Recent Advances in the Research of Drug Delivery System: Materials, Preparation Methods, and Mechanisms

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 159

Special Issue Editor


E-Mail Website
Guest Editor
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
Interests: natural product; isolation; structure identification; physicochemical properties; bioactivity; structure-activity relationship; mechanism
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Drug delivery systems are designed to transport medications to the appropriate position in the body, reducing the severity of side effects and enhancing their efficacy. Therefore, they have been extensively implemented in the field of medicine. With the development of science and technology, a growing number of medications have emerged, and the traditional drug delivery systems are inadequate in meeting the demands of health care. The development of new drug delivery systems has become a research hotspot.

This Special Issue covers the progress in all areas of drug delivery systems or reviews, including their materials, preparation methods, mechanisms, and their novel applications in the prevention of osteoporosis and other diseases.

Prof. Dr. Haixia Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery system
  • preparation
  • material
  • mechanism
  • application
  • bioactivities
  • targeted delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1412 KiB  
Article
Effect of Acoustic Pressure on Temozolomide-Loaded Oleic Acid-Based Liposomes and Its Safety to Brain Tissue
by Vasilisa D. Dalinina, Vera S. Shashkovskaya, Iman M. Khaskhanova, Daria Yu. Travnikova, Nelly S. Chmelyuk, Dmitry A. Korzhenevskiy, Vsevolod V. Belousov and Tatiana O. Abakumova
Pharmaceuticals 2025, 18(6), 910; https://doi.org/10.3390/ph18060910 - 18 Jun 2025
Viewed by 59
Abstract
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby improving therapeutic outcomes. Controlled drug release further contributes to high local drug concentrations while minimizing systemic toxicity. Oleic acid (OA), a monounsaturated fatty acid, is commonly used to enhance drug loading and increase lipid membrane fluidity. In this study, we developed liposomal formulations with optimized temozolomide (TMZ)’s loading and analyze its response to focused ultrasound (FUS). Methods: We synthetized OA-based liposomes with different lipid composition, performed physicochemical characterization (DLS, TEM) and analyzed the TMZ loading efficiency. Different FUS parameters were tested for effective OA-based liposomes destruction. Safety of selected parameters was evaluated in vivo by MRI, histological staining and RT-PCR of pro-inflammatory cytokines. Results: All the formulations exhibited comparable hydrodynamic diameters; however, OA-containing liposomes demonstrated a significantly higher TMZ encapsulation efficiency and enhanced cytotoxicity in U87 glioma cells. Moreover, it was shown that OA-liposomes were disrupted at lower acoustic pressures (5 MPa), while conventional liposomes required higher thresholds (>8 MPa). A safety analysis of FUS parameters indicated that pressures exceeding 11 MPa induced brain edema, necrotic lesions and elevated cytokine levels within 72 h post-treatment. Conclusions: These results suggest that OA-based liposomes possess favorable characteristics, with an increased sonosensitivity for the site-specific delivery of TMZ, offering a promising strategy for glioma treatment. Full article
Show Figures

Figure 1

Back to TopTop