Special Issue "Semisolid Dosage"

A special issue of Pharmaceutics (ISSN 1999-4923).

Deadline for manuscript submissions: closed (31 December 2019).

Special Issue Editors

Prof. Rolf Daniels
E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, University of Tübingen, Tubingen, Germany
Interests: semi-solids; oleogels; surfactant-free; foams; process analytical technology; electro-spinning
Dr. Dominique Lunter
E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, University of Tübingen, Tubingen, Germany
Interests: skin semi-solids; sustained release; basic therapy; confocal Raman microscopy

Special Issue Information

Dear Colleagues,

already in ancient times, semi-solid preparations for cutaneous application, popularly known as ointments, played an important role in human society. An advanced scientific investigation of “ointments” as dosage forms was set off in the late fifties of the previous century. It was only from then on that the intensive physico-chemical characterization of ointments as well as the inclusion of dermatological aspects was leading to a comprehensive understanding of the various interactions between the vehicle, the active ingredient and the skin.

From then on, many researchers were involved in optimizing semi-solid formulations with respect to the continuously changing therapeutic and patient needs. Aspects that have been dealt with were the optimization of dermato-biopharmaceutical properties and many different issues related to patient’s compliance, such as skin tolerance, applicability, and cosmetic appeal. Moreover, processing technology has been improved and analytical techniques were developed and refined in order to enable improved characterization of the formulation itself as well as its interaction with the skin.

This special issue serves to highlight and capture the contemporary progress and current research on semi-solid formulations as dermal drug delivery systems. We invite articles on all aspects of semi-solid formulations highlighting the research currently undertaken to improve and better understand these complex drug delivery systems in particular with respect to formulation, processing and characterization issues.

Prof. Rolf Daniels
Dr. Dominique Lunter
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • semi-solid
  • dermato-biopharmceutics
  • processing
  • characterization
  • quality control
  • formulation concept
  • rheology
  • particle sizing

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Topical Amphotericin B Semisolid Dosage Form for Cutaneous Leishmaniasis: Physicochemical Characterization, Ex Vivo Skin Permeation and Biological Activity
Pharmaceutics 2020, 12(2), 149; https://doi.org/10.3390/pharmaceutics12020149 (registering DOI) - 12 Feb 2020
Abstract
Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of [...] Read more.
Amphotericin B (AmB) is a potent antifungal successfully used intravenously to treat visceral leishmaniasis but depending on the Leishmania infecting species, it is not always recommended against cutaneous leishmaniasis (CL). To address the need for alternative topical treatments of CL, the aim of this study was to elaborate and characterize an AmB gel. The physicochemical properties, stability, rheology and in vivo tolerance were assayed. Release and permeation studies were performed on nylon membranes and human skin, respectively. Toxicity was evaluated in macrophage and keratinocyte cell lines, and the activity against promastigotes and intracellular amastigotes of Leishmania infantum was studied. The AmB gel remained stable for a period of two months, with optimal properties for topical use and no apparent toxic effect on the cell lines. High amounts of AmB were found in damaged and non-damaged skin (1230.10 ± 331.52 and 2484.57 ± 439.12 µg/g/cm2, respectively) and they were above the IC50 of AmB for amastigotes. Although there were no differences in the in vitro anti-leishmanial activity between the AmB solution and gel, the formulation resulted in a higher amount of AmB being retained in the skin, and is therefore a candidate for further studies of in vivo efficacy. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
A Validated IVRT Method to Assess Topical Creams Containing Metronidazole Using a Novel Approach
Pharmaceutics 2020, 12(2), 119; https://doi.org/10.3390/pharmaceutics12020119 - 03 Feb 2020
Abstract
An IVRT method was developed and validated to confirm its reproducibility, precision, sensitivity, selectivity, accuracy, robustness, and reliability. A novel approach was used to demonstrate the appropriateness of the IVRT method to accurately assess “sameness” between topical products and to confirm that the [...] Read more.
An IVRT method was developed and validated to confirm its reproducibility, precision, sensitivity, selectivity, accuracy, robustness, and reliability. A novel approach was used to demonstrate the appropriateness of the IVRT method to accurately assess “sameness” between topical products and to confirm that the methodology applied also possesses the requisite discriminatory power to detect differences should such differences exist between products. In the first instance, the reference product (Metrocreme®) containing 0.75% metronidazole (MTZ) was tested against itself as a positive control, to accurately demonstrate “sameness”, where the results met the relevant acceptance criteria falling within the limits of 75–133.33% in accordance with the FDA’s SUPAC-SS guidance. In addition, two specially prepared creams containing 25% less and 26% more MTZ, i.e., 0.563% and 0.945%, served as negative controls and were compared against the reference product. Neither of these creams fell within the “sameness” acceptance criteria, thereby confirming the discriminatory ability of the IVRT method to detect differences between MTZ products. Furthermore, another cream containing 0.75% MTZ tested against the reference product was shown to be pharmaceutically equivalent to the reference product. These results confirm the appropriateness of the IVRT method as a valuable tool for use in the development of topical MTZ products intended for local action and indicate the potential for general use with other topical products. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Figure 1

