Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates
Abstract
1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Characterisation
2.3. Corrosion Testing
2.4. Fuel Cell Testing
3. Results
3.1. Performance of Uncoated and Coated Non-Polished Aluminium Substrate
3.2. Performance of Coating on Polished Aluminium Substrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steele, B.C.H.; Heinzel, A. Materials for fuel cell technologies. Nature 2001, 414, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Ming, P.; Yang, D.; Zhang, C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451, 227783. [Google Scholar] [CrossRef]
- DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components (accessed on 26 March 2025).
- Hung, Y.; Tawfik, H.; Mahajan, D. Durability and characterization studies of chromium carbide coated aluminium fuel cell stack. Int. J. Hydrogen Energy 2016, 41, 12273–12284. [Google Scholar] [CrossRef]
- Narasimharaju, S.; Rao, B.P.C.; Annamalai, K. Advancements and Characterisation of Nitride Coating Materials on Aluminium Alloy-Based Bipolar Plates for PEMFC’s Applications. MATEC Web Conf. 2024, 393, 01010. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Maza, M. Influence of CrN-coating thickness on the corrosion resistance behaviour of aluminium-based bipolar plates. J. Power Sources 2011, 196, 4283–4289. [Google Scholar] [CrossRef]
- González Gutiérrez, A.G.; Sebastian, P.J.; Magallón Cacho, L.; Borja Arco, E.; Campos, J.; Baron, A. Surface Modification of Aluminium Alloy 6061 for Bipolar Plate Application: Adhesion Characteristics and Corrosion Resistance. Int. J. Electrochem. Sci. 2018, 13, 3958–3969. [Google Scholar] [CrossRef]
- González Gutiérrez, A.G.; Pech-Canul, M.A.; Chan-Rosado, G.; Sebastian, P.J. Studies on the physical and electrochemical properties of Ni-P coating on commercial aluminium as bipolar plate in PEMFC. Fuel 2019, 235, 1361–1367. [Google Scholar] [CrossRef]
- Abo El-Enin, S.A.; Abdel-Salam, O.E.; El-Abd, H.; Amin, A.M. New electroplated aluminium bipolar plate for PEM fuel cell. J. Power. Sources 2008, 177, 131–136. [Google Scholar] [CrossRef]
- Fetohi, A.E.; Abdel Hamed, R.M.; El-Khatib, K.M.; Souaya, E.R. Ni–P and Ni–Co–P coated aluminium alloy 5251 substrates as metallic bipolar plates for PEM fuel cell applications. Int. J. Hydrogen Energy 2012, 37, 7677–7688. [Google Scholar] [CrossRef]
- Madadi, F.; Rezaeian, A.; Edris, H.; Zhiani, M. Improving performance in PEMFC by applying different coatings to metallic bipolar plates. Meter. Chem. Phys. 2019, 238, 121911. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, Y.-B.; Kim, K.-M.; Jeong, M.-G.; Lim, D.-S. Electrically conductive polymer composite coating on aluminium for PEM fuel cells bipolar plate. Renew. Energy 2013, 54, 46–50. [Google Scholar] [CrossRef]
- Madwsley, J.R.; Carter, J.D.; Wang, X.; Niyogi, S.; Fan, C.Q.; Koc, R.; Osterhout, G. Composite-coated aluminium bipolar plates for PEM fuel cells. J. Power Sources 2013, 231, 106–112. [Google Scholar] [CrossRef]
