molecules-logo

Journal Browser

Journal Browser

Essential Oil: Variability, Environmental Conditions, Composition and Bioactivity

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 October 2021) | Viewed by 42545

Special Issue Editor


E-Mail Website
Guest Editor
Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Marseille, France
Interests: natural product; secondary metabolites; essential oil; phenolic compound

Special Issue Information

Dear Colleagues,

Essential oils are a complex matrix composed of numerous volatile compounds generally extracted from different parts of the plant (root, stem, leaves or flowers) by steam distillation. They are known to have various biological activities often attributed to their phenolic constituents. They have always been used in folk medicine and for food preservation. Today, many applications concern the use of essential oils as new natural sources of biological interest. Their chemical composition depends on cultivars, harvesting times, growing conditions, environmental factors, and extraction processes. Ensuring the reproducibility of essential oil’s quality requires controlling all these parameters.

This Special Issue will focus on the variability of essential oil’s composition in relation to climatic, soil factors, harvested times, etc., with an analytical approach to discriminate essential oil factors that influence variability and characterized indicators of authenticity. The use of a specific detector for the identification of chemical characterization of essential oils will also be of great interest. The aim of this Special Issue is to provide an overview of the demonstration of the synergistic effect between essential oil’s molecules or the synergistic effect of essential oils with existing drugs to strengthen biological activities. Finally, research on the impact of the domestication of plants on the chemical composition and biological activity of their essential oils will be appreciated for sustainable management of biodiversity.

Dr. Isabelle Bombarda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • essential oil
  • composition
  • biological activity
  • variability
  • environmental condition
  • synergistic effect

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 271 KiB  
Article
Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria
by Fahima Bekka-Hadji, Isabelle Bombarda, Ferhat Djoudi, Sofiane Bakour and Abdelaziz Touati
Molecules 2022, 27(3), 1095; https://doi.org/10.3390/molecules27031095 - 7 Feb 2022
Cited by 15 | Viewed by 3119
Abstract
The essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography–flame ionization detector chromatograpy (GC–FID) and gaz chromatography–mass spectrometry (GC–MS). [...] Read more.
The essential oils were obtained by hydrodistillation from aerial parts of Mentha pulegium L. (M. pulegium L.) and Artemisia herba alba (A. herba alba) Asso. and analyzed by gas chromatography–flame ionization detector chromatograpy (GC–FID) and gaz chromatography–mass spectrometry (GC–MS). The antibacterial activities of the oils were determined by the disk diffusion method and a microdilution broth assay against six bacteria stains. The combinations of these essential oils with antibiotics were evaluated against two multi-drug-resistant bacteria strains: imipenem-resistant Acinetobacter baumannii (IRAB S3310) and methicillin-resistant Staphylococcus aureus (MRSA S19). The chemical analysis of M. pulegium essential oil revealed the presence of pulegone (74.8%) and neoisomenthol (10.0%). A. herba alba essential oil was characterized by camphor (32.0%), α-thujone (13.7%), 1,8-cineole (9.8%), β-thujone (5.0%), bornéol (3.8%), camphene (3.6%), and p-cymene (2.1%). All strains tested except Pseudomonas aeruginosa were susceptible to these oils. The combinations of essential oils with antibiotics exerted synergism, antagonism, or indifferent effects. The best effect was observed with A. herba alba essential oil in association with cefoxitin (CX) against MRSA S19. However, for IRAB S3310, the strongest synergistic effect was observed with M. pulegium in association with amikacin (AK). This study demonstrated that M. pulegium and A. herba alba essential oils have antibacterial activities which could be potentiated by antibiotics especially in the case of IRAB S3310. Full article
Show Figures

