Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biofabrication of Pullulan: Effects of Carbon Sources on Pullulan Yield and Biomass Production
2.2. Biofabrication of Pullulan: Effects of Mineral Salts on Pullulan Yield and Biomass Production
2.3. Biofabrication of Pullulan with Different Molar Masses
2.4. FT-IR and 1H-NMR of Pullulan
3. Materials and Methods
3.1. Materials
3.2. Microorganisms
3.3. Media
3.4. Culture Conditions
3.5. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hamidi, M.; Kennedy, J.F.; Khodaiyan, F.; Mousavi, Z.; Hosseini, S.S. Production optimization, characterization and gene expression of pullulan from a new strain of Aureobasidium pullulans. Int. J. Biol. 2019, 138, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Demirci, A.; Catchmark, J.M. Pullulan: Biosynthesis, production, and applications. Appl. Microbiol. Biotechnol. 2011, 92, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: Microbial sources, production and applications. Carbohydr. Polym. 2008, 73, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Kaur, N.; Rana, V.; Kennedy, J.F. Recent insights on applications of pullulan in tissue engineering. Carbohydr. Polym. 2016, 153, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Shreshtha, I.; Sachan, S.G. Pullulan: Biosynthesis, Production and Applications. In Microbial Exopolysaccharides as Novel and Significant Biomaterials, 1st ed.; Nadda, A.K., Sajna, K.V., Sharma, S., Eds.; Springer: Cham, Switzerland, 2021; Chapter 6; pp. 121–141. [Google Scholar]
- Tiwari, S.; Patil, R.; Dubey, S.K.; Bahadur, P. Derivatization approaches and applications of pullulan. Adv. Colloid Interface Sci. 2019, 269, 296–308. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.H.; Zhu, I.H.; Zhan, X.B.; Lee, J.W.; Shin, D.H.; Kim, S.K. Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol. Lett. 2001, 23, 817–820. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Wei, G.; Dong, Y. Media optimization for elevated molecular weight and mass production of pigment-free pullulan. Carbohydr. Polym. 2012, 89, 928–934. [Google Scholar] [CrossRef]
- Sheng, L.; Liu, C.; Tong, Q.; Ma, M. Central metabolic pathways of Aureobasidium pullulans CGMCC1234 for pullulan production. Carbohydr. Polym. 2015, 134, 333–336. [Google Scholar] [CrossRef]
- Duan, X.; Chi, Z.; Wang, L.; Wang, X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr. Polym. 2008, 73, 587–593. [Google Scholar] [CrossRef]
- Sheng, L.; Tong, Q.; Ma, M. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzym. Microb. Technol. 2016, 92, 49–55. [Google Scholar] [CrossRef]
- Cheng, K.C.; Demirci, A.; Catchmark, J. Evaluation of Medium Composition and Fermentation Parameters on Pullulan Production by Aureobasidium pullulans. Food Sci. Technol. Int. 2011, 17, 99–109. [Google Scholar] [CrossRef]
- Lee, J.; Yeomans, W.; Allen, A.; Deng, F.; Gross, R.; Kaplan, D. Biosynthesis of Novel Exopolymers by Aureobasidium pullulans. Appl. Environ. 1999, 65, 5265–5271. [Google Scholar] [CrossRef] [Green Version]
- Shingel, K.I. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydr. Res. 2004, 339, 447–460. [Google Scholar] [CrossRef]
- Eide, D. Molecular biology of iron and zinc uptake in eukaryotes. Curr. Opin. Cell Biol. 1997, 9, 573–577. [Google Scholar] [CrossRef]
- Chi, Z.; Wang, F.; Chi, Z.; Yue, L.; Liu, G.L.; Zhang, T. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl. Microbiol. Biotechnol. 2009, 82, 793–804. [Google Scholar] [CrossRef]
- Doran, P.M. Homogeneous Reactions. In Bioprocess Engineering Principles, 2nd ed.; Academic Press: London, UK, 2013; Chapter 12; pp. 599–703. [Google Scholar]
- Jiang, H.; Xue, S.J.; Li, Y.F.; Liu, G.L.; Chi, Z.M.; Hu, Z.; Chi, Z. Efficient transformation of sucrose into high pullulan concentrations by Aureobasidium melanogenum TN1-2 isolated from a natural honey. Food Chem. 2018, 257, 29–35. [Google Scholar] [CrossRef]
- Andreini, C.; Banci, L.; Bertini, I.; Rosato, A. Zinc through the Three Domains of Life. J. Proteome Res. 2006, 5, 3173–3178. [Google Scholar] [CrossRef]
- Wang, Y.; Weisenhorn, E.; MacDiarmid, C.W.; Andreini, C.; Bucci, M.; Taggart, J.; Banci, L.; Russell, J.; Coon, J.J.; Eide, D.J. The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 2018, 10, 1755–1776. [Google Scholar] [CrossRef]
- Reeslev, M.; Jensen, B. Influence of Zn2+ and Fe3+ on polysaccharide production and mycelium/yeast dimorphism of Aureobasidium pullulans in batch cultivations. Appl. Microbiol. Biotechnol. 1995, 42, 910–915. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, G.; Zhu, C.; Wang, C.; Wang, D.; Wei, G. Metabolic flux and transcriptome analyses provide insights into the mechanism underlying zinc sulfate improved β-1,3-D-glucan production by Aureobasidium pullulans. Int. J. Biol. 2020, 164, 140–148. [Google Scholar] [CrossRef]
- Gadd, G.M.; Mowll, J.L. Copper uptake by yeast-like cells, hyphae, and chlamydospores of Aureobasidium pullulans. Exp. Mycol. 1985, 9, 230–240. [Google Scholar] [CrossRef]
- Wang, D.; Ju, X.; Zhang, G.; Wang, D.; Wei, G. Copper sulfate improves pullulan production by bioconversion using whole cells of Aureobasidium pullulans as the catalyst. Carbohydr. Polym. 2016, 150, 209–215. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 24450, Dipotassium Hydrogen Phosphate. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dipotassium-hydrogen-phosphate (accessed on 19 March 2021).
