molecules-logo

Journal Browser

Journal Browser

Special Issue "Polysaccharide Chemistry—a Tool for Novel, Sustainable, and Advanced Products and Materials: A Themed Issue in Honor of Prof. Dr. Thomas Heinze"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organic Chemistry".

Deadline for manuscript submissions: 31 December 2021.

Special Issue Editor

Prof. Dr. Pedro Fardim
E-Mail Website
Guest Editor
Deparment of Chemical Engineering, University of Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
Interests: biomaterials; bionanohydrids; biomass engineering; biostructures; polysaccharides
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Polysaccharides, fascinating biopolymers and the most common organic compounds on earth, possess amazing molecular and supramolecular structures. Chemical modification, including unconventional methods for the modification of polysaccharides, has opened new avenues to the development of advanced and sustainable materials. Advanced analytical tools have been established to obtain real structure–property relationships.

This Special Issue aims to honour the outstanding contribution of Prof. Thomas Heinze to the field of polysaccharide chemistry and polysaccharide-based materials. Thomas Heinze is a Professor of Organic Chemistry at the Institute of Organic and Macromolecular Chemistry, Friedrich Schiller University of Jena, Germany. From 2010 to 2014, he also worked as a Finland Distinguished Professor at the Åbo Akademi University, Finland. Prof. Heinze has made many contributions to the research of polysaccharides at large, including concepts for polysaccharide chemistry, homogeneous phase reactions, nanostructuring of polysaccharides, and characterization by advanced analytical tools.

Prof. Dr. Pedro Fardim
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellulose
  • hemicelluloses
  • nanomaterials

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Lignin Quantification of Papyri by TGA—Not a Good Idea
Molecules 2021, 26(14), 4384; https://doi.org/10.3390/molecules26144384 - 20 Jul 2021
Viewed by 524
Abstract
Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials’ constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) [...] Read more.
Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials’ constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose and lignin in papyrus sheets, yielding reported lignin contents of 25% to 40%. In this work, the TGA method conventionally used for papyrus samples was repeated and compared to other lignin determination approaches (Klason-lignin and acetyl bromide-soluble lignin). TGA can lead to a large overestimation of the lignin content of commercial papyrus sheets (~27%) compared to the other methods (~5%). A similar overestimation of the lignin content was found for the pith and rind of the native papyrus plant. We concluded that the TGA method should, therefore, not be used for lignin quantification. Full article
Show Figures

Figure 1

Article
Reactive Nanoparticles Derived from Polysaccharide Phenyl Carbonates
Molecules 2021, 26(13), 4026; https://doi.org/10.3390/molecules26134026 - 01 Jul 2021
Viewed by 764
Abstract
Polysaccharide (PS) based nanoparticles (NP) are of great interest for biomedical applications. A key challenge in this regard is the functionalization of these nanomaterials. The aim of the present work was the development of reactive PS-NP that can be coupled with an amino [...] Read more.
Polysaccharide (PS) based nanoparticles (NP) are of great interest for biomedical applications. A key challenge in this regard is the functionalization of these nanomaterials. The aim of the present work was the development of reactive PS-NP that can be coupled with an amino group containing compounds under mild aqueous conditions. A series of cellulose phenyl carbonates (CPC) and xylan phenyl carbonates (XPC) with variable degrees of substitution (DS) was obtained by homogeneous synthesis. The preparation of PS-NP by self-assembling of these hydrophobic derivatives was studied comprehensively. While CPC mostly formed macroscopic aggregates, XPC formed well-defined spherical NP with diameters around 100 to 200 nm that showed a pronounced long-term stability in water against both particle aggregation as well as cleavage of phenyl carbonate moieties. Using an amino group functionalized dye it was demonstrated that the novel XPC-NP are reactive towards amines. A simple coupling procedure was established that enables direct functionalization of the reactive NP in an aqueous dispersion. Finally, it was demonstrated that dye functionalized XPC-NP are non-cytotoxic and can be employed in advanced biomedical applications. Full article
Show Figures

