Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adsorbent Treatment
2.2. Characterization of the Adsorbent
2.2.1. Point of Zero Charge
2.2.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.2.3. Laser Granularity Analysis
2.3. Adsorption Test
3. Results and Discussion
3.1. This Characterization of the Adsorbent
3.1.1. The pH Zero Charge Point
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR) Results
3.1.3. Laser Granularity Results
3.2. Adsorption Results
3.2.1. Effect of Initial pH
3.2.2. Effect of Contact Time and Kinetic Studies
3.2.3. Effect of Adsorbent Dosage
3.2.4. Adsorption Isotherm
3.2.5. Isothermal Models
3.3. Comparison with Other Adsorbents
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allegra, V.; Zarbà, C.; La Via, G.; Zarbà, A.S. Why the new orange juice consumption model favors global trade and growth in orange production. Br. Food J. 2019, 121, 1954–1968. [Google Scholar] [CrossRef]
- Milind, P.; Dev, C. Orange: Range of benefits. Int. Res. J. Pharm. 2012, 3, 52–56. [Google Scholar]
- Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002, 50, 5107–5114. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Sebghatollahi, Z.; Kamal, M.; Dhyani, A.; Shrivastava, A.; Singh, K.K.; Sinha, M.; Mahato, N.; Mishra, A.K.; Baek, K.-H. Citrus essential oils in aromatherapy: Therapeutic effects and mechanisms. Antioxidants 2022, 11, 2374. [Google Scholar] [CrossRef]
- Miles, E.A.; Calder, P.C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review. Front. Immunol. 2021, 12, 712608. [Google Scholar] [CrossRef]
- Zhong, G.; Nicolosi, E. Citrus origin, diffusion, and economic importance. In The Citrus Genome; Springer: Cham, Switzerland, 2020; pp. 5–21. [Google Scholar]
- Sandhu, K.S.; Minhas, K.S. Oranges and citrus juices. In Handbook of Fruits and Fruit Processing; Blackwell Publishing: Oxford, UK, 2006; pp. 309–357. [Google Scholar]
- Benabdelkader, M.; Saifi, R.; Saifi, H. Sustainable Agriculture in Some Arab Maghreb Countries (Morocco, Algeria, Tunisia). In Agro-Environmental Sustainability in MENA Regions; Springer: Cham, Switzerland, 2021; pp. 233–261. [Google Scholar]
- Kazi-Tani, L.M. Citrus Production Conditions in Algeria: Drought and Irrigation Issues. In Transformation Towards Circular Food Systems: Sustainable, Smart and Resilient Citrus Supply Chains in Mediterranean Areas; Springer: Cham, Switzerland, 2024; pp. 61–83. [Google Scholar]
- Etebu, E.; Nwauzoma, A. A review on sweet orange (Citrus sinensis L. Osbeck): Health, diseases and management. Am. J. Res. Commun. 2014, 2, 33–70. [Google Scholar]
- Chavan, P.; Singh, A.K.; Kaur, G. Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review. J. Food Process Eng. 2018, 41, e12895. [Google Scholar] [CrossRef]
- Rezzadori, K.; Benedetti, S.; Amante, E. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 2012, 90, 606–614. [Google Scholar] [CrossRef]
- Ortiz, D.; Batuecas, E.; Orrego, C.; Rodríguez, L.J.; Camelin, E.; Fino, D. Sustainable management of peel waste in the small-scale orange juice industries: A Colombian case study. J. Clean. Prod. 2020, 265, 121587. [Google Scholar] [CrossRef]
- Sial, T.A.; Lan, Z.; Khan, M.N.; Zhao, Y.; Kumbhar, F.; Liu, J.; Zhang, A.; Hill, R.L.; Lahori, A.H.; Memon, M. Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil biochemical properties within a loess soil. Waste Manag. 2019, 87, 125–134. [Google Scholar] [CrossRef]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human health risks due to exposure to water pollution: A review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Youvan, D.C. The Living Waters of Earth: How Every Drop Has Passed Through Life Millions of Times. 2024. Available online: https://www.researchgate.net/publication/385509601_The_Living_Waters_of_Earth_How_Every_Drop_Has_Passed_Through_Life_Millions_of_Times (accessed on 26 May 2025).