Graphical abstract

15 pages, 1628 KiB  
Article
Method Validation and Evaluation of Safrole Persistence in Cowpea Beans Using Headspace Solid-Phase Microextraction and Gas Chromatography
by Maria Suely Siqueira Ferraz, Lêda Rita D’Antonino Faroni, Fernanda Fernandes Heleno, Adalberto Hipólito de Sousa, Lucas Henrique Figueiredo Prates and Alessandra Aparecida Zinato Rodrigues
Molecules 2021, 26(22), 6914; https://doi.org/10.3390/molecules26226914 - 16 Nov 2021
Cited by 3 | Viewed by 2377
Abstract
Bioinsecticides are regarded as important alternatives for controlling agricultural pests. However, few studies have determined the persistence of these compounds in stored grains. This study aimed at optimizing and validating a fast and effective method for extraction and quantification of residues of safrole [...] Read more.
Bioinsecticides are regarded as important alternatives for controlling agricultural pests. However, few studies have determined the persistence of these compounds in stored grains. This study aimed at optimizing and validating a fast and effective method for extraction and quantification of residues of safrole (the main component of Piper hispidinervum essential oil) in cowpea beans. It also sought to assess the persistence of this substance in the grains treated by contact and fumigation. The proposed method used headspace solid-phase microextraction (HS-SPME) and gas chromatography with a flame ionization detector (GC/FID). Factors such as temperature, extraction time and type of fiber were assessed to maximize the performance of the extraction technique. The performance of the method was appraised via the parameters selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. The LOD and LOQ of safrole were 0.0057 and 0.019 μg kg−1, respectively and the determination coefficient (R2) was >0.99. The relative recovery ranged from 99.26 to 104.85, with a coefficient of variation <15%. The validated method was applied to assess the persistence of safrole residue in grains, where concentrations ranged from 1.095 to 0.052 µg kg−1 (contact) and from 2.16 to 0.12 µg kg −1 (fumigation). The levels measured up from the fifth day represented less than 1% of the initial concentration, proving that safrole have low persistence in cowpea beans, thus being safe for bioinsecticide use. Thus, this work is relevant not only for the extraction method developed, but also for the possible use of a natural insecticide in pest management in stored grains. Full article
Show Figures

Graphical abstract

17 pages, 1077 KiB  
Article
Chemical Variability and In Vitro Anti-Inflammatory Activity of Leaf Essential Oil from Ivorian Isolona dewevrei (De Wild. & T. Durand) Engl. & Diels
by Didjour Albert Kambiré, Jean Brice Boti, Ahmont Claude Landry Kablan, Daouda Ballo, Mathieu Paoli, Virginie Brunini and Félix Tomi
Molecules 2021, 26(20), 6228; https://doi.org/10.3390/molecules26206228 - 15 Oct 2021
Cited by 2 | Viewed by 1836
Abstract
The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the [...] Read more.
The chemical variability and the in vitro anti-inflammatory activity of the leaf essential oil from Ivorian Isolona dewevrei were investigated for the first time. Forty-seven oil samples were analyzed using a combination of CC, GC(RI), GC-MS and 13C-NMR, thus leading to the identification of 113 constituents (90.8–98.9%). As the main components varied drastically from sample to sample, the 47 oil compositions were submitted to hierarchical cluster and principal components analyses. Three distinct groups, each divided into two subgroups, were evidenced. Subgroup I−A was dominated by (Z)-β-ocimene, β-eudesmol, germacrene D and (E)-β-ocimene, while (10βH)-1β,8β-oxido-cadina-4-ene, santalenone, trans-α-bergamotene and trans-β-bergamotene were the main compounds of Subgroup I−B. The prevalent constituents of Subgroup II−A were germacrene B, (E)-β-caryophyllene, (5αH,10βMe)-6,12-oxido-elema-1,3,6,11(12)-tetraene and γ-elemene. Subgroup II−B displayed germacrene B, germacrene D and (Z)-β-ocimene as the majority compounds. Germacrene D was the most abundant constituent of Group III, followed in Subgroup III−A by (E)-β-caryophyllene, (10βH)-1β,8β-oxido-cadina-4-ene, germacrene D-8-one, and then in Subgroup III−B by (Z)-β-ocimene and (E)-β-ocimene. The observed qualitative and quantitative chemical variability was probably due to combined factors, mostly phenology and season, then harvest site to a lesser extent. The lipoxygenase inhibition by a leaf oil sample was also evaluated. The oil IC50 (0.020 ± 0.005 mg/mL) was slightly higher than the non-competitive lipoxygenase inhibitor NDGA IC50 (0.013 ± 0.003 mg/mL), suggesting a significant in vitro anti-inflammatory potential. Full article
Show Figures