- Gottlieb, H.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. Res. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Du, X.; Liu, Z.; Lu, J.W.; Morris, J.R.; Glasser, W.G.; Heinze, T.; Esker, A.R. Surface Plasmon Resonance Studies of Pullulan and Pullulan Cinnamate Adsorption onto Cellulose. Biomacromolecules 2009, 10, 2451–2459. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Li, X.; Gao, F.P.; Liu, L.R.; Zhou, Z.M.; Zhang, Q.Q. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery. Drug Deliv. 2010, 17, 48–57. [Google Scholar] [CrossRef]
- Yao, H.Y.Y.; Wang, J.Q.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. A review of NMR analysis in polysaccharide structure and conformation: Progress, challenge and perspective. Food Res. Int. 2021, 143, 110290. [Google Scholar] [CrossRef]
- Park, J.; Nam, J.J.P.; Kim, W.S.; Choi, C.; Kim, M.Y.; Jang, M.K.; Nah, J.W. Preparation of pullulan-g-poly(L-lysine) and it’s evaluation as a gene carrier. Macromol. Res. 2012, 20, 667–672. [Google Scholar] [CrossRef]
- Kachhawa, D.K.; Bhattacharjee, P.; Singhal, R.S. Studies on downstream processing of pullulan. Carbohydr. Polym. 2003, 52, 25–28. [Google Scholar] [CrossRef]
- Gaidhani, H.; McNeil, B.; Ni, X. Fermentation of Pullulan Using an Oscillatory Baffled Fermenter. Chem. Eng. Res. Des. 2005, 83, 640–645. [Google Scholar] [CrossRef]
Carbon Source | Glucose (Control) | Sucrose (Autoclaved) | Sucrose (Filtered) | Glucose + Fructose |
---|---|---|---|---|
CDW(g/L) | 14 | 9 | 10 | 11.5 |
PDW (g/L) | 20 | 30 | 28 | 18 |
YPX (g/g) | 1.43 | 3.33 | 2.8 | 1.57 |
YXS (g/g) | 0.28 | 0.18 | 0.2 | 0.23 |
YPS (g/g) | 0.40 | 0.60 | 0.56 | 0.36 |
Mineral Salts | Control | ZnSO4 | CuSO4 | FeSO4 |
---|---|---|---|---|
CDW(g/L) | 14 | 12 | 9.8 | 14 |
PDW (g/L) | 20 | 16.5 | 26 | 27 |
YPX (g/g) | 1.43 | 1.38 | 2.65 | 1.86 |
YXS (g/g) | 0.28 | 0.24 | 0.20 | 0.28 |
YPS (g/g) | 0.40 | 0.33 | 0.52 | 0.54 |
Mw (Da) | Mn (Da) | PDI (-) | |
---|---|---|---|
Commercial | 270 120 | 77 417 | 3.49 |
Control (120 h) | 516 180 | 231 070 | 2.23 |
Control (72 h) | 750 540 | 316 680 | 2.37 |
Sucrose | 581 750 | 287 780 | 2.02 |
Glucose + Fructose | 573 240 | 282 480 | 2.03 |
ZnSO4 | 439 230 | 205 450 | 2.14 |
CuSO4 | 578 550 | 301 130 | 1.92 |
FeSO4 | 388 280 | 185 510 | 2.09 |
Assignment | Commercial Pullulan Wavenumber (cm−1) | Fermentative Pullulan Wavenumber (cm−1) |
---|---|---|
O-H stretching | 3320 | 3336 |
C-H stretching | 2917 | 2922 |
O-C-O stretching | 1632 | 1641 |
C-O-H stretching | 1418 | 1415 |
C-O-C stretching | 1148 | 1110 |
C-O stretching | 1018 | 990 |
α-D-Glucopyranose unit | 857 | 849 |
α(1,4)-glycosidic linkage | 754 | 755 |
α(1,6)-glycosidic linkage | 1077 | 1079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van den Eynde, K.; Boon, V.; Gaspar, R.C.; Fardim, P. Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions. Molecules 2023, 28, 2478. https://doi.org/10.3390/molecules28062478
Van den Eynde K, Boon V, Gaspar RC, Fardim P. Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions. Molecules. 2023; 28(6):2478. https://doi.org/10.3390/molecules28062478
Chicago/Turabian StyleVan den Eynde, Katia, Vik Boon, Rita Caiado Gaspar, and Pedro Fardim. 2023. "Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions" Molecules 28, no. 6: 2478. https://doi.org/10.3390/molecules28062478
APA StyleVan den Eynde, K., Boon, V., Gaspar, R. C., & Fardim, P. (2023). Biofabrication of Functional Pullulan by Aureobasidium pullulans under the Effect of Varying Mineral Salts and Sugar Stress Conditions. Molecules, 28(6), 2478. https://doi.org/10.3390/molecules28062478