Special Issue "Application of Nanomaterials in Photocatalysis"

A special issue of Nanomaterials (ISSN 2079-4991).

Deadline for manuscript submissions: 30 October 2020.

Special Issue Editor

Dr. Moisés Canle
Website
Guest Editor
Universidade da Coruña, A Coruna, Spain
Interests: Advanced oxidation processes, catalysis, photochemistry, photoreactivity. reduction/abatement of persistent organic pollutants, photofunctionalization of surfaces, free radicals and oxidative stress, reaction mechanisms

Special Issue Information

Dear Colleagues,

Photocatalysis applications are of utmost relevance in a plethora of active fields nowadays, such as pollution abatement, water splitting, artificial photosynthesis or even others that we do not foresee today but will be a reality tomorrow. A lot of effort is being invested into the synthesis and fabrication of stable and recyclable nanomaterials for many different applications. Some of these can be enhanced by making use of the special properties of nanosized materials, and tuning them.

This Special Issue intends to compile a self-contained set of papers related to potential applications of nanomaterials in different fields that can give a realistic picture of current state-of-the-art research in this cutting-edge field, showing the wide spectrum of topics that will benefit from research and developments in the area. These may be mini-reviews, research papers, or short communications describing new breakthroughs.

All researchers in the field are cordially encouraged to submit their manuscripts for consideration for publication in this Special Issue.

Dr. Moisés Canle
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • photocatalysis
  • pollution abatement
  • water splitting
  • artificial photosynthesis

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Improved Photocatalyzed Degradation of Phenol, as a Model Pollutant, over Metal-Impregnated Nanosized TiO2
Nanomaterials 2020, 10(5), 996; https://doi.org/10.3390/nano10050996 - 22 May 2020
Abstract
Photocatalyzed degradation of phenol in aqueous solution over surface impregnated TiO2 (M = Cu, Cr, V) under UV-Vis (366 nm) and UV (254 nm) irradiation is described. Nanosized photocatalyts were prepared from TiO2-P25 by wet impregnation, and characterized by X-ray [...] Read more.
Photocatalyzed degradation of phenol in aqueous solution over surface impregnated TiO2 (M = Cu, Cr, V) under UV-Vis (366 nm) and UV (254 nm) irradiation is described. Nanosized photocatalyts were prepared from TiO2-P25 by wet impregnation, and characterized by X-ray diffraction, X-ray fluorescence, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy, Raman spectroscopy, and adsorption studies. No oxide phases of the metal dopants were found, although their presence in the TiO2-P25 lattice induces tensile strain in Cu-impregnated TiO2-P25, whereas compressive strain in Cr- and V-impregnated TiO2-P25. Experimental evidences support chemical and mechanical stability of the photocatalysts. Type IV N2 adsorption–desorption isotherms, with a small H3 loop near the maximum relative pressure were observed. Metal surface impregnated photocatalysts are mesoporous with a similar surface roughness, and a narrow pore distribution around ca. 25 Å. They were chemically stable, showing no metal lixiviation. Their photocatalytic activity was followed by UV-Vis spectroscopy and HPLC–UV. A first order kinetic model appropriately fitted the experimental data. The fastest phenol degradation was obtained with M (0.1%)/TiO2-P25, the reactivity order being Cu > V >> Cr > TiO2-P25 under 366 nm irradiation, while TiO2-P25 > Cu > V > Cr, when using 254 nm radiation. TOC removal under 366 nm irradiation for 300 min showed almost quantitative mineralization for all tested materials, while 254 nm irradiation for 60 min led to maximal TOC removal (ca. 30%). Photoproducts and intermediate photoproducts were identified by HPLC–MS, and appropriate reaction pathways are proposed. The energy efficiency of the process was analysed, showing UV lamps are superior to UVA lamps, and that the efficiency of the surface impregnated catalyst varies in the order Cu > V > Cr. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Photocatalysis)
Show Figures

Graphical abstract

Open AccessArticle
Enhanced Photocatalytic Degradation of the Imidazolinone Herbicide Imazapyr upon UV/Vis Irradiation in the Presence of CaxMnOy-TiO2 Hetero-Nanostructures: Degradation Pathways and Reaction Intermediates
Nanomaterials 2020, 10(5), 896; https://doi.org/10.3390/nano10050896 - 08 May 2020
Abstract
The determination of reaction pathways and identification of products of pollutants degradation is central to photocatalytic environmental remediation. This work focuses on the photocatalytic degradation of the herbicide Imazapyr (2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl) pyridine-3-carboxylic acid) under UV-Vis and visible-only irradiation of aqueous suspensions of Cax [...] Read more.
The determination of reaction pathways and identification of products of pollutants degradation is central to photocatalytic environmental remediation. This work focuses on the photocatalytic degradation of the herbicide Imazapyr (2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl) pyridine-3-carboxylic acid) under UV-Vis and visible-only irradiation of aqueous suspensions of CaxMnOy-TiO2, and on the identification of the corresponding degradation pathways and reaction intermediates. CaxMnOy-TiO2 was formed by mixing CaxMnOy and TiO2 by mechanical grinding followed by annealing at 500 °C. A complete structural characterization of CaxMnOy-TiO2 was carried out. The photocatalytic activity of the hetero-nanostructures was determined using phenol and Imazapyr herbicide as model pollutants in a stirred tank reactor under UV-Vis and visible-only irradiation. Using equivalent loadings, CaxMnOy-TiO2 showed a higher rate (10.6 μM·h−1) as compared to unmodified TiO2 (7.4 μM·h−1) for Imazapyr degradation under UV-Vis irradiation. The mineralization rate was 4.07 µM·h−1 for CaxMnOy-TiO2 and 1.21 μM·h−1 for TiO2. In the CaxMnOy-TiO2 system, the concentration of intermediate products reached a maximum at 180 min of irradiation that then decreased to a half in 120 min. For unmodified TiO2, the intermediates continuously increased with irradiation time with no decrease observed in their concentration. The enhanced efficiency of the CaxMnOy-TiO2 for the complete degradation of the Imazapyr and intermediates is attributed to an increased adsorption of polar species on the surface of CaxMnOy. Based on LC-MS, photocatalytic degradation pathways for Imazapyr under UV-Vis irradiation have been proposed. Some photocatalytic degradation was obtained under visible-only irradiation for CaxMnOy-TiO2. Hydroxyl radicals were found to be main reactive oxygen species responsible for the photocatalytic degradation through radical scavenger investigations. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Photocatalysis)
Show Figures

Graphical abstract

Back to TopTop