Journal Description
Physchem
Physchem
is an international, peer-reviewed, open access journal on science and technology in physical chemistry published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science) and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 20.6 days after submission; acceptance to publication is undertaken in 4.8 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Exploring the Distribution of Low Molecular Weight Compounds in Water-Based Two-Phase Systems with Various Salt Additives
Physchem 2024, 4(3), 334-343; https://doi.org/10.3390/physchem4030023 - 9 Sep 2024
Abstract
The partition coefficients of seven low molecular weight compounds were tested in different aqueous two-phase systems. The ionic composition of each system included specific salt additives, and it was found that there is a linear relationship between the solute partition coefficients and the
[...] Read more.
The partition coefficients of seven low molecular weight compounds were tested in different aqueous two-phase systems. The ionic composition of each system included specific salt additives, and it was found that there is a linear relationship between the solute partition coefficients and the presence of different salt additives. The study suggests that the solute structure and the type of ions influence the solute response to the ionic environment. Additionally, it was observed that the solutes’ polar surface area and the solvent-accessible surface area are the essential structural features governing partitioning in aqueous two-phase systems.
Full article
(This article belongs to the Section Biophysical Chemistry)
►
Show Figures
Open AccessArticle
Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials
by
João G. de Oliveira Neto, Jacivan V. Marques, Jayson C. dos Santos, Adenilson O. dos Santos and Rossano Lang
Physchem 2024, 4(3), 319-333; https://doi.org/10.3390/physchem4030022 - 26 Aug 2024
Abstract
Tutton salts form an isomorphic crystallographic family that has been intensively investigated in recent decades due to their attractive thermal and optical properties. In this work, we report four mixed Tutton crystals (obtained by the slow solvent evaporation method) with novel chemical compositions
[...] Read more.
Tutton salts form an isomorphic crystallographic family that has been intensively investigated in recent decades due to their attractive thermal and optical properties. In this work, we report four mixed Tutton crystals (obtained by the slow solvent evaporation method) with novel chemical compositions based on K2V1−xM’x(SO4)2(H2O)6, where M’ represents Co, Ni, Cu, and Zn, aiming at thermochemical energy storage applications. Their structural and thermal properties were correlated with theoretical studies. The crystal structures were solved by powder X-ray diffraction using the Rietveld method with similar compounds. All of the samples crystallized in monoclinic symmetry with the P21/a-space group. A detailed study of the intermolecular interactions based on Hirshfeld surfaces and 2D fingerprint mappings showed that the main interactions arise from hydrogen bonds (H∙∙∙O/O∙∙∙H) and dipole–ion (K∙∙∙O/O∙∙∙K). On the other hand, free space percentages in the unit cells determined by electron density isosurfaces presented low values ranging from 0.53 (V–Ni) to 0.81% (V–Cu). The thermochemical findings from thermogravimetry, a differential thermal analysis, and differential scanning calorimetry indicate that K2V0.47Ni0.53(SO4)2(H2O)6 salt is the most promising among mixed salts (K2V1−xM’x(SO4)2(H2O)6) for heat storage potential, achieving a low dehydration temperature (≈85 °C), high dehydration enthalpy (≈360 kJ/mol), and high energy storage density (≈1.84 GJ/m3).
Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
►▼
Show Figures
Figure 1
Open AccessReview
The Theories of Rubber Elasticity and the Goodness of Their Constitutive Stress–Strain Equations
by
Vincenzo Villani and Vito Lavallata
Physchem 2024, 4(3), 296-318; https://doi.org/10.3390/physchem4030021 - 22 Aug 2024
Abstract
One of the most important challenges in polymer science is a rigorous understanding of the molecular mechanisms of rubber elasticity by relating macroscopic deformation to molecular changes and deriving the constitutive stress–strain equation for the elastomeric network. The models developed from the last
[...] Read more.
One of the most important challenges in polymer science is a rigorous understanding of the molecular mechanisms of rubber elasticity by relating macroscopic deformation to molecular changes and deriving the constitutive stress–strain equation for the elastomeric network. The models developed from the last century to today describe many aspects of the physics of rubber elasticity; although these theories are successful, they are not complete. In this review we analyze the main theoretical and phenomenological models of rubber elasticity, including their assumptions, main characteristics, and stress–strain equations. Then, we compare the predictions of the theories to our experimental data of polydimethylsiloxane (PDMS) rubber, in order to highlight the goodness of the reviewed models. The nonaffine and phenomenological deformation models verify the experimental curves in tension and compression in the whole investigated deformation range . On the contrary, the affine deformation hypothesis is rigorously verified only in the deformation range .
Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Asphalt-Binder Mixtures Evaluated by T1 NMR Relaxometry
by
Rebecca M. Herndon, Jay Balasubramanian, Magdy Abdelrahman and Klaus Woelk
Physchem 2024, 4(3), 285-295; https://doi.org/10.3390/physchem4030020 - 13 Aug 2024
Abstract
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is
[...] Read more.
Asphalt pavements make up a majority of the essential transportation systems in the US. Asphalt mixtures age and degrade over time, reducing the pavement performance. Pavement performance critically depends on the aging of asphalt binder. The aging of asphalt binder during construction is traditionally modeled by rolling thin film oven (RTFO) testing, while aging during service life is modeled by pressure aging vessel (PAV) testing. Comparing these models to the aging of binders in actual pavements is limited because, to be used for current testing, binders must be separated from the pavement’s aggregate by solvent extraction. Solvent extraction will, at least in part, compromise the structural integrity of asphalt binder samples. Spin-lattice NMR relaxometry has been shown to nondestructively evaluate asphalt properties in situ through the analysis of hydrogen environments. The molecular mobility of hydrogen environments and with it the stiffness of asphalt binder samples can be determined by characteristic T1 relaxation times, indicating the complexity of asphalt-binder aging. In this study, two laboratory-generated asphalt mixtures, a failed field sample, and several laboratory-aged binder samples are compared by NMR relaxometry. NMR relaxometry was found to be able to differentiate between asphalt samples based on their binder percentage. According to the relaxometry findings, the RTFO binder aging compared favorably to the 6% laboratory-mixed sample. The PAV aging, however, did not compare well to the relaxometry results found for the field-aged sample. The amount of aggregate was found to have an influence on the relaxation times of the binder in the mixed samples and an inverse proportionality of the binder content to the primary NMR relaxation time was detected. It is concluded that molecular water present in the pores of the aggregate material gives rise to such a relationship. The findings of this study lay the foundation for nondestructive asphalt performance evaluation by NMR relaxometry.
Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
►▼
Show Figures
Figure 1
Open AccessArticle
Polyvinyl Alcohol Coatings Containing Lamellar Solids with Antimicrobial Activity
by
Maria Bastianini, Michele Sisani, Raúl Escudero García, Irene Di Guida, Carla Russo, Donatella Pietrella and Riccardo Narducci
Physchem 2024, 4(3), 272-284; https://doi.org/10.3390/physchem4030019 - 1 Aug 2024
Abstract
The design of an antimicrobial coating material has become important in the prevention of infections caused by the transmission of pathogens coming from human contact with contaminated surfaces. With that aim, layered single hydroxides (LSHs) and layered double hydroxides (LDHs) containing Zn and
[...] Read more.
The design of an antimicrobial coating material has become important in the prevention of infections caused by the transmission of pathogens coming from human contact with contaminated surfaces. With that aim, layered single hydroxides (LSHs) and layered double hydroxides (LDHs) containing Zn and Cu intercalated with antimicrobial molecules were synthesized and characterized. Cinnamate and salicylate anions were chosen because of their well-known antimicrobial activity. Several coatings based on polyvinyl alcohol (PVA) and LDHs or LSHs with increasing amounts of filler were prepared and filmed on a polyethylene terephthalate (PET) substrate. The coatings were characterized, and their antimicrobial activity was evaluated against several pathogens that are critical in nosocomial infections, showing a synergistic effect between metal ions and active molecules and the ability to inhibit their growth.
Full article
(This article belongs to the Section Surface Science)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Thermodynamic Equilibrium Analysis of CO2 Methanation through Equilibrium Constants: A Comparative Simulation Study
by
Bruno Varandas, Miguel Oliveira, Carlos Andrade and Amadeu Borges
Physchem 2024, 4(3), 258-271; https://doi.org/10.3390/physchem4030018 - 23 Jul 2024
Abstract
In this study, a steady-state thermodynamic equilibrium evaluation of CO2 methanation was conducted. Calculations were performed by solving the material balance equations using the equilibrium constants of CO2 methanation and reverse water–gas shift reactions. Results obtained from an analytical method developed
[...] Read more.
In this study, a steady-state thermodynamic equilibrium evaluation of CO2 methanation was conducted. Calculations were performed by solving the material balance equations using the equilibrium constants of CO2 methanation and reverse water–gas shift reactions. Results obtained from an analytical method developed with the aid of the Microsoft Excel platform were compared to simulations conducted using the commercially available free software COCO and DWSIM. The effects of temperature, pressure, and H2/CO2 ratio on CH4 yield, carbon oxide formation, and heat balance were investigated. The results indicate that the methanation process is highly favored by low temperatures and higher pressures with a stoichiometric H2/CO2 ratio. Under these conditions, CH4 output increases, and carbon formation is reduced, resulting in better performance. Simulations from all three models are in agreement, with minor differences noted in the DWSIM software.
