Special Issue "Innovative Advanced Materials for Energy Storage and Beyond: Synthesis, Characterization and Applications"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: 30 June 2020.

Special Issue Editor

Prof. Vijay Kumar Thakur
Website1 Website2
Guest Editor
1: Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, United Kingdom
2: Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
Interests: Biorefining, chemistry, nanotechnology, biomass, and waste; biomedical engineering; composites; sensors; manufacturing of functional materials; aerospace materials; nanomaterials; renewable energy; smart materials; surface engineering; water science and engineering; Additive manufacturing of polymers and composites; Multifunctional polymer composites and nanocomposites: self-healing, Nanoelectronic materials; Hydrogels; Membranes; Nanofiber; Composites for extreme environments and manufacturing technology
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Recently, advanced materials have attracted considerable interest owing to their possible applications in different fields such as in supercapacitors, capacitors, batteries and other energy storage systems. Many of the 21st century’s advancing technologies, e.g., electric vehicles (and hybrids), portable electronic devices, and renewable energy systems, drive the demand for high-performance energy storage systems. In fact, the increasing demand for processable, lightweight, flexible energy storage materials has motivated researchers from both academia and industry to develop and manufacture new materials that offer excellent properties depending on the targeted applications. This Special Issue is aimed at presenting the current state-of-the-art in new advanced materials to address the various challenging issues researchers have been confronted with in this field for a number of applications, especially for energy storage.

This Special Issue of Nanomaterials will publish high quality short communications, and research papers covering the most recent advances, as well as comprehensive reviews addressing novel and state-of-the-art topics from active researchers in innovative advanced materials and hybrid materials, concerning not only their synthesis, preparation and characterization, but especially focusing on the applications of such  materials with outstanding performances.

Dr. Vijay Kumar Thakur
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • New advanced materials for supercapacitors; batteries; solar cells; dielectric materials
  • Structure, chemistry and processing of innovative materials
  • Modeling and simulation study of materials for energy storage
  • New innovative nanostructures and functional materials
  • Solid-electrolyte interphase; high-performance anode; electrochemical energy storage
  • Double-layer capacitors; nanotechnology
  • Electric vehicle applications, superior cycling stability
  • Other materials and nano-devices

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Open AccessArticle
TiO2 Nanotube Layers Decorated with Al2O3/MoS2/Al2O3 as Anode for Li-ion Microbatteries with Enhanced Cycling Stability
Nanomaterials 2020, 10(5), 953; https://doi.org/10.3390/nano10050953 - 17 May 2020
Abstract
TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting [...] Read more.
TiO2 nanotube layers (TNTs) decorated with Al2O3/MoS2/Al2O3 are investigated as a negative electrode for 3D Li-ion microbatteries. Homogenous nanosheets decoration of MoS2, sandwiched between Al2O3 coatings within self-supporting TNTs was carried out using atomic layer deposition (ALD) process. The structure, morphology, and electrochemical performance of the Al2O3/MoS2/Al2O3-decorated TNTs were studied using scanning transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and chronopotentiometry. Al2O3/MoS2/Al2O3-decorated TNTs deliver an areal capacity almost three times higher than that obtained for MoS2-decorated TNTs and as-prepared TNTs after 100 cycles at 1C. Moreover, stable and high discharge capacity (414 µAh cm−2) has been obtained after 200 cycles even at very fast kinetics (3C). Full article
Show Figures

Figure 1

Open AccessArticle
Graphitic Carbon Nitride Doped Copper–Manganese Alloy as High–Performance Electrode Material in Supercapacitor for Energy Storage
Nanomaterials 2020, 10(1), 2; https://doi.org/10.3390/nano10010002 - 18 Dec 2019
Cited by 5
Abstract
Here, we report the synthesis of copper–manganese alloy (CuMnO2) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO2-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as [...] Read more.
Here, we report the synthesis of copper–manganese alloy (CuMnO2) using graphitic carbon nitride (gCN) as a novel support material. The successful formation of CuMnO2-gCN was confirmed through spectroscopic, optical, and other characterization techniques. We have applied this catalyst as the energy storage material in the alkaline media and it has shown good catalytic behavior in supercapacitor applications. The CuMnO2-gCN demonstrates outstanding electrocapacitive performance, having high capacitance (817.85 A·g−1) and well-cycling stability (1000 cycles) when used as a working electrode material for supercapacitor applications. For comparison, we have also used the gCN and Cu2O-gCN for supercapacitor applications. This study proposes a simple path for the extensive construction of self-attaining double metal alloy with control size and uniformity in high-performance energy-storing materials. Full article
Show Figures

