necrosis factor receptor-associated factor 6, c-fos, the nuclear factor of activated T-cells, cytoplasmic 1, and cathepsin K in BMM. OFLEE downregulated reactive oxygen species, cyclooxygenase-2, inducible nitric oxide synthase, prostaglandin E2, tumor necrosis factor α, interleukin (IL)-1β, IL-6, IL-17, and RANKL in BMM treated with M-CSF and RANKL. Oral administration of OFLEE suppressed osteoporotic bone loss without hepatotoxicity in ovariectomy-induced osteoporosis animals. Our findings suggest that OFLEE, with anti-inflammatory effects, prevents osteoporotic bone loss through the suppression of osteoclastic differentiation in BMM and animals with osteoporosis. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

24 pages, 3018 KiB  
Article
Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream
by Diana Antonia Safta, Irina Ielciu, Raffaela Șuștic, Daniela Hanganu, Mihaela Niculae, Mihai Cenariu, Emoke Pall, Mirela Liliana Moldovan, Marcela Achim, Cătălina Bogdan and Ioan Tomuță
Plants 2023, 12(2), 248; https://doi.org/10.3390/plants12020248 - 5 Jan 2023
Cited by 2 | Viewed by 2342
Abstract
Three individual hydroalcoholic extracts derived from Hamamelis virginiana leaves, Krameria lappacea root, Salix alba bark, and the resulting herbal mixture (HM) were assessed for the phytochemical profile as well as for antibacterial and cytotoxic potential. The chemical composition of the individual extracts and [...] Read more.
Three individual hydroalcoholic extracts derived from Hamamelis virginiana leaves, Krameria lappacea root, Salix alba bark, and the resulting herbal mixture (HM) were assessed for the phytochemical profile as well as for antibacterial and cytotoxic potential. The chemical composition of the individual extracts and of their mixture was analyzed by chromatographical (LC-MS) and spectrophotometrical methods. The antimicrobial properties were evaluated by using the agar-well diffusion and the broth microdilution assays, whereas the potential cytotoxicity was investigated on human keratinocyte cell line by MTT method and apoptosis test. The HM composition revealed important amounts of valuable polyphenolic compounds provided from the individual extracts, having synergistic biological effects. All tested extracts displayed in vitro antimicrobial properties, with a significantly higher efficacy noticed for the HM when tested against Staphylococcus aureus. Moreover, none of the tested extracts was responsible for in vitro cytotoxicity against the human keratinocytes in the selected concentration range. Furthermore, the HM was included in an oil-in-water cream for the nonpharmacological treatment of seborrheic dermatitis, developed and optimized by using a QbD approach. A D-optimal experimental plan with four factors that varied on two levels was used to investigate the effect of the quantitative variation of the formulation factors (emulsifier, co-emulsifier, thickening agent, oily phase ratio) on the characteristics of the cream in terms of firmness, consistency, adhesiveness, stringiness, spreadability, and viscosity. Based on the experimental results, an optimal formulation containing 2.5% emulsifier and 20% oily phase was prepared and analyzed. The obtained results showed appropriate quality characteristics of this novel cream, which may be used in the future to manage the associated symptoms of seborrheic dermatitis. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

15 pages, 3341 KiB  
Article
Spirulina platensis Mitigates the Inhibition of Selected miRNAs that Promote Inflammation in HAART-Treated HepG2 Cells
by Thabani Sibiya, Terisha Ghazi, Jivanka Mohan, Savania Nagiah and Anil A. Chuturgoon
Plants 2023, 12(1), 119; https://doi.org/10.3390/plants12010119 - 26 Dec 2022
Cited by 2 | Viewed by 1631
Abstract
The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the [...] Read more.
The introduction of highly active antiretroviral therapy (HAART) in the treatment of HIV/AIDS has recently gained popularity. In addition, the significant role of microRNA expression in HIV pathogenesis cannot be overlooked; hence the need to explore the mechanisms of microRNA expression in the presence of HAART and Spirulina platensis (SP) in HepG2 cells. This study investigates the biochemical mechanisms of microRNA expression in HepG2 cells in the presence of HAART, SP, and the potential synergistic effect of HAART–SP. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell viability following SP treatment. The cellular redox status was assessed using the quantification of intracellular reactive oxygen species (ROS), lipid peroxidation, and a lactate dehydrogenase (LDH) assay. The fluorometric JC-1 assay was used to determine mitochondrial polarisation. The quantitative polymerase chain reaction (qPCR) was also employed for micro-RNA and gene expressions. The results show that MiR-146a (p < 0.0001) and miR-155 (p < 0.0001) levels increased in SP-treated cells. However, only miR-146a (p < 0.0001) in HAART–SP indicated an increase, while miR-155 (p < 0.0001) in HAART–SP treatment indicated a significant decreased expression. Further inflammation analysis revealed that Cox-1 mRNA expression was reduced in SP-treated cells (p = 0.4129). However, Cox-1 expression was significantly increased in HAART–SP-treated cells (p < 0.0001). The investigation revealed that HepG2 cells exposed to HAART–SP treatment showed a significant decrease in Cox-2 (p < 0.0001) expression. mRNA expression also decreased in SP-treated cells (p < 0.0001); therefore, SP potentially controls inflammation by regulating microRNA expressions. Moreover, the positive synergistic effect is indicated by normalised intracellular ROS levels (p < 0.0001) in the HAART–SP treatment. We hereby recommend further investigation on the synergistic roles of SP and HAART in the expression of microRNA with more focus on inflammatory and oxidative pathways. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