- Ristea, M.-E.; Zarnescu, O. Indigo carmine: Between necessity and concern. J. Xenobiotics 2023, 13, 509–528. [Google Scholar] [CrossRef]
- Islam, T.; Repon, M.R.; Islam, T.; Sarwar, Z.; Rahman, M.M. Impact of textile dyes on health and ecosystem: A review of structure, causes, and potential solutions. Environ. Sci. Pollut. Res. 2023, 30, 9207–9242. [Google Scholar] [CrossRef]
- Sonune, A.; Ghate, R. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M.J.; Hussain, M. A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. [Google Scholar] [CrossRef]
- Yazid, H.; Bouzid, T.; Regti, A.; El Himri, M.; El Haddad, M. Experimental and DFT insights into the adsorption competition of two cationic dyes on activated carbon derived from walnut shells in aqueous solutions. Environ. Nanotechnol. Monit. Manag. 2024, 21, 100940. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Dou, X.; Mohan, D.; Sung, J.-K.; Yang, J.E.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Silverstein, R.; Webster, E.; Kiley, D. Spectrometric Identification of Organic Compounds, 7th ed.; John Wilye and Sons: New York, NY, USA, 2005. [Google Scholar]
- de Carvalho, H.P.; Huang, J.; Zhao, M.; Liu, G.; Dong, L.; Liu, X. Improvement of Methylene Blue removal by electrocoagulation/banana peel adsorption coupling in a batch system. Alex. Eng. J. 2015, 54, 777–786. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Santos, C.M.; Dweck, J.; Viotto, R.S.; Rosa, A.H.; de Morais, L.C. Application of orange peel waste in the production of solid biofuels and biosorbents. Bioresour. Technol. 2015, 196, 469–479. [Google Scholar] [CrossRef]
- Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy 2010, 34, 67–74. [Google Scholar] [CrossRef]
- Khormaei, M.; Nasernejad, B.; Edrisi, M.; Eslamzadeh, T. Copper biosorption from aqueous solutions by sour orange residue. J. Hazard. Mater. 2007, 149, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Banerjee, S.; Dubey, S.; Gautam, R.K.; Chattopadhyaya, M.; Sharma, Y.C. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arab. J. Chem. 2019, 12, 5339–5354. [Google Scholar] [CrossRef]
- Doke, K.; Yusufi, M.; Joseph, R.; Khan, E. Comparative adsorption of crystal violet and congo red onto ZnCl2 activated carbon. J. Dispers. Sci. Technol. 2016, 37, 1671–1681. [Google Scholar] [CrossRef]
- El Gheriany, I.A.; El Saqa, F.A.; Amer, A.A.E.R.; Hussein, M. Oil spill sorption capacity of raw and thermally modified orange peel waste. Alex. Eng. J. 2020, 59, 925–932. [Google Scholar] [CrossRef]
- Zapata, B.; Balmaseda, J.; Fregoso-Israel, E.; Torres-García, E. Thermo-kinetics study of orange peel in air. J. Therm. Anal. Calorim. 2009, 98, 309–315. [Google Scholar] [CrossRef]
- Lagergren, E.; Over, P. Comparing interactive information retrieval systems across sites: The TREC-6 interactive track matrix experiment. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Melbourne, Australia, 24–28 August 1998; pp. 164–172. [Google Scholar]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Giles, C.H.; D’Silva, A.P.; Easton, I.A. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J. Colloid Interface Sci. 1974, 47, 766–778. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Über die adsorption in lösungen. Z. Für Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Eriksson, M.; Lundström, I.; Ekedahl, L.-G. A model of the Temkin isotherm behavior for hydrogen adsorption at Pd–SiO2 interfaces. J. Appl. Phys. 1997, 82, 3143–3146. [Google Scholar] [CrossRef]
- Ragadhita, R.; Nandiyanto, A.B.D. Curcumin adsorption on zinc imidazole framework-8 particles: Isotherm adsorption using Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models. J. Eng. Sci. Technol. 2022, 17, 1078–1089. [Google Scholar]
- Kaya, E.M.Ö.; Özcan, A.S.; Gök, Ö.; Özcan, A. Adsorption kinetics and isotherm parameters of naphthalene onto natural-and chemically modified bentonite from aqueous solutions. Adsorption 2013, 19, 879–888. [Google Scholar] [CrossRef]
- Chen, X.-T.; Yu, P.-F.; Xiang, L.; Zhao, H.-M.; Li, Y.-W.; Li, H.; Zhang, X.-Y.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.H. Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil. Ecotoxicol. Environ. Saf. 2020, 206, 111105. [Google Scholar] [CrossRef]