Figure 1

Open AccessArticle
Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes
Nanomaterials 2019, 9(11), 1517; https://doi.org/10.3390/nano9111517 - 25 Oct 2019
Abstract
Over the past years, ceramic fluorine ion conductors with high ionic conductivity have stepped into the limelight of materials research, as they may act as solid-state electrolytes in fluorine-ion batteries (FIBs). A factor of utmost importance, which has been left aside so far, [...] Read more.
Over the past years, ceramic fluorine ion conductors with high ionic conductivity have stepped into the limelight of materials research, as they may act as solid-state electrolytes in fluorine-ion batteries (FIBs). A factor of utmost importance, which has been left aside so far, is the electrochemical stability of these conductors with respect to both the voltage window and the active materials used. The compatibility with different current collector materials is important as well. In the course of this study, tysonite-type La 0.9 Ba 0.1 F 2.9 , which is one of the most important electrolyte in first-generation FIBs, was chosen as model substance to study its electrochemical stability against a series of metal electrodes viz. Pt, Au, Ni, Cu and Ag. To test anodic or cathodic degradation processes we carried out cyclic voltammetry (CV) measurements using a two-electrode set-up. We covered a voltage window ranging from −1 to 4 V, which is typical for FIBs, and investigated the change of the response of the CVs as a function of scan rate (2 mV/s to 0.1 V/s). It turned out that Cu is unstable in combination with La 0.9 Ba 0.1 F 2.9 , even before voltage was applied. The cells with Au and Pt electrodes show reactions during the CV scans; in the case of Au the irreversible changes seen in CV are accompanied by a change in color of the electrode as investigated by light microscopy. Ag and Ni electrodes seem to suffer from contact issues which, most likely, also originate from side reactions with the electrode material. The experiments show that the choice of current collectors in future FIBs will become an important topic if we are to develop long-lasting FIBs. Most likely, protecting layers between the composite electrode material and the metal current collector have to be developed to prevent any interdiffusion or electrochemical degradation processes. Full article
Show Figures

Figure 1

Open AccessArticle
Activated Carbons from Thermoplastic Precursors and Their Energy Storage Applications
Nanomaterials 2019, 9(6), 896; https://doi.org/10.3390/nano9060896 - 19 Jun 2019
Cited by 1
Abstract
In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by [...] Read more.
In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g. Full article
Show Figures

Graphical abstract

Open AccessArticle
Dual Substitution and Spark Plasma Sintering to Improve Ionic Conductivity of Garnet Li7La3Zr2O12
Nanomaterials 2019, 9(5), 721; https://doi.org/10.3390/nano9050721 - 10 May 2019
Cited by 1
Abstract
Garnet Li7La3Zr2O12 is one of the most promising solid electrolytes used for solid-state lithium batteries. However, low ionic conductivity impedes its application. Herein, we report Ta-doping garnets with compositions of Li7-xLa3Zr2-x [...] Read more.
Garnet Li7La3Zr2O12 is one of the most promising solid electrolytes used for solid-state lithium batteries. However, low ionic conductivity impedes its application. Herein, we report Ta-doping garnets with compositions of Li7-xLa3Zr2-xTaxO12 (0.1 ≤ x ≤ 0.75) obtained by solid-state reaction and free sintering, which was facilitated by graphene oxide (GO). Furthermore, to optimize Li6.6La3Zr1.6Ta0.4O12, Mg2+ was select as a second dopant. The dual substitution of Ta5+ for Zr4+ and Mg2+ for Li+ with a composition of Li6.5Mg0.05La3Zr1.6Ta0.4O12 showed an enhanced total ionic conductivity of 6.1 × 10−4 S cm−1 at room temperature. Additionally, spark plasma sintering (SPS) was applied to further densify the garnets and enhance their ionic conductivities. Both SPS specimens present higher conductivities than those produced by the conventional free sintering. At room temperature, the highest ionic conductivity of Li6.5Mg0.05La3Zr1.6Ta0.4O12 sintered at 1000 °C is 8.8 × 10−4 S cm−1, and that of Li6.6La3Zr1.6Ta0.4O12 sintered at 1050 °C is 1.18 × 10−3 S cm−1. Full article
Show Figures