13 pages, 1528 KiB  
Article
In Vitro Evaluation of Antidiabetic Potential of Cleistocalyx nervosum var. paniala Fruit Extract
by Suttida Chukiatsiri, Nattakarn Wongsrangsap, Siriluk Ratanabunyong and Kiattawee Choowongkomon
Plants 2023, 12(1), 112; https://doi.org/10.3390/plants12010112 - 26 Dec 2022
Cited by 6 | Viewed by 2861
Abstract
Diabetes mellitus is a complex global public health condition. Medicinal plants are significant resources in the research of alternative new drug active compounds. Cleistocalyx nervosum var. paniala (C. nervosum) is an indigenous berry fruit widely grown in Southeast Asia. The fruit [...] Read more.
Diabetes mellitus is a complex global public health condition. Medicinal plants are significant resources in the research of alternative new drug active compounds. Cleistocalyx nervosum var. paniala (C. nervosum) is an indigenous berry fruit widely grown in Southeast Asia. The fruit of C. nervosum exhibit various medicinal properties and health benefits. This study aimed to investigate antidiabetic properties of C. nervosum fruit extract by in vitro assays and in vitro models. C. nervosum fruit extracted using three different solvents (hexane, ethanol, and distilled water) were tested for α-amylase and α-glucosidase inhibitory activities, followed by glucose uptake in HepG2 and L6 myoblasts. Lipid accumulation in 3T3-L1 cells treated with C. nervosum fruit extracts was then examined. The results revealed that ethanolic extract of C. nervosum fruit showed better inhibition against α-amylase (IC50 of 0.42 μg/mL) and α-glucosidase (IC50 of 0.23 μg/mL) compared with other extracts. Furthermore, ethanolic extract showed higher glucose uptake potential than the standard antidiabetic drug, metformin, in HepG2 cells. The ethanolic extracts resulted in enhanced glucose utilization in L6 myoblasts compared to untreated control. All extractions showed no significantly increased lipid accumulation in 3T3-L1 cells compared to the untreated control cells. The investigation confirmed that the ethanolic extract exhibited the highest antidiabetic activity among all extracts. These results imply that C. nervosum fruit extract has antidiabetic properties and therefore they may be used as useful therapeutic agents for treating diabetes. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 830 KiB  
Article
Influences of Different Extraction Techniques and Their Respective Parameters on the Phytochemical Profile and Biological Activities of Xanthium spinosum L. Extracts
by Octavia Gligor, Simona Clichici, Remus Moldovan, Dana Muntean, Ana-Maria Vlase, George Cosmin Nadăș, Gabriela Adriana Filip, Laurian Vlase and Gianina Crișan
Plants 2023, 12(1), 96; https://doi.org/10.3390/plants12010096 - 24 Dec 2022
Cited by 6 | Viewed by 1936
Abstract
The aim of this study was to identify possible influences of extraction methods as well as extraction parameters on the phytochemical and biological profiles of Xanthium spinosum L. extracts. Extraction methods were chosen as follows: classical methods, maceration and Soxhlet extraction; innovative extraction [...] Read more.
The aim of this study was to identify possible influences of extraction methods as well as extraction parameters on the phytochemical and biological profiles of Xanthium spinosum L. extracts. Extraction methods were chosen as follows: classical methods, maceration and Soxhlet extraction; innovative extraction methods, turboextraction, ultrasound-assisted extraction, and a combination of the latter two. Extracts were subjected to total polyphenolic and flavonoid content spectrophotometric analysis. The phytochemical profile was determined for the best-yielding extracts using HPLC-MS analysis. Following the newly acquired data, another sorting of the extracts was performed. Biological activities such as antimicrobial and anti-inflammatory actions were evaluated, as well as oxidative stress reduction potential, on a Wistar rats inflammation model. Comparable results were achieved with Soxhlet extraction and ultrasound-assisted extraction, both surpassing all other tested methods in terms of yields. Bioactive compound concentrations tended to increase with the increase in extraction time and temperature. These maximal values lowered once the degradation points of the bioactive compounds were reached. Extracts demonstrated good protection against Gram-negative bacteria. Additionally, they provided good cellular protection and increased the antioxidant defense in the analyzed rat plantar tissue. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 4099 KiB  
Article
Guettarda crispiflora Vahl Methanol Extract Ameliorates Acute Lung Injury and Gastritis by Suppressing Src Phosphorylation
by Dahae Lee, Ji Won Kim, Chae Young Lee, Jieun Oh, So Hyun Hwang, Minkyeong Jo, Seung A Kim, Wooram Choi, Jin Kyoung Noh, Dong-Keun Yi, Minkyung Song, Han Gyung Kim and Jae Youl Cho
Plants 2022, 11(24), 3560; https://doi.org/10.3390/plants11243560 - 16 Dec 2022
Cited by 4 | Viewed by 2609
Abstract
Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study [...] Read more.
Many species in the genus Guettarda are known to exert anti-inflammatory effects and are used as traditional medicinal plants to treat various inflammatory symptoms. However, no studies on the inflammatory activities of Guettarda crispiflora Vahl have been reported. The aim of the study was to investigate in vitro and in vivo the anti-inflammatory effects of a methanol extract of Guettarda crispiflora Vahl (Gc-ME). To determine the anti-inflammatory activity of Gc-ME, lipopolysaccharide (LPS)-, poly(I:C)-, or Pam3CSK4-treated RAW264.7 cells, HCl/EtOH- and LPS-treated mice were employed for in vitro and in vivo tests. LPS-induced nitric oxide production in RAW264.7 cells was determined by Griess assays and cytokine gene expression in LPS-activated RAW264.7 cells, confirmed by RT- and real-time PCR. Transcriptional activation was evaluated by luciferase reporter gene assay. Target protein validation was assessed by Western blot analysis and cellular thermal shift assays (CETSA) with LPS-treated RAW264.7 and gene-transfected HEK293 cells. Using both a HCl/EtOH-induced gastritis model and an LPS-induced lung injury model, inflammatory states were checked by scoring or evaluating gastric lesions, lung edema, and lung histology. Phytochemical fingerprinting of Gc-ME was observed by using liquid chromatography–mass spectrometry. Nitric oxide production induced by LPS and Pam3CSK4 in RAW264.7 cells was revealed to be reduced by Gc-ME. The LPS-induced upregulation of iNOS, COX-2, IL-6, and IL-1β was also suppressed by Gc-ME treatment. Gc-ME downregulated the promotor activities of AP-1 and NF-κB triggered by MyD88- and TRIF induction. Upstream signaling proteins for NF-κB activation, namely, p-p50, p-p65, p-IκBα, and p-Src were all downregulated by Ch-EE. Moreover, Src was revealed to be directly targeted by Gc-ME. This extract, orally treated strongly, attenuated the inflammatory symptoms in HCl/EtOH-treated stomachs and LPS-treated lungs. Therefore, these results strongly imply that Guettarda crispiflora can be developed as a promising anti-inflammatory remedy with Src-suppressive properties. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