- Falaki, Z.; Bashiri, H. Preparing an adsorbent from the unused solid waste of Rosewater extraction for high efficient removal of Crystal Violet. J. Iran. Chem. Soc. 2021, 18, 2689–2702. [Google Scholar] [CrossRef]
- Harrache, Z.; Abbas, M.; Aksil, T.; Trari, M. Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem. J. 2019, 144, 180–189. [Google Scholar] [CrossRef]
- Lakshmi, U.R.; Srivastava, V.C.; Mall, I.D.; Lataye, D.H. Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. J. Environ. Manag. 2009, 90, 710–720. [Google Scholar] [CrossRef]
- Odogu, A.N.; Daouda, K.; Desiré, B.B.P.; Nsami, N.J.; Mbadcam, K.J. Removal of Indigo Carmine Dye (IC) by Batch Adsorption Method onto Dried Cola Nut Shells and Its Active Carbon from Aqueous Medium. Int. J. Eng. Sci. Res. Technol. 2016, 5, 874–887. [Google Scholar]
- El-Kammah, M.; Elkhatib, E.; Gouveia, S.; Cameselle, C.; Aboukila, E. Enhanced removal of Indigo Carmine dye from textile effluent using green cost-efficient nanomaterial: Adsorption, kinetics, thermodynamics and mechanisms. Sustain. Chem. Pharm. 2022, 29, 100753. [Google Scholar] [CrossRef]
- Kekes, T.; Tzia, C. Adsorption of indigo carmine on functional chitosan and β-cyclodextrin/chitosan beads: Equilibrium, kinetics and mechanism studies. J. Environ. Manag. 2020, 262, 110372. [Google Scholar] [CrossRef] [PubMed]
Indigo Carmine | Pseudo-First Order | Pseudo-Second Order | ||||||
---|---|---|---|---|---|---|---|---|
Concentration | qe, expr | qe, calc | K1 | R2 | qe, calc | K2 | R2 | |
R | 25 | 8.63 | 0.83 | 2.98 | 0,80 | 9.70 | 0.68 | 0.99 |
30 | 15.53 | 0.8 | 3.84 | 0.81 | 16.28 | 0.23 | 0.99 | |
40 | 20.08 | 0.92 | 2.33 | 0.97 | 20.70 | 0.04 | 0.99 | |
50 | 24.03 | 0.93 | 2.35 | 0.99 | 24.57 | 0.07 | 0.99 | |
AR 200 | 25 | 14.25 | 0.98 | 1.37 | 0.79 | 15.62 | 0.42 | 0.99 |
30 | 16.63 | 0.98 | 1.54 | 0.89 | 19.23 | 0.39 | 0.98 | |
40 | 19.98 | 0.99 | 1.15 | 0.88 | 20.83 | 0.14 | 0.99 | |
50 | 25.65 | 0.98 | 1.83 | 0.62 | 27.77 | 0.19 | 0.99 | |
AR 400 | 25 | 13.33 | 0.93 | 2.65 | 0.95 | 14.92 | 0.65 | 0.99 |
30 | 21.66 | 0.95 | 2.6 | 0.97 | 23.25 | 0.28 | 0.99 | |
40 | 30 | 0.92 | 2.77 | 0.93 | 32.25 | 0.15 | 0.99 | |
50 | 43.2 | 0.91 | 3.32 | 0.94 | 45.45 | 0.07 | 0.99 |
Models | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Langmuir | Freundlich | Temkin | Dubinin–Radushkevich | ||||||||||
qmax (mg/g) | KL (l/mg) | R2 | n | KF (mg/g) | R2 | B | lnA (l/g) | R2 | qmax | E | K | R2 | |
R | 1960 | 0 | 0.04 | 1.02 | 0.58 | 0.97 | 71.43 | −3.16 | 0.72 | 134.28 | 0.29 | 5.87 | 0.5 |
AR200 | 2440 | 0 | 0.12 | 0.93 | 0.48 | 0.99 | 106.41 | −3.27 | 0.69 | 103.5 | 6.31 | 0.28 | 0.5 |
AR400 | 1370 | 0 | 0.42 | 0.93 | 0.55 | 0.98 | 142.87 | −3.36 | 0.67 | 156.02 | 5.86 | 0.29 | 0.4 |
Adsorbent | Dye | qmax (mg/g) | Reference | Conditions | ||
---|---|---|---|---|---|---|
T (min) | IC mg/L | pH | ||||
Waste raw | IC | 315 | This study | 50 | 700 | 2 |
Activated raw at 200 °C | 534 | |||||
Activated raw at 400 °C | 686.7 | |||||
Activated Carbon | 79.49 | [45] | 45 | 60 | 5.23 | |
Rice husk ash | 65.9 | [46] | 8 | 10 | 5.4 | |
Cola nut shells | 9.997 | [47] | 45 | 60 | 2 | |
Nanoparticles from Moringa oleifera seeds | 60.24 | [48] | 30 | 100 | 4 | |
Chitosan/β-Cyclodextrin | 1000 | [49] | 30 | 100 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghedjemis, A.; Kebaili, M.; Hebbache, K.; Belebchouche, C.; Kadri, E.H. Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water. Physchem 2025, 5, 21. https://doi.org/10.3390/physchem5020021
Ghedjemis A, Kebaili M, Hebbache K, Belebchouche C, Kadri EH. Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water. Physchem. 2025; 5(2):21. https://doi.org/10.3390/physchem5020021
Chicago/Turabian StyleGhedjemis, Amina, Maya Kebaili, Kamel Hebbache, Cherif Belebchouche, and El Hadj Kadri. 2025. "Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water" Physchem 5, no. 2: 21. https://doi.org/10.3390/physchem5020021
APA StyleGhedjemis, A., Kebaili, M., Hebbache, K., Belebchouche, C., & Kadri, E. H. (2025). Utilizing Residual Industrial Waste as Sustainable Adsorbents for the Removal of Indigo Carmine from Contaminated Water. Physchem, 5(2), 21. https://doi.org/10.3390/physchem5020021