Full article
(This article belongs to the Section Thermochemistry)
►▼
Show Figures
Figure 1
Open AccessReview
Development and Characterisation of Functional Bakery Products
by
Raquel P. F. Guiné and Sofia G. Florença
Physchem 2024, 4(3), 234-257; https://doi.org/10.3390/physchem4030017 - 17 Jul 2024
Abstract
►▼
Show Figures
This review focuses on a set of studies about functional bakery products. The literature search was performed on scientific databases ScienceDirect, PubMed, MDPI, BOn, and SciELO, based on some eligibility criteria, and a total of 102 original research articles about functional bakery products
[...] Read more.
This review focuses on a set of studies about functional bakery products. The literature search was performed on scientific databases ScienceDirect, PubMed, MDPI, BOn, and SciELO, based on some eligibility criteria, and a total of 102 original research articles about functional bakery products were selected. The studies were analysed according to the types of products, functional properties, functional ingredients, their sources, and the types of measurements described. Results showed that breads were the most frequently analysed products. Most of the products were rich in fibre and antioxidants or were gluten-free. Of the 102 studies, 92 analysed physical properties, 81 involved chemical analyses, 50 involved sensorial analyses, and eight reported microbiological analyses. The most frequent physical properties were texture and colour, while the most frequent chemical components were fibre and minerals. For sensorial properties, colour and texture were particularly evaluated, which were also the most frequently measured physical properties. The studies presented various successful strategies for the fortification of bakery products with functional components, demonstrating their ability to meet consumer needs and potentiate industry growth. This review highlights the relevance of functional bakery products in the current food panorama, contributing to increased knowledge and stimulating discussions about the impact of functional bakery products in promoting healthier eating.
Full article
Graphical abstract
Open AccessArticle
Grafting of Polyethyleneimines on Porous Silica Beads and Their Use for Adsorptive Removal of Cr(VI) from Aqueous Medium
by
Ayane Taki, Kouta Morioka, Keiko Noguchi, Hiromichi Asamoto, Hiroaki Minamisawa and Kazunori Yamada
Physchem 2024, 4(3), 214-233; https://doi.org/10.3390/physchem4030016 - 14 Jul 2024
Abstract
Porous silica-based adsorbents for hexavalent chromium (Cr(VI)) ion removal were prepared by the combined use of functionalization with (3-glycidyloxypropyl)trimethoxysilane and the grafting of branched and linear polyethyleneimine (BPEI and LPEI). LPEI was prepared from polyethyloxazolin by hydrolysis with HCl. The preparation of LPEI
[...] Read more.
Porous silica-based adsorbents for hexavalent chromium (Cr(VI)) ion removal were prepared by the combined use of functionalization with (3-glycidyloxypropyl)trimethoxysilane and the grafting of branched and linear polyethyleneimine (BPEI and LPEI). LPEI was prepared from polyethyloxazolin by hydrolysis with HCl. The preparation of LPEI was identified by NMR measurements and the grafting of BPEI and LPEI on the silica beads was confirmed by an XPS analysis. The Cr(VI) ion adsorption of the obtained BPEI-grafted silica beads (BPEI–silica beads) was investigated as a function of the pH value, the content of amino groups, the temperature, the Cr(VI) ion concentration, and the molecular mass of the grafted BPEI chains. The Cr(VI) ion adsorption at pH 3.0 increased with an increase in the content of amino groups, and the maximum adsorption capacity of 1.06 mmol/g was obtained when the content of amino groups was at 2.17 mmol/g. This value corresponds to 589 mg/g−1.8KPEI, and the adsorption ratio of about 0.5 is a noteworthy result. The data fit to the pseudo-second-order kinetic model, and the suitability of this fitting was supported by the results that the adsorption capacity and initial rate of adsorption increased with the temperature. In addition, the equilibrium data followed the Langmuir isotherm model. These results clearly demonstrate that the Cr(VI) adsorption occurred chemically, or through the electrostatic interaction of protonated amino groups on the grafted BPEI chains with hydrochromate ( ) ions. A higher adsorption capacity was obtained for the silica beads grafted with shorter BPEI chains, and the adsorption capacity of BPEI–silica beads is a little higher than that of linear PEI-grafted silica beads, suggesting that the Cr(VI) ion adsorption is affected by the chain isomerism of PEI (linear and branched) as well as the molecular mass of the grafted PEI chains, in addition to the content of amino groups. The experimental and analytical results derived from this study emphasize that the BPEI–silica beads can be used as an adsorbent for the removal of Cr(VI) ions from an aqueous medium.