- Lee, S.-J.; Huang, C.-H.; Chen, Y.-P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. J. Mater. Process. Technol. 2003, 140, 688–693. [Google Scholar] [CrossRef]
- Mirzaee Sisan, M.; Abdolahi Sereshki, M.; Khorsand, H.; Siadati, M.H. Carbon coatings for corrosion protection of SS-316L and AA-6061 as bipolar plates for PEM fuel cells. J. Alloys Compd. 2014, 63, 288–291. [Google Scholar] [CrossRef]
- Navabpour, P.; Cooper, L.; Yang, S.; Yin, J.; Zhang, K.; El-Kharouf, A.; Sun, H. PVD coatings for lightweight bipolar plates. Surfaces 2024, 7, 812–823. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, J.; Tao, Y.; Cao, R.; Kou, X.; Tian, X. Investigation of corrosion properties with Ni-P/TiNO coating on aluminium alloy bipolar plates in proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2022, 47, 22165–22179. [Google Scholar] [CrossRef]
- Narasimharaju, S.; Rao, B.P.C.; Annamalai, K. Advancements in Multilayer Coatings on Aluminium Alloy-Based Bipolar Plates for PEMFC Application. Int. Res. J. Adv. Eng. Hub 2024, 2, 190–204. [Google Scholar] [CrossRef]
- Feng, K.; Shen, Y.; Sun, H.; Liu, D.; An, Q.; Cai, X.; Chu, P.K. Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 6771–6777. [Google Scholar] [CrossRef]
- Pukha, V.E.; Glukhov, A.A.; Belmesov, A.A.; Kabachov, E.N.; Khodos, I.I.; Khadem, M.; Kim, D.-E.; Karaseov, P.A. Corrosion-resistant nanostructured carbon-based coatings for applications in fuel cells based on bipolar plates. Vacuum 2023, 218, 112643. [Google Scholar] [CrossRef]
- Liu, R.; Jia, Q.; Zhang, B.; Lai, Z.; Chen, L. Protective coatings for metal bipolar plates of fuel cells: A review. Int. J. Hydrogen Energy 2022, 47, 22915–22937. [Google Scholar] [CrossRef]
- 6082 (AlSi1MgMn, 3.2315, H30, A96082) Aluminium. Available online: https://www.makeitfrom.com/material-properties/6082-AlSi1MgMn-3.2315-H30-A96082-Aluminum/ (accessed on 26 March 2025).
- Li, Z.; Peng, M.; Wei, H.; Zhang, W.; Lv, Q.; Zhang, F.; Shan, Q. First-principles study on surface corrosion of 6082 aluminium alloy in H+ and Cl−. J. Mol. Struct. 2023, 1294, 136570. [Google Scholar] [CrossRef]
- Yang, L.; Yang, S.; Huang, G. Investigation of electrochemical corrosion behaviours of 6082 aluminium alloy under simulate deicing agent conditions. J. Phys. Conf. Series 2021, 1838, 012004. [Google Scholar] [CrossRef]
- Ravi Sankar, A.; Das, S. Experimental analysis of galvanic corrosion of a thin metal film in a multilayer stack for MEMS application. Mater. Sci. in Semiconduct. Process. 2013, 16, 449–453. [Google Scholar] [CrossRef]
- Galvanic Corrosion vs. Electrode Potential. Available online: https://www.engineeringtoolbox.com/electrode-potential-d_482.html (accessed on 26 March 2025).
- Avoid Long-Term Problems with Our Galvanic Corrosion Chart. Available online: https://industrialmetalservice.com/metal-university/avoid-long-term-problems-with-our-galvanic-corrosion-chart/ (accessed on 26 March 2025).