18 pages, 4682 KiB  
Article
In Vitro and In Vivo Nephroprotective Effects of Nelumbo nucifera Seedpod Extract against Cisplatin-Induced Renal Injury
by Jui-Yi Chen, Chia-Lin Tsai, Chiao-Yun Tseng, Pei-Rong Yu, Yu-Hsuan Chang, Yue-Ching Wong, Hui-Hsuan Lin and Jing-Hsien Chen
Plants 2022, 11(23), 3357; https://doi.org/10.3390/plants11233357 - 2 Dec 2022
Cited by 1 | Viewed by 2014
Abstract
Cisplatin has been considered a chemotherapeutic drug for treating human tumors, and one of the noteworthy side effects of cisplatin is nephrotoxicity. Amelioration of cisplatin-induced nephrotoxicity is necessary. Lotus seedpod extract (LSE) mainly composed of quercetin-3-glucuronide has been revealed for antioxidant and anti-tumor [...] Read more.
Cisplatin has been considered a chemotherapeutic drug for treating human tumors, and one of the noteworthy side effects of cisplatin is nephrotoxicity. Amelioration of cisplatin-induced nephrotoxicity is necessary. Lotus seedpod extract (LSE) mainly composed of quercetin-3-glucuronide has been revealed for antioxidant and anti-tumor effects. However, the effects of LSE on cisplatin-induced nephrotoxicity are still unknown. This study aims to explore the in vitro and in vivo protective effect and possible mechanism of LSE on cisplatin-induced nephrotoxicity. Results showed that co-treatment of LSE with cisplatin raised the viability of rat renal tubular epithelial NRK−52E cells and decreased oxidative stress and cell apoptosis when compared to the cells treated with cisplatin alone. The molecular mechanisms analyzed found that LSE could reduce the expressions of apoptotic factors, including Bax, Bad, t-Bid, and caspases. In the in vivo study, LSE improved the cisplatin-induced levels of serum markers of kidney function, glomerular atrophy, and the degree of apoptosis in the kidneys. This is the first study to display that LSE prevents cisplatin-induced nephrotoxicity by reducing oxidative stress and apoptosis. Thus, LSE could be a novel and natural chemoprotective agent for cisplatin chemotherapy in the future. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

15 pages, 7000 KiB  
Article
Panax notoginseng Suppresses Bone Morphogenetic Protein-2 Expression in EA.hy926 Endothelial Cells by Inhibiting the Noncanonical NF-κB and Wnt/β-Catenin Signaling Pathways
by Tsu-Ni Ping, Shu-Ling Hsieh, Jyh-Jye Wang, Jin-Bor Chen and Chih-Chung Wu
Plants 2022, 11(23), 3265; https://doi.org/10.3390/plants11233265 - 28 Nov 2022
Cited by 2 | Viewed by 1568
Abstract
Panax notoginseng (PN) exerts cardiovascular-disease-protective effects, but the effect of PN on reducing vascular calcification (VC) is unknown. Under the VC process, however, endothelial bone morphogenetic protein-2 (BMP-2) signals connect endothelial and smooth muscle cells. To investigate the effects of PN water extract [...] Read more.
Panax notoginseng (PN) exerts cardiovascular-disease-protective effects, but the effect of PN on reducing vascular calcification (VC) is unknown. Under the VC process, however, endothelial bone morphogenetic protein-2 (BMP-2) signals connect endothelial and smooth muscle cells. To investigate the effects of PN water extract (PNWE) on BMP-2 expression, human EA.hy926 endothelial cells were pretreated with PNWE for 48 h, and BMP-2 expression was then induced using warfarin/β-glycerophosphate (W/BGP) for another 24 h. The expression of BMP-2, the degrees of oxidative stress and inflammation, and the activation of noncanonical NF-κB and Wnt/β-catenin signaling were analyzed. The results showed that the BMP-2 levels in EA.hy926 cells were reduced in the groups treated with 10, 50, or 100 μg/mL PNWE combined with W/BGP. PNWE combined with W/BGP significantly reduced thiobarbituric-acid-reactive substrate and reactive oxygen species levels as well as prostaglandin E2, IL-1β, IL-6, and TNF-α. PNWE (10, 50, and 100 μg/mL) reduced the p52 levels and p52/p100 protein ratio. Wnt and β-catenin protein expression was decreased in the groups treated with PNWE combined with W/BGP. These results showed that PNWE reduced BMP-2 expression in EA.hy926 cells by inhibiting the noncanonical NF-κB and Wnt/β-catenin signaling pathways. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