Full article
(This article belongs to the Section Surface Science)
►▼
Show Figures
Figure 1
Open AccessArticle
Geopolymers for Space Applications
by
D. Mendoza-Cachú, J. B. Rojas-Trigos, J. Hernández-Wong, T. J. Madera-Santana and E. A. Franco-Urquiza
Physchem 2024, 4(3), 197-213; https://doi.org/10.3390/physchem4030015 - 5 Jul 2024
Abstract
Geopolymers are cementitious materials with exceptional mechanical and physical properties, making them suitable for aerospace applications. Considering their excellent performance, the present investigation aims to develop geopolymers with designed physical properties to address some issues in the aerospace industry. In this sense, the
[...] Read more.
Geopolymers are cementitious materials with exceptional mechanical and physical properties, making them suitable for aerospace applications. Considering their excellent performance, the present investigation aims to develop geopolymers with designed physical properties to address some issues in the aerospace industry. In this sense, the influence of the alkaline activator on the final properties was evaluated. For the development of the geopolymers, sodium hydroxide and sodium metasilicate solutions were preparedto obtain the alkaline activator. The synthesis process also consisted of a mixing stage using a mixer to obtain a homogenous paste. After mixing, the curing process consisted of a first thermal treatment at 60 °C for 4 h to evaporate the excess water, avoid excessive contraction, and promote strength at early ages. Subsequently, the geopolymers were left at rest for 28 days until the final properties were achieved. The influence of the solid-to-liquidratio (S/L) on the microstructure of the geopolymers was evaluated. For this purpose, X-ray fluorescence spectrometry, X-ray diffraction, and infrared spectrometry analyses were performed. The results show that the content of the alkaline activator promotes variations inthe presence of different crystalline phases, which is more noticeable as the S/L ratio increases. Likewise, the infrared spectra display peaks at different wavelengths regarding the variations in elemental composition, which are more evident with the changes in the S/L ratio. In addition, physical studies, such as thermal conductivity and resistance to gamma radiation were conducted for different geopolymer compositions. The results indicate that changes in properties are not too sensitive to compositional variations, although slight modifications exist. Finally, these studies are significant as aerospace-focused materials are directly exposed to this kind of phenomena. The designed geopolymers have to be able to resist and maintain their properties through exposure to any energy.
Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
►▼
Show Figures
Figure 1
Open AccessArticle
Facile Fabrication of Pd-Doped CuO-ZnO Composites for Simultaneous Photodegradation of Anionic and Neutral Dyes
by
Sumalatha Bonthula, Muna Farah Ibrahim, Aisha Omar Al-Jaber, Al-Dana Faisal Al-Siddiqi, Ramyakrishna Pothu, Tauqeer Chowdhury, Yusuf Siddiqui, Rajender Boddula, Ahmed Bahgat Radwan and Noora Al-Qahtani
Physchem 2024, 4(3), 181-196; https://doi.org/10.3390/physchem4030014 - 27 Jun 2024
Abstract
This study explores the synthesis and application of Pd-doped CuO-ZnO composites for the simultaneous photodegradation of anionic and neutral dyes. The nanocomposite was synthesized using a hydrothermal technique and characterized using XRD, FTIR, and UV-Vis absorption spectra. Photocatalytic degradation experiments were conducted with
[...] Read more.
This study explores the synthesis and application of Pd-doped CuO-ZnO composites for the simultaneous photodegradation of anionic and neutral dyes. The nanocomposite was synthesized using a hydrothermal technique and characterized using XRD, FTIR, and UV-Vis absorption spectra. Photocatalytic degradation experiments were conducted with varying catalyst loadings, revealing optimal conditions for enhanced degradation performance. The nanocomposite exhibited a synergistic effect on the degradation of the dye mixture, following pseudo-first-order kinetics with significant efficiency under sunlight exposure. Moreover, the study evaluated the influence of pH on the degradation process, showing improved efficiency in neutral and basic conditions. Overall, the findings highlight the efficacy of the Pd-doped CuO-ZnO catalyst in degrading complex dye mixtures, offering potential applications for wastewater treatment in various industrial settings.
Full article
(This article belongs to the Section Catalysis)
►▼
Show Figures
Graphical abstract
Open AccessArticle
The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II)
by
Carolina Londoño-Zuluaga, Hasan Jameel, Ronalds W. Gonzalez, Guihua Yang and Lucian Lucia
Physchem 2024, 4(2), 167-180; https://doi.org/10.3390/physchem4020013 - 20 Jun 2024
Abstract
Crustacean shells, waste from the seafood industry, have been identified as a potential sustainable material for the adsorption of lead, a potent heavy metal found in the discharge of industrial processes. The dynamics and kinetics of its performance were evaluated in batch experiments
[...] Read more.