- Ma, X.; Wang, T.; Gong, B.; Cao, H. Fast and low-cost deposition strategy for constructing amorphous carbon layer toward corrosion protection on aluminium alloy bipolar plates in proton exchange membrane fuel cell environments. J. Power Sources 2024, 623, 235479. [Google Scholar] [CrossRef]
- Srivastava, A.; Kenneth, A.R.; Smith, C.B. Coating developments towards enabling aluminium as a bipolar plate material for PEM fuel cells. J. Power Sources 2024, 582, 233513. [Google Scholar] [CrossRef]
- Glechner, T.; Hahn, R.; Zauner, L.; Risslegger, S.; Polcik, P.; Reidl, H. Structure and mechanical properties of reactive and non-reactive sputter deposited WC based coatings. J. Alloys Compd. 2021, 885, 161129. [Google Scholar] [CrossRef]
- Shaw, B.A.; Fritz, T.L.; Davis, G.D.; Moshier, W.C. The influence of tungsten on the pitting of aluminium films. J. Electrochem. Soc. 1990, 137, 1317–1318. [Google Scholar] [CrossRef]
- Lin, C.-H.; Tsai, S.-Y. An investigation of coated aluminium bipolar plates for PEMFC. Appl. Energy 2012, 100, 87–92. [Google Scholar] [CrossRef]
- Levy, R.B.; Boudart, M. Platinum-like behaviour of tungsten carbide in surface catalysis. Science 1973, 181, 547–549. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, L.; Deng, F.; Giles, S.A.; Prasad, A.K.; Advani, S.G.; Yan, Y.; Vlachos, D.G. Durable and self-hydrating tugsten carbide-based composite polymer electrolyte membrane fuel cells. Nat. Commun. 2017, 8, 418. [Google Scholar] [CrossRef]
- Ham, D.J.; Lee, J.S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873–899. [Google Scholar] [CrossRef]
Al | Si | Mg | Fe | Mn | Cr | Zn | Cu | Ti | Residuals |
---|---|---|---|---|---|---|---|---|---|
95.2–98.3% | 0.7–1.3% | 0.6–1.2% | 0.5% max | 0.4–1.0% | 0.25% max | 0.2% max | 0.1% max | 0.1% max | 0.15% max |
Coating | Substrate Bias (V) | Carbon Layer Deposition Time (min) | Total Thickness (µm) |
---|---|---|---|
Cr-C1 | −80 | 60 | 0.8 |
Cr-C2 | −60 | 90 | 1.0 |
Cr-C3 | −70 | 90 | 1.0 |
Cr-C4 | −80 | 90 | 1.0 |
Cr-C5 | −90 | 90 | 1.0 |
Cr-C6 | −80 | 180 | 1.5 |
Sample | Current Density (mA/cm2) | Power Density (mW/cm2) | ||
---|---|---|---|---|
Initial | Final | Initial | Final | |
Uncoated Al6082 | 1708 | 1086 | 1246 | 896 |
Cr-C Al6082 | 2046 | 1256 | 1428 | 1053 |
W-C Al6082 | 2121 | 1425 | 1504 | 1151 |
Samples | R1 (mΩ) | CCPE1 (F) | R2 (mΩ) | CCPE2 (F) | R3 (mΩ) | CCPE3 (F) | R4 (mΩ) | R Total (mΩ) | |
---|---|---|---|---|---|---|---|---|---|
Uncoated Al6082 | 1st | 14.7 | 0.065 | 2.0 | 0.151 | 24.9 | 1.86 | 8.6 | 50.1 |
11th | 19.8 | 0.062 | 1.6 | 0.098 | 29.9 | 5.97 | 3.1 | 54.3 | |
Cr-C | 1st | 8.2 | 0.063 | 3.7 | 0.164 | 27.5 | 1.86 | 8.1 | 47.4 |
11th | 9.0 | 0.062 | 4.8 | 0.120 | 29.5 | 4.07 | 4.0 | 47.4 | |
W-C | 1st | 8.2 | 0.058 | 3.0 | 0.146 | 24.6 | 1.76 | 8.9 | 44.7 |
11th | 8.7 | 0.039 | 4.1 | 0.041 | 26.5 | 2.53 | 2.3 | 41.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navabpour, P.; Zhang, K.; Sanzone, G.; Field, S.; Sun, H. Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem 2025, 5, 18. https://doi.org/10.3390/physchem5020018
Navabpour P, Zhang K, Sanzone G, Field S, Sun H. Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem. 2025; 5(2):18. https://doi.org/10.3390/physchem5020018
Chicago/Turabian StyleNavabpour, Parnia, Kun Zhang, Giuseppe Sanzone, Susan Field, and Hailin Sun. 2025. "Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates" Physchem 5, no. 2: 18. https://doi.org/10.3390/physchem5020018
APA StyleNavabpour, P., Zhang, K., Sanzone, G., Field, S., & Sun, H. (2025). Magnetron-Sputtered Amorphous Carbon Films for Aluminium Proton-Exchange-Membrane Fuel Cell Bipolar Plates. Physchem, 5(2), 18. https://doi.org/10.3390/physchem5020018