Figure 1

Article
Highly Norbornylated Cellulose and Its “Click” Modification by an Inverse-Electron Demand Diels–Alder (iEDDA) Reaction
Molecules 2021, 26(5), 1358; https://doi.org/10.3390/molecules26051358 - 04 Mar 2021
Viewed by 714
Abstract
A facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds [...] Read more.
A facile, catalyst-free synthesis of a norbornylated cellulosic material (NC) with a high degree of substitution (2.9) is presented by direct reaction of trimethylsilyl cellulose with norbornene acid chloride. The resulting NC is highly soluble in organic solvents and its reactive double bonds were exploited for the copper-free inverse-electron demand Diels–Alder (iEDDA) “click” reaction with 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine. Reaction kinetics are comparable to the well-known Huisgen type 1,3-dipolar cycloaddition of azide with alkynes, while avoiding toxic catalysts. Full article
Show Figures

Graphical abstract

Article
TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract
Molecules 2021, 26(4), 1030; https://doi.org/10.3390/molecules26041030 - 15 Feb 2021
Viewed by 870
Abstract
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the [...] Read more.
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release. Full article
Show Figures

Figure 1

Article
Cellulose Dissolution in Mixtures of Ionic Liquids and Dimethyl Sulfoxide: A Quantitative Assessment of the Relative Importance of Temperature and Composition of the Binary Solvent
Molecules 2020, 25(24), 5975; https://doi.org/10.3390/molecules25245975 - 17 Dec 2020
Viewed by 608
Abstract
We studied the dissolution of microcrystalline cellulose (MCC) in binary mixtures of dimethyl sulfoxide (DMSO) and the ionic liquids: allylbenzyldimethylammonium acetate; 1-(2-methoxyethyl)-3-methylimidazolium acetate; 1,8-diazabicyclo [5.4.0]undec-7-ene-8-ium acetate; tetramethylguanidinium acetate. Using chemometrics, we determined the dependence of the mass fraction (in %) of dissolved cellulose [...] Read more.
We studied the dissolution of microcrystalline cellulose (MCC) in binary mixtures of dimethyl sulfoxide (DMSO) and the ionic liquids: allylbenzyldimethylammonium acetate; 1-(2-methoxyethyl)-3-methylimidazolium acetate; 1,8-diazabicyclo [5.4.0]undec-7-ene-8-ium acetate; tetramethylguanidinium acetate. Using chemometrics, we determined the dependence of the mass fraction (in %) of dissolved cellulose (MCC-m%) on the temperature, T = 40, 60, and 80 °C, and the mole fraction of DMSO, χDMSO = 0.4, 0.6, and 0.8. We derived equations that quantified the dependence of MCC-m% on T and χDMSO. Cellulose dissolution increased as a function of increasing both variables; the contribution of χDMSO was larger than that of T in some cases. Solvent empirical polarity was qualitatively employed to rationalize the cellulose dissolution efficiency of the solvent. Using the solvatochromic probe 2,6-dichloro-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (WB), we calculated the empirical polarity ET(WB) of cellobiose (a model for MCC) in ionic liquid (IL)–DMSO mixtures. The ET(WB) correlated perfectly with T (fixed χDMSO) and with χDMSO (fixed T). These results show that there is ground for using medium empirical polarity to assess cellulose dissolution efficiency. We calculated values of MCC-m% under conditions other than those employed to generate the statistical model and determined the corresponding MCC-m% experimentally. The excellent agreement between both values shows the robustness of the statistical model and the usefulness of our approach to predict cellulose dissolution, thus saving time, labor, and material. Full article
Show Figures