Graphical abstract

20 pages, 2200 KiB  
Article
Comparison of Volatile Organic Compounds of Sideritis romana L. and Sideritis montana L. from Croatia
by Tihana Marić, Maja Friščić, Zvonimir Marijanović, Željan Maleš and Igor Jerković
Molecules 2021, 26(19), 5968; https://doi.org/10.3390/molecules26195968 - 1 Oct 2021
Cited by 6 | Viewed by 2294
Abstract
A study on the headspace volatile organic compounds (VOCs) profile of native populations of Sideritis romana L. and Sidertis montana L., Lamiaceae, from Croatia is reported herein, to elucidate the phytochemical composition of taxa from this plant genus, well-known for traditional use in [...] Read more.
A study on the headspace volatile organic compounds (VOCs) profile of native populations of Sideritis romana L. and Sidertis montana L., Lamiaceae, from Croatia is reported herein, to elucidate the phytochemical composition of taxa from this plant genus, well-known for traditional use in countries of the Mediterranean and the Balkan region. Headspace solid-phase microextraction (HS-SPME), using divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) or polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, coupled with gas chromatography-mass spectrometry (GC-MS) was applied to analyze the dried aerial parts of six native populations in total. Furthermore, principal component analysis (PCA) was conducted on the volatile constituents with an average relative percentage ≥1.0% in at least one of the samples. Clear separation between the two species was obtained using both fiber types. The VOCs profile for all investigated populations was characterized by sesquiterpene hydrocarbons, followed by monoterpene hydrocarbons, except for one population of S. romana, in which monoterpene hydrocarbons predominated. To our knowledge, this is the first report on the VOCs composition of natural populations of S. romana and S. montana from Croatia as well as the first reported HS-SPME/GC-MS analysis of S. romana and S. montana worldwide. Full article
Show Figures

Graphical abstract

17 pages, 10394 KiB  
Article
Chemical Composition, Antioxidant and Anti-Inflammatory Activities of Clary Sage and Coriander Essential Oils Produced on Polluted and Amended Soils-Phytomanagement Approach
by Robin Raveau, Joël Fontaine, Anthony Verdin, Loris Mistrulli, Frédéric Laruelle, Sophie Fourmentin and Anissa Lounès-Hadj Sahraoui
Molecules 2021, 26(17), 5321; https://doi.org/10.3390/molecules26175321 - 1 Sep 2021
Cited by 13 | Viewed by 3175
Abstract
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted [...] Read more.
The potential of essential oils (EO), distilled from two aromatic plants—clary sage (Salvia sclarea L.) and coriander (Coriandrum sativum L.)—in view of applications as natural therapeutic agents was evaluated in vitro. These two were cultivated on a trace element (TE)-polluted soil, as part of a phytomanagement approach, with the addition of a mycorrhizal inoculant, evaluated for its contribution regarding plant establishment, growth, and biomass production. The evaluation of EO as an antioxidant and anti-inflammatory, with considerations regarding the potential influence of the TE-pollution and of the mycorrhizal inoculation on the EO chemical compositions, were the key focuses. Besides, to overcome EO bioavailability and target accession issues, the encapsulation of EO in β-cyclodextrin (β-CD) was also assessed. Firstly, clary sage EO was characterized by high proportions of linalyl acetate (51–63%) and linalool (10–17%), coriander seeds EO by a high proportion of linalool (75–83%) and lesser relative amounts of γ-terpinene (6–9%) and α-pinene (3–5%) and coriander aerial parts EO by 2-decenal (38–51%) and linalool (22–39%). EO chemical compositions were unaffected by both soil pollution and mycorrhizal inoculation. Of the three tested EO, the one from aerial parts of coriander displayed the most significant biological effects, especially regarding anti-inflammatory potential. Furthermore, all tested EO exerted promising antioxidant effects (IC50 values ranging from 9 to 38 g L1). However, EO encapsulation in β-CD did not show a significant improvement of EO biological properties in these experimental conditions. These findings suggest that marginal lands polluted by TE could be used for the production of EO displaying faithful chemical compositions and valuable biological activities, with a non-food perspective. Full article
Show Figures

Figure 1

14 pages, 13679 KiB  
Article
Variability of the Chemical Composition and Bioactivity between the Essential Oils Isolated from Male and Female Specimens of Hedyosmum racemosum (Ruiz & Pav.) G. Don
by Eduardo Valarezo, Vladimir Morocho, Luis Cartuche, Fernanda Chamba-Granda, Magdaly Correa-Conza, Ximena Jaramillo-Fierro and Miguel Angel Meneses
Molecules 2021, 26(15), 4613; https://doi.org/10.3390/molecules26154613 - 29 Jul 2021
Cited by 6 | Viewed by 2204
Abstract
Hedyosmum racemosum (Ruiz & Pav.) G. is a native species of Ecuador used in traditional medicine for treatment of rheumatism, bronchitis, cold, cough, asthma, bone pain, and stomach pain. In this study, fresh H. racemosum leaves of male and female specimens were collected [...] Read more.
Hedyosmum racemosum (Ruiz & Pav.) G. is a native species of Ecuador used in traditional medicine for treatment of rheumatism, bronchitis, cold, cough, asthma, bone pain, and stomach pain. In this study, fresh H. racemosum leaves of male and female specimens were collected and subjected to hydrodistillation for the extraction of the essential oil. The chemical composition of male and female essential oil was determined by gas chromatography–gas chromatography equipped with a flame ionization detector and coupled to a mass spectrometer using a non-polar and a polar chromatographic column. The antibacterial activity was assayed against five Gram-positive and two Gram-negative bacteria, and two dermatophytes fungi. The scavenging radical properties of the essential oil were evaluated by DPPH and ABTS assays. The chemical analysis allowed us to identify forty-three compounds that represent more than 98% of the total composition. In the non-polar and polar column, α-phellandrene was the principal constituent in male (28.24 and 25.90%) and female (26.47 and 23.90%) essential oil. Other main compounds were methyl chavicol, germacrene D, methyl eugenol, and α-pinene. Female essential oil presented a strong activity against Klebsiella pneumoniae (ATCC 9997) with an minimum inhibitory concentration (MIC) of 500 μg/mL and a scavenging capacity SC50 of 800 µg/mL. Full article
Show Figures