16 pages, 2975 KiB  
Article
Spirulina platensis Ameliorates Oxidative Stress Associated with Antiretroviral Drugs in HepG2 Cells
by Thabani Sibiya, Terisha Ghazi, Jivanka Mohan, Savania Nagiah and Anil A. Chuturgoon
Plants 2022, 11(22), 3143; https://doi.org/10.3390/plants11223143 - 17 Nov 2022
Cited by 7 | Viewed by 2578
Abstract
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 [...] Read more.
Lately, Spirulina platensis (SP), as an antioxidant, has exhibited high potency in the treatment of oxidative stress, diabetes, immune disorder, inflammatory stress, and bacterial and viral-related diseases. This study investigated the possible protective role of Spirulina platensis against ARV-induced oxidative stress in HepG2 cells. Human liver (HepG2) cells were treated with ARVs ((Lamivudine (3TC): 1.51 µg/mL, tenofovir disoproxil fumarate (TDF): 0.3 µg/mL and Emtricitabine (FTC): 1.8 µg/mL)) for 96 h and thereafter treated with 1.5 µg/mL Spirulina platensis for 24 h. After the treatments, the gene and protein expressions of the antioxidant response pathway were determined using a quantitative polymerase chain reaction (qPCR) and Western blots. The results show that Spirulina platensis decreased the gene expressions of Akt (p < 0.0001) and eNOS (↓p < 0.0001) while, on the contrary, it increased the transcript levels of NRF-2 (↑p = 0.0021), Keap1 (↑p = 0.0002), CAT (↑p < 0.0001), and NQO-1 (↑p = 0.1432) in the HepG2 cells. Furthermore, the results show that Spirulina platensis also decreased the protein expressions of NRF-2 (↓p = 0.1226) and pNRF-2 (↓p = 0.0203). Interestingly, HAART-SP induced an NRF-2 pathway response through upregulating NRF-2 (except for FTC-SP) (↑p < 0.0001), CAT (↑p < 0.0001), and NQO-1 (except for FTC-SP) (↑p < 0.0001) mRNA expression. In addition, NRF-2 (↑p = 0.0085) and pNRF-2 (↑p < 0.0001) protein expression was upregulated in the HepG2 cells post-exposure to HAART-SP. The results, therefore, allude to the fact that Spirulina platensis has the potential to mitigate HAART-adverse drug reactions (HAART toxicity) through the activation of antioxidant response in HepG2 cells. We hereby recommend further studies on Spirulina platensis and HAART synergy. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

22 pages, 1260 KiB  
Article
Relationships between Agronomic Traits of Moringa Accessions and In Vitro Gas Production Characteristics of a Test Feed Incubated with or without Moringa Plant Leaf Extracts
by Addisu Endalew Zeru, Abubeker Hassen, Zeno Apostolides and Julius Tjelele
Plants 2022, 11(21), 2901; https://doi.org/10.3390/plants11212901 - 28 Oct 2022
Cited by 4 | Viewed by 1577
Abstract
The use of medicinal plants and their extracts has recently attracted the attention of many researchers as a methane (CH4) mitigation strategy. This study evaluated the relationship of agronomic traits of Moringa accessions with in vitro gas production measurements and feed [...] Read more.
The use of medicinal plants and their extracts has recently attracted the attention of many researchers as a methane (CH4) mitigation strategy. This study evaluated the relationship of agronomic traits of Moringa accessions with in vitro gas production measurements and feed digestibility from ruminants. Twelve Moringa accessions were grown at the Roodeplaat experimental site of the Agricultural Research Council in Pretoria, South Africa. Agronomic traits, such as seedling survival rate, leaf yield, canopy and stem diameter, plant height, number of primary branches, plant vigor, greenness, chlorosis, disease and pest incidences were recorded. The leaves were harvested in the fifth month after transplanting to the field. Freeze-dried leaves were extracted with methanol, and their total phenolic and total flavonoid contents were determined. The extract was applied at a dose of 50 mg/kg of dry matter (DM) feed for in vitro gas production studies. Most of the growth and agronomic traits, i.e., seedling survival rate, leaf yield, canopy diameter, plant height, number of primary branches, the score of plant vigor, and greenness, total phenolics and flavonoids were significantly different among the accessions except for stem diameter and chlorosis score. All accession leaf extracts significantly reduced the total gas and CH4 production compared with the control with equal or higher in vitro organic matter digestibility. Higher CH4 inhibition was obtained in Moringa oleifera (M. oleifera) A3 (28.4%) and A11 (29.1%), whereas a lower inhibition was recorded in A1 (17.9%) and A2 (18.2%). The total phenolic (0.62) and total flavonoid (0.71) contents as well as most agronomic traits of the accessions were positively correlated with the CH4 inhibition potential of the accessions. Moringa oleifera accessions A3, A8 and A11 resulted in higher in vitro CH4 inhibition potential and improved organic matter digestibility of the feed with equal or higher adaptability performances in the field. Thus, there is a possibility of selecting Moringa accessions for higher antimethanogenic activity without compromising the feed digestibility by selecting for higher total phenolics, total flavonoids and agronomic performances traits. There is a need for further study to determine the long-term adaptability of promising accessions in the study area with concurrent antimethanogenesis efficacy when used in the diet of ruminant animals. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