Crustacean shells, waste from the seafood industry, have been identified as a potential sustainable material for the adsorption of lead, a potent heavy metal found in the discharge of industrial processes. The dynamics and kinetics of its performance were evaluated in batch experiments under pH, temperature, time, and initial concentration. A unique and non-intuitive key finding was that among the native components of the crab shell matrix, i.e., chitin, protein, and calcium carbonate, calcium carbonate was instrumental in sequestration. The role of protein was minimal, whereas the efficiency of chitin in lead complexation was linked to the lead atomic radius, which, of the crab shell components, we determined was very prone to interacting with chitin.
Full article
(This article belongs to the Section Physical Organic Chemistry)
►▼
Show Figures
Figure 1
Open AccessReview
Fast Recombination of Free Radicals in Solution and Microviscosity
by
Igor V. Khudyakov
Physchem 2024, 4(2), 157-166; https://doi.org/10.3390/physchem4020012 - 27 May 2024
Abstract
Rates of fast reactions are inversely proportional to the solvent viscosity (η). However, a quantitative study demonstrates that dynamic viscosity η is often a crude reflection of a viscous drug exerted on a molecule or radical. This paper aims to present an accurate
[...] Read more.
Rates of fast reactions are inversely proportional to the solvent viscosity (η). However, a quantitative study demonstrates that dynamic viscosity η is often a crude reflection of a viscous drug exerted on a molecule or radical. This paper aims to present an accurate dependence of the rates of fast bi- and monomolecular reactions upon the viscous drug of a media. Different correction coefficients fmicro are discussed, which should lead to a dependence rate ∝ (fmicroη)−1. Microviscosity is viscosity, leading to the expected rate dependence upon shear viscosity. In many cases, experimentally measured diffusion coefficients of molecules of a similar structure to the reactive radicals lead to the correct prediction of radicals’ diffusion coefficients and the rate constants of radicals recombination. Microviscosity of complex non-Newtonian liquids (biological liquids, polymeric solutions) can be measured using low MW molecular probes. Usually, the measured ηmicro is much lower than the shear η of complex biological or polymeric liquids. Cis–trans isomerization of bulky groups in monomolecular reactions is often described with Kramers’ theory. An example of such isomerization of a cyanine dye studied experimentally and theoretically is presented. It is demonstrated in the selected case that Kramers’ theory adequately describes the dependence of cis–trans isomerization of organic compounds upon η.
Full article
(This article belongs to the Section Kinetics and Thermodynamics)
►▼
Show Figures
Figure 1
Open AccessArticle
A Computational Study of the Mechanism and Kinetics of the 4-Methyl Aniline Reaction with OH Radicals
by
Tien V. Pham
Physchem 2024, 4(2), 146-156; https://doi.org/10.3390/physchem4020011 - 26 May 2024
Abstract
In this study, the mechanism of the reaction between 4-methyl aniline and hydroxyl free radicals was computed using the M06-2X and CCSD(T) methods, along with the 6-311++G(3df,2p) basis set. The kinetics of the reaction were calculated utilizing the transition state theory and the
[...] Read more.
In this study, the mechanism of the reaction between 4-methyl aniline and hydroxyl free radicals was computed using the M06-2X and CCSD(T) methods, along with the 6-311++G(3df,2p) basis set. The kinetics of the reaction were calculated utilizing the transition state theory and the microcanonical Rice–Ramsperger–Kassel–Marcus theory. The calculated results revealed that NH-C6H4-CH3 was the key product of the system. The total rate coefficient of the system, k_total = 2.04 × 10−18 T2.07 exp[(11.2 kJ/mol)/RT] cm3/s, was found under the 300–2000 K interval, with P = 760 Torr. At the ambient conditions, the velocity of this reaction was about ten times larger than that of the reaction between C6H5CH3 and hydroxyl free radicals, but it was smaller than the aniline + OH rate.
Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Comprehensive Study of Equilibrium Structure of Trans-Azobenzene: Gas Electron Diffraction and Quantum Chemical Calculations
by
Alexander E. Pogonin, Ivan Yu. Kurochkin, Alexey V. Eroshin, Maksim N. Zavalishin and Yuriy A. Zhabanov
Physchem 2024, 4(2), 131-145; https://doi.org/10.3390/physchem4020010 - 8 May 2024
Abstract
The geometrical re parameters of trans-azobenzene (E-AB) free molecule were refined by gas electron diffraction (GED) method using available experimental data obtained previously by S. Konaka and coworkers. Structural analysis was carried out by various techniques. First of all, these included the
[...] Read more.