Open AccessArticle
Curcumin-In-Deformable Liposomes-In-Chitosan-Hydrogel as a Novel Wound Dressing
Pharmaceutics 2020, 12(1), 8; https://doi.org/10.3390/pharmaceutics12010008 - 20 Dec 2019
Abstract
A liposomes-in-hydrogel system as an advanced wound dressing for dermal delivery of curcumin was proposed for improved chronic wound therapy. Curcumin, a multitargeting poorly soluble active substance with known beneficial properties for improved wound healing, was incorporated in deformable liposomes to overcome its [...] Read more.
A liposomes-in-hydrogel system as an advanced wound dressing for dermal delivery of curcumin was proposed for improved chronic wound therapy. Curcumin, a multitargeting poorly soluble active substance with known beneficial properties for improved wound healing, was incorporated in deformable liposomes to overcome its poor solubility. Chitosan hydrogel served as a vehicle providing superior wound healing properties. The novel system should assure sustained skin delivery of curcumin, and increase its retention at the skin site, utilizing both curcumin and chitosan to improve the therapy outcome. To optimize the properties of the formulation and determine the effect of the liposomal charge on the hydrogel properties, curcumin-containing deformable liposomes (DLs) with neutral (NDLs), cationic (CDLs), and anionic (ADLs) surface properties were incorporated in chitosan hydrogel. The charged DLs affected the hydrogel’s hardness, cohesiveness, and adhesiveness. Importantly, the incorporation of DLs, regardless of their surface charge, in chitosan hydrogel did not decrease the system’s bioadhesion to human skin. Stability testing revealed that the incorporation of CDLs in hydrogel preserved hydrogel´s bioadhesiveness to a higher degree than both NDLs and ADLs. In addition, CDLs-in-hydrogel enabled the most sustained skin penetration of curcumin. The proposed formulation should be further evaluated in a chronic wound model. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
Topical Delivery of Niacinamide: Influence of Binary and Ternary Solvent Systems
Pharmaceutics 2019, 11(12), 668; https://doi.org/10.3390/pharmaceutics11120668 - 10 Dec 2019
Abstract
Niacinamide (NIA) is the amide form of vitamin B3 and has been widely used in pharmaceutical and personal care formulations. Previously, we reported a comparative study of NIA permeation from neat solvents using the Skin Parallel Artificial Membrane Permeability Assay (PAMPA) and mammalian [...] Read more.
Niacinamide (NIA) is the amide form of vitamin B3 and has been widely used in pharmaceutical and personal care formulations. Previously, we reported a comparative study of NIA permeation from neat solvents using the Skin Parallel Artificial Membrane Permeability Assay (PAMPA) and mammalian skin. A good correlation between NIA permeation in the different models was found. In the present work, ten binary and ternary systems were evaluated for their ability to promote NIA delivery in the Skin PAMPA model, porcine skin and human epidermis. Penetration enhancement was evident for binary systems composed of propylene glycol and fatty acids in human skin studies. However, propylene glycol and oleic acid did not promote enhancement of NIA compared with other systems in the Skin PAMPA model. A good correlation was obtained for permeation data from Skin PAMPA and porcine skin. However, data from the Skin PAMPA model and from human skin could only be correlated when the PG-fatty acid systems were excluded. These findings add to our knowledge of the potential applications of Skin PAMPA for screening dermal/transdermal preparations. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
Preparation, Characterization and Dermal Delivery of Methadone
Pharmaceutics 2019, 11(10), 509; https://doi.org/10.3390/pharmaceutics11100509 - 02 Oct 2019
Cited by 1
Abstract
The use of methadone for the management of pain has received great interest in recent years. Currently, oral and intravenous formulations are available for clinical use. Dermal delivery represents an attractive alternative route of administration for this drug as it is associated with [...] Read more.
The use of methadone for the management of pain has received great interest in recent years. Currently, oral and intravenous formulations are available for clinical use. Dermal delivery represents an attractive alternative route of administration for this drug as it is associated with comparatively fewer side effects. The first stage of the work was the preparation of methadone free base as this form of the drug is expected to permeate the skin to a greater extent than the hydrochloride salt. Subsequently the molecule was characterized with Nuclear Magnetic Resonance (NMR) and thermal analysis, the distribution coefficient was determined and solubility studies were conducted in a range of solvents. In vitro permeation and mass balance studies were conducted under finite dose conditions (5 μL/cm2) in porcine skin. The results confirmed the more favorable penetration of methadone free base compared with the salt. The highest cumulative amount of methadone (41 ± 5 μg/cm2) permeated from d-limonene (LIM). Ethyl oleate (EO), Transcutol® P (TC) and octyl salicylate (OSAL) also appear to be promising candidate components of dermal formulations for methadone base. Future work will focus on further formulation optimization with the objective of progressing to evaluation of prototype dosage forms in clinical trials. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds
Pharmaceutics 2019, 11(10), 496; https://doi.org/10.3390/pharmaceutics11100496 - 27 Sep 2019
Cited by 1
Abstract
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ [...] Read more.
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 μm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels
Pharmaceutics 2019, 11(8), 394; https://doi.org/10.3390/pharmaceutics11080394 - 05 Aug 2019
Cited by 1
Abstract
Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% [...] Read more.
Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Figure 1