14 pages, 1626 KiB  
Article
Synergistic Effect of Supercritical and Ultrasound-Assisted Ginger (Zingiber officinale Roscoe) Extracts
by Taja Žitek, Nika Kučuk, Vesna Postružnik, Maja Leitgeb, Željko Knez, Mateja Primožič and Maša Knez Marevci
Plants 2022, 11(21), 2872; https://doi.org/10.3390/plants11212872 - 27 Oct 2022
Cited by 5 | Viewed by 2145
Abstract
Proper processing of natural material is crucial to obtain an extract with high content of biologically active components. Dried, grinded ginger roots were extracted by ultrasonic method and supercritical extraction with CO2. The aim of the study was to determine if [...] Read more.
Proper processing of natural material is crucial to obtain an extract with high content of biologically active components. Dried, grinded ginger roots were extracted by ultrasonic method and supercritical extraction with CO2. The aim of the study was to determine if a mixture of the two types of extracts attained by different methods and solvents exhibits better bioavailability than each extract itself. Therefore, both extracts were analytically evaluated and then mixed in a ratio of 1:1. The supercritical extract (SCG extract) and the mixed extract (mixG extract) had high antioxidant activity (78% and 73%) and total phenols (827 mg/g ext. and 1455 mg/g ext.), which is also consistent with the levels of gingerol (303 mg/g ext. and 271 g/g ext.) and shogaol (111 mg/g ext. and 100 g/g ext.) in the extracts. In comparison to both pure extracts higher levels of total phenols were found in the extract mixG. This could be the reason for the significant inhibition of melanoma cells and antimicrobial potential (against Staphylococcus aureus, Escherichia coli, and Candida albicans). The combination of the extracts resulted in a significant increase in the inhibition of selected microbial and melanoma cells WM-266-4 compared to the control. Cell viability decreased below 60% when mixG extract was applied. Antimicrobial activity has been confirmed. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

21 pages, 2899 KiB  
Article
Immunomodulatory Effects of Plant Extracts from Salvia deserta Schang. and Salvia sclarea L.
by Aizhan Zhussupova, Gaziza Zhumaliyeva, Vyacheslav Ogay, Assel Issabekova, Samir A. Ross and Galiya E. Zhusupova
Plants 2022, 11(20), 2690; https://doi.org/10.3390/plants11202690 - 12 Oct 2022
Cited by 5 | Viewed by 2802
Abstract
Medicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from [...] Read more.
Medicines, their safety, effectiveness and quality are indispensable factors of national security, important on a global scale. The COVID-19 pandemic has once again emphasized the importance of improving the immune response of the body in the face of severe viral infections. Plants from the Salvia L. genus have long been used in traditional medicine for treatment of inflammatory processes, parasitic diseases, bacterial and viral infections. The aim of the current study was to evaluate the immunomodulatory effects of plant extracts LS-1, LS-2 from Salvia deserta Schang. and LS-3, LS-4 from Salvia sclarea L. plants growing in southern Kazakhstan by conventional and ultrasonic-assisted extraction, respectively. The cytotoxic effects of the named sage extracts on neonatal human dermal fibroblasts (HDFn) were evaluated using the MTT assay. Immunomodulatory effects of the studied extracts were compared by examining their influence on pro-inflammatory cytokine secretion and phagocytic activity of murine immune cells. Depending on the physiological state of the innate immune cells, sage extracts LS-2 and LS-3 had either a stimulating effect on inactivated macrophages or suppressed cytokine-producing activity in LPS-activated macrophages. The greatest increase in TNF-α secretion was found after treatment of spleen T lymphocytes with sage extract LS-2, obtained by ultrasonic-assisted extraction. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

17 pages, 1528 KiB  
Article
Anti-Quorum-Sensing Potential of Ethanolic Extracts of Aromatic Plants from the Flora of Cyprus
by Tolis Panayi, Yiannis Sarigiannis, Elena Mourelatou, Evroula Hapeshis and Christos Papaneophytou
Plants 2022, 11(19), 2632; https://doi.org/10.3390/plants11192632 - 7 Oct 2022
Cited by 9 | Viewed by 2374
Abstract
Quorum sensing (QS) is a form of intra- and inter-species communication system employed by bacteria to regulate their collective behavior in a cell population-dependent manner. QS has been implicated in the virulence of several pathogenic bacteria. This work aimed to investigate the anti-QS [...] Read more.
Quorum sensing (QS) is a form of intra- and inter-species communication system employed by bacteria to regulate their collective behavior in a cell population-dependent manner. QS has been implicated in the virulence of several pathogenic bacteria. This work aimed to investigate the anti-QS potential of ethanolic extracts of eight aromatic plants of Cyprus, namely, Origanum vulgare subsp. hirtum, Rosmarinus officinalis, Salvia officinalis, Lavendula spp., Calendula officinalis, Melissa officinalis, Sideritis cypria, and Aloysia citriodora. We initially assessed the effects of the extracts on autoinducer 2 (AI-2) signaling activity, using Vibrio harveyi BB170 as a reported strain. We subsequently assessed the effect of the ethanolic extracts on QS-related processes, including biofilm formation and the swarming and swimming motilities of Escherichia coli MG1655. Of the tested ethanolic extracts, those of Origanum vulgare subsp. hirtum, Rosmarinus officinalis, and Salvia officinalis were the most potent AI-2 signaling inhibitors, while the extracts from the other plants exhibited low to moderate inhibitory activity. These three ethanolic extracts also inhibited the biofilm formation (>60%) of E. coli MG1655, as well as its swimming and swarming motilities, in a concentration-dependent manner. These extracts may be considered true anti-QS inhibitors because they disrupt QS-related activities of E. coli MG1655 without affecting bacterial growth. The results suggest that plants from the unexplored flora of Cyprus could serve as a source for identifying novel anti-QS inhibitors to treat infectious diseases caused by pathogens that are resistant to antibiotics. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