Figure 1

9 pages, 968 KiB  
Article
Chemical Composition and Anticholinesterase Activity of the Essential Oil of Leaves and Flowers from the Ecuadorian Plant Lepechinia paniculata (Kunth) Epling
by María Fernanda Panamito, Nicole Bec, Valeria Valdivieso, Melissa Salinas, James Calva, Jorge Ramírez, Christian Larroque and Chabaco Armijos
Molecules 2021, 26(11), 3198; https://doi.org/10.3390/molecules26113198 - 27 May 2021
Cited by 7 | Viewed by 2884
Abstract
This work aimed to study the chemical composition, cholinesterase inhibitory activity, and enantiomeric analysis of the essential oil from the aerial parts (leaves and flowers) of the plant Lepechinia paniculata (Kunth) Epling from Ecuador. The essential oil (EO) was obtained through steam distillation. [...] Read more.
This work aimed to study the chemical composition, cholinesterase inhibitory activity, and enantiomeric analysis of the essential oil from the aerial parts (leaves and flowers) of the plant Lepechinia paniculata (Kunth) Epling from Ecuador. The essential oil (EO) was obtained through steam distillation. The chemical composition of the oil was evaluated by gas chromatography, coupled to mass spectrometry (GC–MS) and a flame ionization detector (GC-FID). The analyses led to the identification of 69 compounds in total, of which 40 were found in the leaves and 29 were found in the flowers of the plant. The major components found in the oil were 1,8-Cineole, β-Pinene, δ-3-Carene, α-Pinene, (E)-Caryophyllene, Guaiol, and β-Phellandrene. Flower essential oil showed interesting selective inhibitory activity against both enzymes AChE (28.2 ± 1.8 2 µg/mL) and BuChE (28.8 ± 1.5 µg/mL). By contrast, the EO of the leaves showed moderate mean inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), with IC50 values of 38.2 ± 2.9 µg/mL and 47.4 ± 2.3 µg/mL, respectively. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 1867 KiB  
Review
Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health
by José Nabor Haro-González, Gustavo Adolfo Castillo-Herrera, Moisés Martínez-Velázquez and Hugo Espinosa-Andrews
Molecules 2021, 26(21), 6387; https://doi.org/10.3390/molecules26216387 - 22 Oct 2021
Cited by 179 | Viewed by 23081
Abstract
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the [...] Read more.
Clove (Syzygium aromaticum L. Myrtaceae) is an aromatic plant widely cultivated in tropical and subtropical countries, rich in volatile compounds and antioxidants such as eugenol, β-caryophyllene, and α-humulene. Clove essential oil has received considerable interest due to its wide application in the perfume, cosmetic, health, medical, flavoring, and food industries. Clove essential oil has biological activity relevant to human health, including antimicrobial, antioxidant, and insecticidal activity. The impacts of the extraction method (hydrodistillation, steam distillation, ultrasound-assisted extraction, microwave-assisted extraction, cold pressing, and supercritical fluid extraction) on the concentration of the main volatile compounds in clove essential oil and organic clove extracts are shown. Eugenol is the major compound, accounting for at least 50%. The remaining 10–40% consists of eugenyl acetate, β-caryophyllene, and α-humulene. The main biological activities reported are summarized. Furthermore, the main applications in clove essential oil in the food industry are presented. This review presents new biological applications beneficial for human health, such as anti-inflammatory, analgesic, anesthetic, antinociceptive, and anticancer activity. This review aims to describe the effects of different methods of extracting clove essential oil on its chemical composition and food applications and the biological activities of interest to human health. Full article
Show Figures

Graphical abstract

Back to TopTop