Figure 1

Open AccessArticle
On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries
Nanomaterials 2019, 9(3), 484; https://doi.org/10.3390/nano9030484 - 26 Mar 2019
Cited by 2
Abstract
Magnesium batteries are a promising technology for a new generation of energy storage for portable devices. Attention should be paid to electrolyte and electrode material development in order to develop rechargeable Mg batteries. In this study, we report the use of the spinel [...] Read more.
Magnesium batteries are a promising technology for a new generation of energy storage for portable devices. Attention should be paid to electrolyte and electrode material development in order to develop rechargeable Mg batteries. In this study, we report the use of the spinel lithium titanate or Li4Ti5O12 (LTO) as an active electrode for Mg2+-ion batteries. The theoretical capacity of LTO is 175 mA h g−1, which is equivalent to an insertion reaction with 1.5 Mg2+ ions. The ability to enhance the specific capacity of LTO is of practical importance. We have observed that it is possible to increase the capacity up to 290 mA h g−1 in first discharge, which corresponds to the reaction with 2.5 Mg2+ ions. The addition of MgCl2·6H2O to the electrolyte solutions significantly improves their electrochemical performance and enables reversible Mg deposition. Ex-situ X-ray diffraction (XRD) patterns reveal little structural changes, while X-ray photoelectron spectrometer (XPS) (XPS) measurements suggest Mg reacts with LTO. The Ti3+/Ti4+ ratio increases with the amount of inserted magnesium. The impedance spectra show the presence of a semicircle at medium-low frequencies, ascribable to Mg2+ ion diffusion between the surface film and LTO. Further experimental improvements with exhaustive control of electrodes and electrolytes are necessary to develop the Mg battery with practical application. Full article
Show Figures

Graphical abstract

Open AccessArticle
Non-Isothermal Crystallisation Kinetics of Carbon Black- Graphene-Based Multimodal-Polyethylene Nanocomposites
Nanomaterials 2019, 9(1), 110; https://doi.org/10.3390/nano9010110 - 18 Jan 2019
Cited by 3Correction
Abstract
The effect of carbon black (CB) and microwave-induced plasma graphene (g) on the crystallisation kinetics of the multimodal high-density polyethylene was studied under non-isothermal conditions. The non-isothermal crystallisation behaviour of the multimodal-high-density polyethylene (HDPE), containing up to 5 wt.% graphene, was compared with [...] Read more.
The effect of carbon black (CB) and microwave-induced plasma graphene (g) on the crystallisation kinetics of the multimodal high-density polyethylene was studied under non-isothermal conditions. The non-isothermal crystallisation behaviour of the multimodal-high-density polyethylene (HDPE), containing up to 5 wt.% graphene, was compared with that of neat multimodal-HDPE and its carbon black based nanocomposites. The results suggested that the non-isothermal crystallisation behaviour of polyethylene (PE)-g nanocomposites relied significantly on both the graphene content and the cooling rate. The addition of graphene caused a change in the mechanism of the nucleation and the crystal growth of the multimodal-HDPE, while carbon black was shown to have little effect. Combined Avrami and Ozawa equations were shown to be effective in describing the non-isothermal crystallisation behaviour of the neat multimodal-HDPE and its nanocomposites. The mean activation energy barrier (ΔE), required for the transportation of the molecular chains from the melt state to the growing crystal surface, gradually diminished as the graphene content increased, which is attributable to the nucleating agent effect of graphene platelets. On the contrary, the synergistic effect resulting from the PE-CB nanocomposite decreased the ΔE of the neat multimodal-HDPE significantly at the lowest carbon black content. Full article
Show Figures

Figure 1

Other

Jump to: Research

Open AccessCorrection
Correction: Ahmad, I.A., et al. Non-Isothermal Crystallisation Kinetics of Carbon Black-Graphene-Based Multimodal-Polyethylene Nanocomposites. Nanomaterials, 2019, 9, 100
Nanomaterials 2019, 9(3), 392; https://doi.org/10.3390/nano9030392 - 07 Mar 2019
Cited by 1
Abstract
In the published paper [1], there was a typo error mistake in Equation (5), which was supposed to be expressed as “ log Z t + n log t = log K T m log Φ ” instead of “log [...] Read more.
In the published paper [1], there was a typo error mistake in Equation (5), which was supposed to be expressed as “ log Z t + n log t = log K T m log Φ ” instead of “log Zt + n log t = log KTml” [...] Full article
Back to TopTop