15 pages, 2541 KiB  
Article
Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study
by Wasim Ahmad, Mohammad Azam Ansari, Mohammad Yusuf, Mohd Amir, Shadma Wahab, Prawez Alam, Mohammad N. Alomary, Abdulrahman A. Alhuwayri, Maria Khan, Abuzer Ali, Musarrat Husain Warsi, Kamran Ashraf and Maksood Ali
Plants 2022, 11(18), 2395; https://doi.org/10.3390/plants11182395 - 14 Sep 2022
Cited by 7 | Viewed by 3290
Abstract
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl [...] Read more.
The aim of the present study is to investigate the effective antimicrobial and antibiofilm properties of fenchone, a biologically active bicyclic monoterpene, against infections caused by bacteria and Candida spp. The interactions between fenchone and three distinct proteins from Escherichia coli (β-ketoacyl acyl carrier protein synthase), Candida albicans (1, 3-β–D-glucan synthase), and Pseudomonas aeruginosa (Anthranilate-CoA ligase) were predicted using molecular docking and in silico/ADMET methods. Further, to validate the in-silico prediction, the antibacterial and antifungal potential of fenchone was evaluated against E. coli, P. aeruginosa, and C. albicans by determining minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and minimum fungicidal concentration (MFC). The lowest MIC/MBC values of fenchone against E. coli and P. aeruginosa obtained was 8.3 ± 3.6/25 ± 0.0 and 266.6 ± 115.4/533.3 ± 230.9 mg/mL, respectively, whereas the MIC/MFC value for C. albicans was found to be 41.6 ± 14.4/83.3 ± 28.8 mg/mL. It was observed that fenchone has a significant effect on antimicrobial activity (p < 0.05). Our findings demonstrated that fenchone at 1 mg/mL significantly reduced the production of biofilm (p < 0.001) in E. coli, P. aeruginosa, and C. albicans by 70.03, 64.72, and 61.71%, respectively, in a dose-dependent manner when compared to control. Based on these results, it has been suggested that the essential oil from plants can be a great source of pharmaceutical ingredients for developing new antimicrobial drugs. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

23 pages, 6317 KiB  
Article
Integration of the Connectivity Map and Pathway Analysis to Predict Plant Extract’s Medicinal Properties—The Study Case of Sarcopoterium spinosum L.
by Valid Gahramanov, Moria Oz, Tzemach Aouizerat, Tovit Rosenzweig, Jonathan Gorelick, Elyashiv Drori, Mali Salmon-Divon, Michael Y. Sherman and Bat Chen R. Lubin
Plants 2022, 11(17), 2195; https://doi.org/10.3390/plants11172195 - 24 Aug 2022
Viewed by 2241
Abstract
Medicinal properties of plants are usually identified based on knowledge of traditional medicine or using low-throughput screens for specific pharmacological activities. The former is very biased since it requires prior knowledge of plants’ properties, while the latter depends on a specific screening system [...] Read more.
Medicinal properties of plants are usually identified based on knowledge of traditional medicine or using low-throughput screens for specific pharmacological activities. The former is very biased since it requires prior knowledge of plants’ properties, while the latter depends on a specific screening system and will miss medicinal activities not covered by the screen. We sought to enrich our understanding of the biological activities of Sarcopoterium spinosum L. root extract based on transcriptome changes to uncover a plurality of possible pharmacological effects without the need for prior knowledge or functional screening. We integrated Gene Set Enrichment Analysis of the RNAseq data to identify pathways affected by the treatment of cells with the extract and perturbational signatures in the CMAP database to enhance the validity of the results. Activities of signaling pathways were measured using immunoblotting with phospho-specific antibodies. Mitochondrial membrane potential was assessed using JC-1 staining. SARS-CoV-2-induced cell killing was assessed in Vero E6 and A549 cells using an MTT assay. Here, we identified transcriptome changes following exposure of cultured cells to the medicinal plant Sarcopoterium spinosum L. root extract. By integrating algorithms of GSEA and CMAP, we confirmed known anti-cancer activities of the extract and predicted novel biological effects on oxidative phosphorylation and interferon pathways. Experimental validation of these pathways uncovered strong activation of autophagy, including mitophagy, and excellent protection from SARS-CoV-2 infection. Our study shows that gene expression analysis alone is insufficient for predicting biological effects since some of the changes reflect compensatory effects, and additional biochemical tests provide necessary corrections. This study defines the advantages and limitations of transcriptome analysis in predicting the biological and medicinal effects of the Sarcopoterium spinosum L. extract. Such analysis could be used as a general approach for predicting the medicinal properties of plants. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