The geometrical re parameters of trans-azobenzene (E-AB) free molecule were refined by gas electron diffraction (GED) method using available experimental data obtained previously by S. Konaka and coworkers. Structural analysis was carried out by various techniques. First of all, these included the widely used molecular orbital constrained gas electron diffraction method and regularization method. The results of the refinements using different models were also compared—a semirigid model, three variants of one-dimensional dynamic models, and a two-dimensional pseudoconformer model. Several descriptions have been used due to the fact that E-AB has a shallow potential energy surface along the rotation coordinates of phenyl groups. Despite this, it turned out that the semirigid model is suitable for use for E-AB and allows good agreement with experimental data to be achieved. According to the results of GED structural analysis, coupled with the results of DLPNO-CCSD(T0) calculations, E-AB has a planar structure. Based only on GED data, it is impossible to unambiguously determine the rotational angle of the phenyl group due to the facts that (i) with rotation over a wide range of angles, the bonded distances in the molecule change insignificantly and (ii) potential function in a structural analysis within a dynamic model is not determined with the necessary accuracy. This work also examines the sensitivity of the GED method to structural changes caused by trans-cis isomerization. The paper also analyzes the applicability of different variants of density functional theory (DFT) calculations in GED structural analysis using E-AB as an example. There are not enough similar methodological works in the literature. This experimental and methodological information is especially important and relevant for planning and implementing GED experiments and corresponding processing of the results for azobenzene derivatives, in which the conformer and isomeric diversity are even more complicated due to the presence of different substituents.
Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
►▼
Show Figures
Graphical abstract
Open AccessCommunication
Role of N1-Domain, Linker, N2-Domain, and Latch in the Binding Activity and Stability of the Collagen-Binding Domain for the Collagen-Binding Protein Cbm from Streptococcus mutans
by
Akari Nishi, Azumi Hirata, Atsushi Mukaiyama, Shun-ichi Tanaka, Ryota Nomura, Kazuhiko Nakano and Kazufumi Takano
Physchem 2024, 4(2), 120-130; https://doi.org/10.3390/physchem4020009 - 12 Apr 2024
Abstract
A special type of Streptococcus mutans expressing collagen-binding proteins (CBPs), Cnm, and Cbm, on the cell surface has been shown to be highly pathogenic. It is believed that S. mutans with CBPs that has entered the blood vessel attaches to collagen molecules exposed
[...] Read more.
A special type of Streptococcus mutans expressing collagen-binding proteins (CBPs), Cnm, and Cbm, on the cell surface has been shown to be highly pathogenic. It is believed that S. mutans with CBPs that has entered the blood vessel attaches to collagen molecules exposed from the damaged blood vessel, inhibiting aggregation by platelets and increasing bleeding. Therefore, it is crucial to understand the molecular characteristic features of CBPs to protect against and cure S. mutans-related diseases. In this work, we highlighted the Cbm/collagen-binding domain (CBD) and examined its binding ability and thermal stability using its domain/region exchange variants in more detail. The CBD comprises the N1-domain, a linker, N2-domain, and a latch (N1–N2~), where the latch interacts with the N1-domain to form a β-sheet. The collagen-binding activity of the Cbm/CBD domain/region exchange variants was investigated using ELISA. Binding assays demonstrated that the N-domain_linker_N-domain composition is necessary for collagen binding as previously reported, newly that the latch is involved in binding through the β-sheet with the N1-domain when the N1-domain is present at the N-terminal position, and that the N2-domain is particularly important for collagen binding at both the N- and C-terminal positions. Thermal denaturation experiments newly revealed that the linker and latch bound to the N-domain contribute to N-domain stabilization but have no effect on the N-domain_linker_N-domain molecule, which contains two N-domains. It has also been shown that the N-terminal N2-domain destabilizes the N-domain_linker_N-domain structure. The results of this study will contribute to the rapid detection of CBP, development of CBP-targeted therapies, and application of CBPs to protein engineering using their collagen-binding ability.
Full article
(This article belongs to the Section Biophysical Chemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Phosphatidylinositol-4,5-biphosphate (PIP2)-Dependent Thermoring Basis for Cold-Sensing of the Transient Receptor Potential Melastatin-8 (TRPM8) Biothermometer
by
Guangyu Wang
Physchem 2024, 4(2), 106-119; https://doi.org/10.3390/physchem4020008 - 26 Mar 2024
Abstract
The menthol sensor transient receptor potential melastatin-8 (TRPM8) can be activated by cold and, thus, serves as a biothermometer in a primary afferent sensory neuron for innocuous-to-noxious cold detection. However, the precise structural origins of specific temperature thresholds and sensitivity have remained elusive.
[...] Read more.