Graphical abstract

Article
Possibilities for Optimization of Industrial Alkaline Steeping of Wood-Based Cellulose Fibers
Molecules 2020, 25(24), 5834; https://doi.org/10.3390/molecules25245834 - 10 Dec 2020
Cited by 1 | Viewed by 637
Abstract
Steeping of cellulosic materials in aqueous solution of NaOH is a common pre-treatment in several industrial processes for production of cellulose-based products, including viscose fibers. This study investigated whether the span of commonly applied process settings has the potential for process optimization regarding [...] Read more.
Steeping of cellulosic materials in aqueous solution of NaOH is a common pre-treatment in several industrial processes for production of cellulose-based products, including viscose fibers. This study investigated whether the span of commonly applied process settings has the potential for process optimization regarding purity, yield, and degree of transformation to alkali cellulose. A hardwood kraft dissolving pulp was extracted with 17–20 wt% aq. NaOH at 40−50 °C. The regenerated residue of the pulp was characterized regarding its chemical composition, molecular structure, and cellulose conformation. Yield was shown to be favored primarily by low temperature and secondly by high alkali concentration. Purity of xylan developed inversely. Both purity of xylan and yield varied over the applied span of settings to an extent which makes case-adapted process optimization meaningful. Decreasing the steeping temperature by 2 °C increased xylan content in the residue with 0.13%-units over the whole span of applied alkali concentrations, while yield increased by 0.15%-units when extracting with 17 wt% aq. NaOH, and by 0.20%-units when extracting with 20 wt%. Moreover, the yield-favoring conditions resulted in a narrower molecular weight distribution. The degree of transformation via alkali cellulose to cellulose II, as determined with Raman spectroscopy, was found to be high at all extraction settings applied. Full article
Show Figures

Graphical abstract

Article
Hydration/Dehydration Behavior of Hydroxyethyl Cellulose Ether in Aqueous Solution
Molecules 2020, 25(20), 4726; https://doi.org/10.3390/molecules25204726 - 15 Oct 2020
Cited by 5 | Viewed by 1106
Abstract
Hydroxyethyl cellulose (HeC) maintains high water solubility over a wide temperature range even in a high temperature region where other nonionic chemically modified cellulose ethers, such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC), demonstrate cloud points. In order to clarify the reason [...] Read more.
Hydroxyethyl cellulose (HeC) maintains high water solubility over a wide temperature range even in a high temperature region where other nonionic chemically modified cellulose ethers, such as methyl cellulose (MC) and hydroxypropylmethyl cellulose (HpMC), demonstrate cloud points. In order to clarify the reason for the high solubility of HeC, the temperature dependence of the hydration number per glucopyranose unit, nH, for the HeC samples was examined by using extremely high frequency dielectric spectrum measuring techniques up to 50 GHz over a temperature range from 10 to 70 °C. HeC samples with a molar substitution number (MS) per glucopyranose unit by hydroxyethyl groups ranging from 1.3 to 3.6 were examined in this study. All HeC samples dissolve into water over the examined temperature range and did not show their cloud points. The value of nH for the HeC sample possessing the MS of 1.3 was 14 at 20 °C and decreased gently with increasing temperature and declined to 10 at 70 °C. The nH values of the HeC samples are substantially larger than the minimum critical nH value of ca. 5 necessary to be dissolved into water for cellulose ethers such as MC and HpMC, even in a high temperature range. Then, the HeC molecules possess water solubility over the wide temperature range. The temperature dependence of nH for the HeC samples and triethyleneglycol, which is a model compound for substitution groups of HeC, is gentle and they are similar to each other. This observation strongly suggests that the hydration/dehydration behavior of the HeC samples was essentially controlled by that of their substitution groups. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Polysaccharide- and β-Cyclodextrin-Based Chiral Selectors for Enantiomer Resolution: Recent Developments and Applications
Molecules 2021, 26(14), 4322; https://doi.org/10.3390/molecules26144322 - 16 Jul 2021
Cited by 1 | Viewed by 682
Abstract
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically [...] Read more.
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobilizing the polysaccharide and β-cyclodextrin derivatives onto inert silica gel carriers as chromatographic support. Over the past few years, new chiral selectors have been introduced, and progressive methods to prepare CSPs have been exploited. Also, chiral recognition mechanisms, which play a crucial role in the investigation of chiral separations, have been better elucidated. Further insights into the broad functional performance of commercially available chiral column materials and/or the respective newly developed chiral phase materials on enantiomeric separation (ES) have been gained. This review summarizes the recent developments in CSs, CSP preparation, chiral recognition mechanisms, and enantiomeric separation methods, based on polysaccharides and β-cyclodextrins as CSs, with a focus on the years 2019–2020 of this rapidly developing field. Full article
Show Figures

Figure 1

Back to TopTop