molecules-logo

Journal Browser

Journal Browser

Bioactive and Nutritional Molecules: From Natural Sources to Therapeutic and Health Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Cross-Field Chemistry".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 20804

Special Issue Editor


E-Mail Website
Guest Editor
Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
Interests: obesity; sports nutrition; bariatric surgery; body composition; Mediterranean diet; clinical nutrition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will explore the potential of bioactive and nutritional molecules derived from natural sources, with a specific focus on their therapeutic applications for human health. Derivatives from both animal and plant sources offer a range of bioactive compounds that contribute to the prevention and management of various diseases. This Special Issue invites contributions that address the isolation, characterisation and functional evaluation of such molecules, with a focus on their therapeutic, nutraceutical and health-promoting effects. We welcome studies on molecules such as peptides, polyphenols, fatty acids and other bioactive components of natural origin. In addition, research exploring mechanisms of action, bioavailability and possible applications in nutrition and medicine is highly encouraged. We aim to provide a comprehensive overview of the latest developments and emerging trends in the development of natural therapeutic agents, highlighting their roles in promoting human health.

Prof. Dr. Mauro Lombardo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive and nutritional molecules
  • natural therapeutic agents
  • bioactive compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 469 KiB  
Article
Voltametric Analysis of Ergosterol Isolated from Wild-Growing and Cultivated Edible Mushrooms from Serbia and Korea
by Svetlana Đogo Mračević, Jelena Mutić, Vesna Stanković and Slavica Ražić
Molecules 2025, 30(9), 2010; https://doi.org/10.3390/molecules30092010 - 30 Apr 2025
Viewed by 152
Abstract
Thanks to several components with health-promoting properties, mushrooms are recognized as a practical functional food and a valuable source of nutrients for the food industry. Ergosterol, the major sterol in edible mushrooms and a precursor of vitamin D2 with proven pharmacological activity and [...] Read more.
Thanks to several components with health-promoting properties, mushrooms are recognized as a practical functional food and a valuable source of nutrients for the food industry. Ergosterol, the major sterol in edible mushrooms and a precursor of vitamin D2 with proven pharmacological activity and nutritional value, has become a very important topic in chemical and medical research. The main objectives of this study were to determine the ergosterol content in different species of Serbian wild mushrooms and in commercial mushrooms from Korean and Serbian grocery stores using square-wave voltammetry, to compare the concentrations in different parts of white button mushrooms, and to determine a possible relationship between Zn, Cu and Fe and ergosterol contents. The ergosterol contents varied between 0.01 and 7.04 mg/g (dry mass) of the mushrooms and were generally higher in cultivated mushrooms than in wild mushrooms. In addition, the ergosterol concentration was higher in the stems than in the caps of the mushrooms examined. Iron, Zn and Cu contents varied between the mushroom species at 8.5–479.9, 13.1–149.7 and 1.62–93.03 mg/kg, respectively, and principal component analysis (PCA) extracted two factors explaining 79.14% of the total variance, suggesting a direct relationship between iron and ergosterol content. This is the first comprehensive study to analyze and evaluate ergosterol concentrations in edible mushrooms from Korea and Serbia. Full article
Show Figures

Graphical abstract

19 pages, 9145 KiB  
Article
Antiviral Activity and Underlying Mechanism of Moslae herba Aqueous Extract for Treating SARS-CoV-2
by Yan Feng, Qiong Ge, Jian Gao, Zhuoying Wu, Yunyi Zhang, Haiyan Mao, Beibei Wu and Changping Xu
Molecules 2025, 30(2), 387; https://doi.org/10.3390/molecules30020387 - 17 Jan 2025
Viewed by 889
Abstract
Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. Moslae herba (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects [...] Read more.
Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. Moslae herba (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects and the underlying mechanism of aqueous extract of Moslae herba (AEMH) for treating SARS-CoV-2. The in vitro anti-SARS-CoV-2 activity of AEMH was evaluated using cell viability and viral load. Component analysis was performed by HPLC-ESI-Q-TOF/MS. The connection between COVID-19 and AEMH was constructed by integrating network pharmacology and transcriptome profiles to seek the core targets. The components with antiviral activities were analyzed by molecular docking and in vitro pharmacological verification. AEMH exerted anti-SARS-CoV-2 effects by inhibiting viral replication and reducing cell death caused by infection (IC50 is 170 μg/mL for omicron strain). A total of 27 components were identified from AEMH. Through matching 119 intersection targets of ‘disease and drug’ with 1082 differentially expressed genes of COVID-19 patients, nine genes were screened. Of the nine, the PNP and TPI1 were identified as core targets as AEMH treatment significantly regulated the mRNA expression level of the two genes on infected cells. Three components, caffeic acid, luteolin, and rosmarinic acid, displayed antiviral activities in verification. Molecular docking also demonstrated they could form stable bonds with the core targets. This study explored the antiviral activity and possible mechanism of AEMH for treating SARS-CoV-2, which could provide basic data and reference for the clinical application of MH. Full article
Show Figures