The menthol sensor transient receptor potential melastatin-8 (TRPM8) can be activated by cold and, thus, serves as a biothermometer in a primary afferent sensory neuron for innocuous-to-noxious cold detection. However, the precise structural origins of specific temperature thresholds and sensitivity have remained elusive. Here, a grid thermodynamic model was employed, to examine if the temperature-dependent noncovalent interactions found in the 3-dimensional (3D) structures of thermo-gated TRPM8 could assemble into a well-organized fluidic grid-like mesh network, featuring the constrained grids as the thermorings for cold-sensing in response to PIP2, Ca2+ and chemical agents. The results showed that the different interactions of TRPM8 with PIP2 during the thermal incubation induced the formation of the biggest grids with distinct melting temperature threshold ranges. Further, the overlapped threshold ranges between open and pre-open closed states were required for initial cold activation with the matched thermo-sensitivity and the decrease in the systematic thermal instability. Finally, the intact anchor grid near the lower gate was important for channel opening with the active selectivity filter. Thus, PIP2-dependent thermorings in TRPM8 may play a pivotal role in cold sensing.
Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
►▼
Show Figures
Figure 1
Open AccessArticle
Ground-State Tautomerism and Excited-State Proton Transfer in 7-Hydroxy-4-methyl-8-((phenylimino)methyl)-2H-chromen-2-one as a Potential Proton Crane
by
Daniela Nedeltcheva-Antonova and Liudmil Antonov
Physchem 2024, 4(1), 91-105; https://doi.org/10.3390/physchem4010007 - 11 Mar 2024
Cited by 3
Abstract
The tautomerism in the title compound as a potential long-range proton transfer (PT) switch has been studied by using the DFT and TD-DFT approaches. The data show that in aprotic solvents, the enol tautomer dominates, while the increase in the content of the
[...] Read more.
The tautomerism in the title compound as a potential long-range proton transfer (PT) switch has been studied by using the DFT and TD-DFT approaches. The data show that in aprotic solvents, the enol tautomer dominates, while the increase in the content of the keto tautomer (short-range PT) rises as a function of polarity of the solvent. In ethanol, due to specific solute–solvent stabilization through intermolecular hydrogen bonding, a substantial amount of the keto forms exists in solution. The irradiation leads to two competitive processes in the excited state, namely ESIPT and trans/cis isomerization around the azomethine bond as in other structurally similar Schiff bases. The studied compound is not suitable for bistable tautomeric switching, where long-range PT occurs, due to the difficult enolization of the coumarin carbonyl group.
Full article
(This article belongs to the Section Experimental and Computational Spectroscopy)
►▼
Show Figures
Figure 1
Open AccessArticle
Effect of Molecular Architecture of Surface-Active Organosilicon Macromers on Their Colloidal Properties in Relation to Heterophasic Radical Polymerization of Styrene and Methyl Methacrylate
by
Valeriy Borisovich Gostenin, Anton Mikhailovich Shulgin, Irina Sergeevna Shikhovtseva, Alexandra Alexandrovna Kalinina, Inessa Alexandrovna Gritskova and Vitaliy Pavlovich Zubov
Physchem 2024, 4(1), 78-90; https://doi.org/10.3390/physchem4010006 - 23 Feb 2024
Abstract
The effects of the molecular architecture of water-insoluble organosilicon polymerizable surfactant macromers (SAMs) on their colloidal-chemical characteristics and on their efficiency in heterophase radical polymerization of styrene and methyl methacrylate were studied. It was shown that despite considerable differences in the structure of
[...] Read more.
The effects of the molecular architecture of water-insoluble organosilicon polymerizable surfactant macromers (SAMs) on their colloidal-chemical characteristics and on their efficiency in heterophase radical polymerization of styrene and methyl methacrylate were studied. It was shown that despite considerable differences in the structure of three synthesized oligomers (linear α,ω-dipropylmethacrylatepolydimethylsiloxane with a number of repeated siloxane units n = 20—l-SAM; branched γ-methacryloxypropyl containing dimethylsiloxane oligomer—b-SAM; and “spherical” oligo-(γ-methacryloxypropyl)silsesquioxane—s-SAM), the colloidal-chemical characteristics (interfacial tension, layer thickness, adsorption, etc.) were rather similar. In particular, they all form “thick” multimolecular adsorption layers on the toluene–water interphase. All three SAMs were shown to act as effective colloidal stabilizers in heterophase radical polymerization of styrene and methyl methacrylate, which resulted in one-step preparation of large (0.5–1.5 µm) polymer particles with narrow particle size distribution. The obtained results are consistent with the published data on the use of water-insoluble polymerizable oligomers of various chemical structures on the heterophase radical polymerization. The use of these colloidal stabilizers may be considered as an effective way to obtain stable suspensions with large particles and narrow particle size distribution.