13 pages, 1921 KiB  
Article
Tyrosinase Inhibitors Derived from Chemical Constituents of Dianella ensifolia
by Yu-Chang Chen, Sheng-Han Su, Jheng-Cian Huang, Che-Yi Chao, Ping-Jyun Sung, Yih-Fung Chen, Horng-Huey Ko and Yueh-Hsiung Kuo
Plants 2022, 11(16), 2142; https://doi.org/10.3390/plants11162142 - 18 Aug 2022
Cited by 1 | Viewed by 2272
Abstract
Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated [...] Read more.
Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated further phytochemistry and tyrosinase inhibitory effect of some constituents isolated from D. ensifolia. Four new flavans, (2S)-4’-hydroxy-6,7-dimethoxyflavan (1), (2S)-3’,4’-dihydroxy-7-methoxy-8-methylflavan (2), (2S)-2’-hydroxy-7-methoxyflavan (3), and (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone (4), together with 67 known compounds, including 10 flavans (514), 5 flavanones (1519), 3 flavone (2022), 5 chalcones (2327), 3 chromones (2830), 15 aromatics (3145), 7 phenylpropanoids (4652), one lignan (53), 7 steroids (5460), one monoterpene (61), one diterpene (62), 4 triterpenes (6366), a carotenoid (67), 2 alkaloids (68 and 69), and 2 fatty acids (70 and 71) were isolated from D. ensifolia. Their structures were elucidated on the basis of physical and spectroscopic data analyses. Moreover, compounds 14, 8, 1015, 20, 21, and 41 were evaluated for their mushroom tyrosinase inhibitory effect. Compounds 11 and 14 strongly inhibited mushroom tyrosinase activity with IC50 values of 8.6 and 14.5 μM, respectively. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

14 pages, 4194 KiB  
Article
Phytochemical Characterization, Antimicrobial Activity and In Vitro Antiproliferative Potential of Alchemilla vulgaris Auct Root Extract against Prostate (PC-3), Breast (MCF-7) and Colorectal Adenocarcinoma (Caco-2) Cancer Cell Lines
by Omer H. M. Ibrahim, Kamal A. M. Abo-Elyousr, Khalid A. Asiry, Nabil A. Alhakamy and Magdi A. A. Mousa
Plants 2022, 11(16), 2140; https://doi.org/10.3390/plants11162140 - 17 Aug 2022
Cited by 16 | Viewed by 2385
Abstract
Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root [...] Read more.
Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root extract against various cancer cell lines in vitro, along with its antimicrobial activity and phytochemical screening. MTT assay was applied to test the cytotoxic effect against the prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2), together with normal Vero cells. Flow cytometry was employed to assess cell cycle arrest and apoptosis vs. necrosis in PC-3 cells. The expression of apoptosis-related genes (BAX, BCL2 and P53) was quantified by qRT-PCR analysis. The obtained results showed strong antiproliferative activity on the three cancer cell lines and the normal Vero cells in a dose-dependent manner. A high selectivity index (SI) was recorded against the three cell lines with PC-3 cells showing the highest SI and the lowest IC50. This effect was associated with cell cycle arrest at G1 phase and induction of total apoptosis at 27.18% being mainly early apoptosis. Apoptosis induction was related to the upregulation of the proapoptotic genes P53 and BAX and the downregulation of the antiapoptotic gene BCL2. Additionally, the extract demonstrated in vitro antibacterial activity against Agrobacterium tumefaciens, Serratia marcescens and Acinetobacter johnsoni. Additionally, it showed antifungal activity against Rhizoctonia solani, Penicillium italicum and Fusarium oxysporium. Seven phenolic acids and seven flavonoids were detected. The predominant phenolic acids were cinnamic and caffeic acids, while hisperdin and querestin were the principal flavonoids. These findings provide clear evidence about the promising proapoptotic effect of A. vulgaris root extract, which contributes to laying the basis for broader and in-depth future investigations. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

17 pages, 1101 KiB  
Article
Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent
by Kevin Alejandro Avilés-Betanzos, Julio Enrique Oney-Montalvo, Juan Valerio Cauich-Rodríguez, Marisela González-Ávila, Matteo Scampicchio, Ksenia Morozova, Manuel Octavio Ramírez-Sucre and Ingrid Mayanin Rodríguez-Buenfil
Plants 2022, 11(15), 2060; https://doi.org/10.3390/plants11152060 - 6 Aug 2022
Cited by 10 | Viewed by 2225
Abstract
Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by [...] Read more.
Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 ± 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising “green” extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

9 pages, 757 KiB  
Article
Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb.
by Marilú Roxana Soto-Vásquez, Cecilia Anataly Rodríguez-Muñoz, Luciana R. Tallini and Jaume Bastida
Plants 2022, 11(15), 1906; https://doi.org/10.3390/plants11151906 - 22 Jul 2022
Cited by 7 | Viewed by 2437
Abstract
Natural products have always played a significant role in the search for new drugs. One of the most relevant alkaloid-containing plant groups is the Amaryllidaceae family, a source of exclusive structures with a wide variety of pharmacological activities. The aim of this work [...] Read more.
Natural products have always played a significant role in the search for new drugs. One of the most relevant alkaloid-containing plant groups is the Amaryllidaceae family, a source of exclusive structures with a wide variety of pharmacological activities. The aim of this work was to determine the alkaloid composition and biological potential of an extract from the bulbs of an endemic Peruvian Amaryllidaceae species Ismene amancaes (Ker Gawl.) Herb. The alkaloid profiling was carried out by GC-MS, which revealed the presence of 13 compounds, 2 of them unidentified. The plant extract was found to contain high amounts of lycoramine, a galanthamine-type alkaloid. The extract also presented low inhibitory potential against the enzymes AChE and BuChE, with IC50 values of 14.6 ± 0.6 and 37.6 ± 1.4 μg·mL−1, respectively, and good to moderate inhibitory activity against the protozoan Plasmodium falciparum strain FCR-3 (chloroquine-resistant), with IC50 values of 3.78 ± 0.3 μg·mL−1. This is the first report of the alkaloid profile of a plant of the Ismene genus, which could be an interesting source of bioactive compounds. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Graphical abstract