Figure 1

9 pages, 2020 KiB  
Article
Isolation and Bioactivity of Natural Products from Streptomyces sp. MA37
by Fleurdeliz Maglangit, Qing Fang, Jioji N. Tabudravu, Kwaku Kyeremeh, Marcel Jaspars and Hai Deng
Molecules 2025, 30(2), 306; https://doi.org/10.3390/molecules30020306 - 14 Jan 2025
Viewed by 1419
Abstract
The isolation and characterization of bioactive metabolites from Streptomyces species continue to represent a vital area of research, given their potential in natural product drug discovery. In this study, we characterize a new siderophore called legonoxamine I, together with a known compound, streptimidone, [...] Read more.
The isolation and characterization of bioactive metabolites from Streptomyces species continue to represent a vital area of research, given their potential in natural product drug discovery. In this study, we characterize a new siderophore called legonoxamine I, together with a known compound, streptimidone, from the talented soil bacterium Streptomyces sp. MA37, using chromatographic techniques and spectroscopic analysis. Legonoxamine I is a new holo-siderophore, which is likely to be a derailed product from the biosynthetic pathway of legonoxamine A. We also demonstrate that legonoxamine A possesses potent anticancer activity (IC50 = 2.2 µM), exhibiting a remarkable ~30-fold increase in potency against MCF-7 ATCC HTB-22 breast cancer cells compared to desferrioxamine B, a structural analogue of legonoxamine A (IC50 = 61.1 µM). Comparing the structural difference between legonoxamine A and desferrioxamine B, it is deduced that the phenylacetyl moiety in legonoxamine A may have contributed significantly to its enhanced potency. Our findings contribute to the growing library of Streptomyces-derived metabolites and underscore the genus’ potential as a promising source of lead compounds. Full article
Show Figures

Figure 1

20 pages, 4485 KiB  
Article
Synergistic Combination of Quercetin and Mafosfamide in Treatment of Bladder Cancer Cells
by Carmela Spagnuolo, Francesco Mautone, Anna Maria Iole Meola, Stefania Moccia, Giuseppe Di Lorenzo, Carlo Buonerba and Gian Luigi Russo
Molecules 2024, 29(21), 5176; https://doi.org/10.3390/molecules29215176 - 31 Oct 2024
Viewed by 1944
Abstract
Bladder cancer, which has a rising incidence, is the 10th most common cancer. The transitional cell carcinoma histotype is aggressive and often current therapies are ineffective. We investigated the anti-proliferative effect of quercetin, a natural flavonoid, in combination with the alkylating agent mafosfamide [...] Read more.
Bladder cancer, which has a rising incidence, is the 10th most common cancer. The transitional cell carcinoma histotype is aggressive and often current therapies are ineffective. We investigated the anti-proliferative effect of quercetin, a natural flavonoid, in combination with the alkylating agent mafosfamide (MFA) on two human bladder cancer cell lines, namely RT112 and J82, representing the progression from low-grade to high-grade tumors, respectively. In both cell types, the combined treatment led to a synergic reduction in cell viability confirmed by a combination index of less than one, though different biological responses were noted. In J82 cells, MFA alone and, to a lesser extent, with quercetin caused cell cycle arrest in the G2/M phase, but only the combined treatment triggered apoptotic cell death. In contrast, in RT112 cells, quercetin induced autophagy, evidenced by the autophagosome formation and the increase in LC-3 lipidation. Interestingly, the synergistic effect was observed only when cells were pre-treated with MFA for 24 h before adding quercetin, not in the reverse order. This suggests that quercetin may help overcome MFA resistance to apoptosis. Although further studies are needed, investigating the combined effects of quercetin and MFA could help elucidate the mechanisms of drug resistance in bladder cancer treatment. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