Full article
(This article belongs to the Section Surface Science)
►▼
Show Figures
Figure 1
Open AccessArticle
Synthesis of Periclase Phase (MgO) from Colloidal Cassava Starch Suspension, Dual Application: Cr(III) Removal and Pigment Reuse
by
Nayara Balaba, Julia de O. Primo, Anne R. Sotiles, Silvia Jaerger, Dienifer F. L. Horsth, Carla Bittencourt and Fauze J. Anaissi
Physchem 2024, 4(1), 61-77; https://doi.org/10.3390/physchem4010005 - 4 Feb 2024
Abstract
This study aimed to synthesize magnesium oxide (MgO) using a colloidal starch method for two primary purposes: the removal of chromium (III) ions from synthetic wastewater and the subsequent use of the chromium-containing material as synthetic inorganic pigments (SIPs) in commercial paints. The
[...] Read more.
This study aimed to synthesize magnesium oxide (MgO) using a colloidal starch method for two primary purposes: the removal of chromium (III) ions from synthetic wastewater and the subsequent use of the chromium-containing material as synthetic inorganic pigments (SIPs) in commercial paints. The synthesis used to obtain the oxide (St-MgO) is a promising method for using plants, such as cassava, as green fuels due to their abundance, low cost, and non-toxicity. With this, the oxide showed greater porosity and alkalinity, compared to commercial magnesium oxide (Cm-MgO). The MgO samples were subjected to structural characterization using XRD and FTIR, surface area and pore volume study by B.E.T. and SEM, and chemical composition by ICP-OES and thermogravimetric analysis (TGA). The crystalline periclase phase was identified for both samples, but the brucite phase was shown to be a secondary phase for the commercial sample. After the removal of chromium ions, the brucite crystalline phase became the majority phase for the samples, regardless of the concentration of ions removed. The pigments were characterized by color measurements and discussed in terms of colorimetric parameters using the CIELab method and electron spectroscopy (VIS-NIR). This study also evaluated the colorimetric stability of green pigments in aggressive environments (acidic and alkaline) over a 240 h exposure period, demonstrating minimal color difference. This study aims to develop materials for the decontamination of wastewater containing chromium and its reuse as a synthetic inorganic pigment, using an innovative and sustainable synthesis method.
Full article
(This article belongs to the Section Solid-State Chemistry and Physics)
►▼
Show Figures
Graphical abstract
Open AccessArticle
Atomistic Modeling of Spinel Oxide Particle Shapes and Reshaping under OER Conditions
by
Öyküm N. Avcı, Luca Sementa and Alessandro Fortunelli
Physchem 2024, 4(1), 43-60; https://doi.org/10.3390/physchem4010004 - 10 Jan 2024
Abstract
The surface configurations of the low-index facets of a set of spinel oxides are investigated using DFT+U calculations to derive surface energies and predict equilibrium nanoparticle shapes via the Wulff construction. Two very different conditions are investigated, corresponding to application either in heterogeneous
[...] Read more.
The surface configurations of the low-index facets of a set of spinel oxides are investigated using DFT+U calculations to derive surface energies and predict equilibrium nanoparticle shapes via the Wulff construction. Two very different conditions are investigated, corresponding to application either in heterogeneous catalysis or in electrocatalysis. First, the bare stoichiometric surfaces of NiFe2O4, CoFe2O4, NiCo2O4, and ZnCo2O4 spinels are studied to model their use as high-temperature oxidation catalysts. Second, focusing attention on the electrochemical oxygen evolution reaction (OER) and on the CoFe2O4 inverse spinel as the most promising OER catalyst, we generate surface configurations by adsorbing OER intermediates and, in an innovative study, we recalculate surface energies taking into account adsorption and environmental conditions, i.e., applied electrode potential and O2 pressure. We predict that under OER operating conditions, (111) facets are dominant in CoFe2O4 nanoparticle shapes, in fair agreement with microscopy measurements. Importantly, in the OER case, we predict a strong dependence of nanoparticle shape upon O2 pressure. Increasing O2 pressure increases the size of the higher-index (111) and (110) facets at the expense of the (001) more catalytically active facet, whereas the opposite occurs at low O2 pressure. These predictions should be experimentally verifiable and help define the optimal OER operative conditions.
Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Hydrogen, Molecules, Nanomaterials, Physchem
Fabrication of Hybrid Materials for Catalysis
Topic Editors: Jerry J. Wu, Michael Arkas, Dimitrios GiannakoudakisDeadline: 30 September 2024
Conferences
Special Issues
Special Issue in
Physchem
Computational Studies on Bioinspired Transition-Metal-Based Catalysts
Guest Editor: Ferran Acuña-ParésDeadline: 31 March 2025
Topical Collections
Topical Collection in
Physchem
Batteries Beyond Mainstream
Collection Editors: Sergei Manzhos, Masashi Kotobuki