14 pages, 2001 KiB  
Article
Optimisation of the Green Process of Industrial Hemp—Preparation and Its Extract Characterisation
by Taja Žitek, Petra Kotnik, Teo Makoter, Vesna Postružnik, Željko Knez and Maša Knez Marevci
Plants 2022, 11(13), 1749; https://doi.org/10.3390/plants11131749 - 30 Jun 2022
Cited by 5 | Viewed by 1919
Abstract
Natural medicines and products are becoming increasingly important in the pharmaceutical and food industries. The most important step in obtaining a natural remedy is the processing of the natural material. This study offers the separation of the industrial hemp plant into fractions by [...] Read more.
Natural medicines and products are becoming increasingly important in the pharmaceutical and food industries. The most important step in obtaining a natural remedy is the processing of the natural material. This study offers the separation of the industrial hemp plant into fractions by mechanical treatment, which has a significant impact on the selectivity of the obtained fractions. This study also offers a solution to reduce waste by fractionating industrial hemp, focusing on the fraction with the highest cannabinoid content (49.5% of CBD). The study confirmed the anticancer potential of the extract, which prevents further division of WM-266-4 melanoma cells at a concentration of 10−3 mg/mL. However, application of the extract (c = 10−3 mg/mL) to normal human epidermal melanocytes proved to be insignificant, as the metabolic activity of the cells was the same as in the control cell group. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

16 pages, 4416 KiB  
Article
Antiphotoaging Effects of Damiana (Turnera diffusa) Leaves Extract via Regulation AP-1 and Nrf2/ARE Signaling Pathways
by Minseon Kim, Lee-Keun Ha, Sarang Oh, Minzhe Fang, Shengdao Zheng, Arce D. Bellere, Jeehaeng Jeong and Tae-Hoo Yi
Plants 2022, 11(11), 1486; https://doi.org/10.3390/plants11111486 - 31 May 2022
Cited by 5 | Viewed by 3599
Abstract
Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying [...] Read more.
Damiana (Turnera diffusa), of the family Passifloraceae, has been widely studied for its pharmacological effects, especially for antioxidant and antibacterial actions. However, there are limited scientific findings describing its antiphotoaging effects on the skin. In the present study, the underlying molecular mechanisms of the protective effect of Damiana were investigated in keratinocytes (HaCaTs) and normal human dermal fibroblasts (HDFs) subject to UVB irradiation. The mRNA expression of matrix metalloproteinases (MMPs) and procollagen type I was determined by reverse transcription-polymerase chain reaction. The protein expression of antiphotoaging-related signaling molecules in the activator protein-1 (AP-1) and nuclear factor erythroid 2-related factor 2 (NRF2)/antioxidant response element (ARE) pathways was assessed by Western blotting. We observed that Damiana blocked the upregulated production of reactive oxygen species induced in UVB-irradiated HaCaTs and HDFs in a dose-dependent manner. Treatment with Damiana also significantly ameliorated the mRNA expression of MMPs and procollagen type I. In addition, the phosphorylation level of c-Jun and c-Fos was also decreased through the attenuated expression of p-38, p-ERK, and p-JNK after treatment with Damiana. Furthermore, the treatment of cells with Damiana resulted in the inhibition of Smad-7 expression in the TGF-β/Smad pathway and upregulated the expression of the Nrf2/ARE signaling pathway. Hence, the synthesis of procollagen type I, a precursor of collagen I, was promoted. Collectively, these results provide us with the novel insight that Damiana is a potential source of antiphotoaging compounds. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

Review

Jump to: Research

26 pages, 2207 KiB  
Review
Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines
by Francis Alfred Attah, Bilqis Abiola Lawal, Abdulmalik Babatunde Yusuf, Oluwakorede Joshua Adedeji, Joy Temiloluwa Folahan, Kelvin Oluwafemi Akhigbe, Tithi Roy, Azeemat Adeola Lawal, Ngozi Blessing Ogah, Olufunke Esan Olorundare and Jean Christopher Chamcheu
Plants 2022, 11(23), 3271; https://doi.org/10.3390/plants11233271 - 28 Nov 2022
Cited by 3 | Viewed by 3004
Abstract
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional [...] Read more.
Phytomedicines reportedly rich in cystine knot peptides (Knottins) are found in several global diets, food/herbal supplements and functional foods. However, their knottin peptide content has largely been unexplored, notably for their emerging dual potentials at both the food and medicine space. The nutritional roles, biological targets and mechanism(s) of activity of these knotted peptides are largely unknown. Meanwhile, knottins have recently been unveiled as emerging peptide therapeutics and nutraceuticals of primary choice due to their broad spectrum of bioactivity, hyper stability, selective toxicity, impressive selectivity for biomolecular targets, and their bioengineering applications. In addition to their potential dietary benefits, some knottins have displayed desirable limited toxicity to human erythrocytes. In an effort to appraise what has been accomplished, unveil knowledge gaps and explore the future prospects of knottins, an elaborate review of the nutritional and pharmaceutical application of phytomedicines rich in knottins was carried out. Herein, we provide comprehensive data on common dietary and therapeutic knottins, the majority of which are poorly investigated in many food-grade phytomedicines used in different cultures and localities. Findings from this review should stimulate scientific interest to unveil novel dietary knottins and knottin-rich nutraceutical peptide drug candidates/leads with potential for future clinical application. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants III)
Show Figures

Figure 1

Back to TopTop