18 pages, 2656 KiB  
Review
Caffeine as an Active Molecule in Cosmetic Products for Hair Loss: Its Mechanisms of Action in the Context of Hair Physiology and Pathology
by Ewelina Szendzielorz and Radoslaw Spiewak
Molecules 2025, 30(1), 167; https://doi.org/10.3390/molecules30010167 - 4 Jan 2025
Cited by 2 | Viewed by 11643
Abstract
Caffeine has recently attracted attention as a potential remedy for hair loss. In the present review, we look into the molecule’s possible mechanisms of action and pharmacodynamics. At the molecular level, it appears that the physiological effects of caffeine are mainly due to [...] Read more.
Caffeine has recently attracted attention as a potential remedy for hair loss. In the present review, we look into the molecule’s possible mechanisms of action and pharmacodynamics. At the molecular level, it appears that the physiological effects of caffeine are mainly due to the molecule’s interaction with adenosine pathways which leads to an increase in cAMP level and the stimulation of metabolic activity in the hair follicle. Moreover, caffeine also acts as an antioxidant and may prevent degenerative processes. While the intact stratum corneum seems virtually impenetrable to caffeine and a range of physical and chemical methods have been proposed to facilitate its penetration, hair follicles seem to be both a main entry route into the skin and target structures for caffeine at the same time. Caffeine readily forms bonds with water and other molecules which may influence its bioavailability and should be taken into account when engineering future hair products. The results of clinical studies published so far seem promising; however, the majority of the studies of caffeine-based hair loss products offer a very low level of evidence due to considerable flaws in study designs. Nevertheless, the metabolic activity of caffeine and its ability to enter and accumulate in the hair follicles combined with the results of available clinical trials seem to indicate that caffeine could indeed prove as an effective and safe option in the management of hair loss. Full article
Show Figures

Figure 1

21 pages, 1125 KiB  
Review
Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects
by Liping Chen, Xiao Liu, Kaiyue Zheng, Yang Wang, Minglong Li, Yuyu Zhang, Yuan Cui, Sichun Deng, Shiqi Liu, Gaoju Zhang, Ling Li and Yuxin He
Molecules 2024, 29(21), 5107; https://doi.org/10.3390/molecules29215107 - 29 Oct 2024
Cited by 4 | Viewed by 3928
Abstract
Cordyceps primarily consists of ascomycetes, a parasitic fungus that infects insects and arthropods. Recently, Cordyceps has been shown to manifest a diverse range of pharmacological activities, rendering it applicable for the treatment and mitigation of various diseases, such as diabetes, acute liver injury, [...] Read more.
Cordyceps primarily consists of ascomycetes, a parasitic fungus that infects insects and arthropods. Recently, Cordyceps has been shown to manifest a diverse range of pharmacological activities, rendering it applicable for the treatment and mitigation of various diseases, such as diabetes, acute liver injury, and colitis. Many active constituents have been identified from Cordyceps sinensis, including cordycepin, adenosine, sterols, and polysaccharides. Polysaccharides constitute a primary active component of Cordyceps, exhibiting immunomodulatory effects. We searched the Web of Science database with the keywords of cordyceps, polysaccharide, and immune modulation; collected related studies from 2004 to 2024; and eliminated articles with low influence and workload. A review of the research advancements regarding the immunomodulatory effects of Cordyceps polysaccharides was conducted with the aim of furnishing valuable reference information. Research indicates that polysaccharides exhibiting immunomodulatory activity are predominantly sourced from Cordyceps sinensis and Cordyceps militaris. Immunological experimental results demonstrate that Cordyceps polysaccharides can augment the activities of macrophages, lymphocytes, and dendritic cells while fostering the expression of immune-active substances such as cytokines and chemokines. Furthermore, animal experiments have substantiated the immunomodulatory effects of Cordyceps polysaccharides. These effects encompass ameliorating immune suppression induced by drugs or radiation, enhancing immune organ indices, elevating the expression of immunoreactive substances, and mitigating immune evasion prompted by tumors. In conclusion, Cordyceps polysaccharides exhibit significant immunomodulatory activity and merit further investigation. Full article
Show Figures

Figure 1

Back to TopTop