Open AccessArticle
Optimization of Rheological Behaviour and Skin Penetration of Thermogelling Emulsions with Enhanced Substantivity for Potential Application in Treatment of Chronic Skin Diseases
Pharmaceutics 2019, 11(8), 361; https://doi.org/10.3390/pharmaceutics11080361 - 24 Jul 2019
Abstract
Topical formulations are an important pillar in the therapy of skin diseases. Nevertheless, after application the formulation will be exposed to environmental effects. Contact with other surfaces will reduce the available amount of formulation and drug substance. The resulting consequences for therapy range [...] Read more.
Topical formulations are an important pillar in the therapy of skin diseases. Nevertheless, after application the formulation will be exposed to environmental effects. Contact with other surfaces will reduce the available amount of formulation and drug substance. The resulting consequences for therapy range from reduced effects to therapeutic failure. The removed active ingredient also contaminates patients’ environment. The aim of this work was to develop preparations that remain at the application site. These will enhance safety and efficiency and thus improve of skin disease therapies. Therefore, we developed polymer-stabilised emulsions that show thermogelling properties. Emulsions with different methyl cellulose concentrations and macrogols of different molecular weights were investigated. The dispersed phase consisted of nonivamide as the active pharmaceutical ingredient, dissolved in medium-chain triglycerides. Rheological properties, droplet size, substantivity and ex vivo penetration experiments were performed to characterise the developed formulations. Droplet size and rheological parameters were affected by the composition of the preparations. The tested formulations showed benefits in their substantivity compared to a conventional semi-solid cream. We found a residual amount of up to 100% at the application site. The drug levels in viable epidermis were in a therapeutic range. The developed emulsions are a promising vehicle to improve therapy for chronic skin diseases. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Open AccessArticle
Nanostructured Lipid Carrier Gel for the Dermal Application of Lidocaine: Comparison of Skin Penetration Testing Methods
Pharmaceutics 2019, 11(7), 310; https://doi.org/10.3390/pharmaceutics11070310 - 02 Jul 2019
Abstract
The aim of this research was to investigate the stability of a lidocaine-loaded nanostructured lipid carrier dispersion at different temperatures, formulate a nanostructured lipid carrier gel, and test the penetration profile of lidocaine from the nanostructured lipid carrier gel using different skin penetration [...] Read more.
The aim of this research was to investigate the stability of a lidocaine-loaded nanostructured lipid carrier dispersion at different temperatures, formulate a nanostructured lipid carrier gel, and test the penetration profile of lidocaine from the nanostructured lipid carrier gel using different skin penetration modeling methods. The formulations were characterized by laser diffraction, rheological measurements and microscopic examinations. Various in vitro methods were used to study drug release, diffusion and penetration. Two types of vertical Franz diffusion cells with three different membranes, including cellulose, Strat-M®, and heat separated human epidermis were used and compared to the Skin-parallel artificial membrane permeability assay (PAMPA) method. Results indicated that the nanostructured lipid carrier dispersion had to be gelified as soon as possible for proper stability. Both the Skin-PAMPA model and Strat-M® membranes correlated favorably with heat separated human epidermis in this research, with the Strat-M® membranes sharing the most similar drug permeability profile to an ex vivo human skin model. Our experimental findings suggest that even when the best available in vitro experiment is selected for modeling human skin penetration to study nanostructured lipid carrier gel systems, relevant in vitro/in vivo correlation should be made to calculate the drug release/permeation in vivo. Future investigations in this field are still needed to demonstrate the influence of membranes and equipment from other classes on other drug candidates. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

Back to TopTop